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Abstract. We analyze the deviations fromMaxwell-Boltzmann statistics found in recent experiments study-
ing velocity distributions in two-dimensional granular gases driven into a non-equilibrium stationary state
by a strong vertical vibration. We show that in its simplest version, the “stochastic thermostat” model
of heated inelastic hard spheres, contrary to what has been hitherto stated, is incompatible with the ex-
perimental data, although predicting a reminiscent high-velocity stretched-exponential behavior with an
exponent 3/2. The experimental observations lead to refine a recently proposed random restitution co-
efficient model. Very good agreement is then found with experimental velocity distributions within this
framework, which appears self-consistent and further provides relevant probes to investigate the universal-
ity of the velocity statistics.

PACS. 45.70.-n Granular systems – 05.20.Gg Classical ensemble theory – 51.10.+y Kinetic and transport
theory of gases

1 Introduction

Whereas equilibrium statistical mechanics has reached
a rather mature phase, the understanding of non-
equilibrium processes is far from complete. In particu-
lar, granular (and thus inelastic) gases [1] driven into a
non-equilibrium steady state by a suitable injection of
energy define a stimulating research field where theoret-
ical predictions can be confronted against model exper-
iments, with the aim to understand the possible devia-
tions from equilibrium behavior. A good probe to quantify
these deviations is the velocity distribution of the grains,
P (v), which has focused sustained attention recently, and
has been shown to exhibit pronounced differences from
Maxwell-Boltzmann statistics [2–6]. Several authors re-
ported a stretched-exponential law (on the whole range
of velocities available, which covers an accuracy of 5 to 6
orders of magnitude for P (v))

P (v) ∝ exp[−(v/v0)ν ] , (1)

with an exponent ν close to 3/2 [3,4,6] (here v0 is the
“thermal” r.m.s. velocity). This behavior was observed for
the horizontal velocity components of a vertically vibrated
2D system of steel beads in a wide range of driving fre-
quencies and densities [4], but also in a three-dimensional
electrostatically driven granular gas [6].
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At this point, some questions naturally arise, that will
be addressed below: i) Is it possible to find a consis-
tent model where this velocity distribution would emerge?
ii) What physical ingredients are required?

One possible approach consists in performing “realis-
tic” molecular-dynamics simulations. The model of inelas-
tic hard spheres (IHS) with binary momentum-conserving
collisions, and a “reasonable” restitution coefficient [1]
provides the simplest candidate. The energy loss in a
collision is proportional to the inelasticity parameter
1 − α2

0, where α0 is the coefficient of normal restitution
(0 < α0 ≤ 1), which in the simplest and efficient approxi-
mation is a constant independent of the relative velocity of
colliding partners. Such an approach has been presented
in [7,8], and allows to reproduce the experimental veloc-
ity statistics with a good accuracy. The possible lack of
universality has also been addressed in [8].

Another route, which contrary to the previous numeri-
cal one has the merit to allow an analytical derivation of ν
in some cases [9], consists in formulating an effective mod-
eling of the energy injection, considering idealized homo-
geneous systems of inelastic hard spheres (given the exper-
iments reported in [4], the assumption of homogeneity is
well founded, see below). From this point of view, a simple
and popular model consists in IHS with constant inelastic-
ity, with a homogeneous forcing described by a “stochas-
tic thermostat” [10,11,9,12–16]. This model has attracted
attention, in particular because it has been shown analyt-
ically [9] that P (v) exhibits a high-energy tail of the form
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of equation (1) with ν = 3/2, independent of dimension
and restitution coefficient, in apparent agreement with the
experiments. This result holds at the mean-field level for
a homogeneous system. The above model, where an ex-
ternal white-noise driving force acts on the particles and
thus injects energy through random “kicks” between the
collisions, is therefore considered to provide a relevant the-
oretical framework to quantify the non-Gaussian character
of velocity distributions.

However, we shall see below that this uniformly heated
model —in its simplest version— is unable to reproduce
the experimental data: if simulated in dimension 2 or
higher with an experimentally relevant value of the resti-
tution coefficient (α0 between 0.7 and 1), the obtained dis-
tribution P (v) is indistinguishable from a Gaussian within
the experimental accuracy1; in fact, the range of veloci-
ties for which the high-energy behavior exp[−(v/v0)3/2]
may be observed is even beyond reach of precise numeri-
cal procedures and corresponds to a regime where P (v) is
practically vanishing (lower than 10−6P (0)). The predic-
tions of this model are consequently incompatible with the
experimental velocity distributions, that show important
non-Gaussian features already at thermal velocity scale [3,
4,6]. We emphasize, however, that generalizations of the
aforementioned heated model have been proposed [17,18].
With a convenient choice of the extra parameters intro-
duced, one may obtain a velocity distribution close to that
measured in the experiments (we will come back to this
point in Sect. 4). However, in such approaches, energy is
injected in between the collisions whereas in the experi-
ments we are interested in, the transfer of horizontal mo-
mentum takes place at every inter-particle collision (see
Sect. 3). We will therefore focus on this feature for the 2D
experiment reported in [4] and investigate in detail the col-
lision dynamics in the horizontal direction (Sect. 2). The
vibrated system under study there shows important den-
sity and granular temperature gradients, especially close
to the boundaries which inject energy, but since the shak-
ing is violent, there is a region where both gradients are
very small simultaneously. The velocity acquisition in [4]
has been restricted to this region, where the system, al-
though open, may be considered as homogeneous. In this
article, we thus consider the following question: remaining
at the level of a homogeneous system, what ingredients are
required for a self-consistent effective description of the
horizontal degrees of freedom, that exhibit the stretched-
exponential law (1)?

2 Effective restitution coefficients

In order to characterize the collision process in the hori-
zontally projected system, we have measured directly the
effective 1D restitution coefficient from the experimental
data provided by K. Feitosa and N. Menon, for a gas of
stainless-steel spheres (the system investigated in [4]) but

1 If this model is simulated in dimension 1 with α0 ∈ [0.7; 1],
the obtained non-Gaussian behavior at thermal velocities cor-
responds to ν > 2 instead of ν � 3/2 in the experiments.
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Fig. 1. Experimental distribution of α1d for steel beads (cir-
cles) and glass beads (squares). Line: µ(α1d) obtained in the
RRC model as selected by the collisional dynamics (see text).
Inset: experimental scatter plot of α1d versus relative precol-
lisional horizontal velocity gx, for glass beads. Data from [4]
and [19].

also for glass, brass and aluminum beads [19], which al-
low to sample a wide range of nominal inelasticities. Let
us recall briefly the experimental set-up. The balls (di-
ameter: d = 1.600 ± 0.002 mm) are confined to a vertical,
rectangular cage (32d high × 48d wide × 1.1d thick) sand-
wiched between two parallel plates of Plexiglas. The cage
is vibrated vertically at a frequency of 60 Hz and ampli-
tudes up to 2.4d, producing maximum accelerations, Γ ,
and velocities, v0, of 56g and 1.45 m/s, respectively. The
motions of the balls are recorded with a high-speed cam-
era which allows a location of each ball with a precision of
0.03d. The results we discuss here are taken in a rectangu-
lar (10d × 20d) window around the geometrical center of
the cell, where, as mentioned above, density and granular
temperature are almost homogeneous [4]. Moreover, the
measured velocity distributions do not vary with height
nor with the phase of the vibration cycle. The experimen-
tal data can thus be considered as obtained in the bulk of
a two-dimensional homogeneous (but open) system, rea-
sonably far from the boundaries.

The horizontal component of relative velocities are
computed before (gx) and after (g∗x) each collision, from
which we deduce the effective restitution coefficient

α1d =
|g∗x|
|gx| . (2)

Figure 1 displays the histogram µexp(α1d) obtained from
the experimental data for different materials. At large α1d,
a power law tail is evidenced. Note that values α1d > 1 are
expected, due to the transfer from vertical to horizontal
translational kinetic energy [20].

The strong correlations between relative horizontal ve-
locity gx and α1d are clearly seen in the scatter plot (in-
set of Fig. 1), with a very sharp cutoff above the second
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bisector α1d ∝ 1/gx. This cutoff follows from the defini-
tion of α1d: since the post-collision velocity is finite, large
values of α1d may only be obtained for small values of gx,
in which case equation (2) implies that the maximum α1d

is of order 1/gx.
These features are qualitatively the same for all mate-

rials investigated. Moreover, three different densities have
been investigated for steel beads, and the same distribu-
tions have been obtained [19]. Similar distributions have
also been measured in a different experimental set-up with
rolling beads [21]. The relatively small number of collisions
investigated does not, however, allow us to get accurate
histograms for the joint distributions µ(α1d, gx) nor the
conditional µ(α1d|gx). The correlations evidenced in Fig-
ure 1 nevertheless play a crucial role, as will be shown
below.

More insight into the conditional distributions
µ(α1d|gx) has been obtained in molecular dynamics of
two-dimensional IHS driven by vibrating walls in refer-
ence [7]. Histograms of µ(α1d) similar to the experimental
results have been obtained. It turns out that the global
µ(α1d) is almost insensitive to the details of the system
(density, velocity of the vibrating walls...), while this de-
pendence exists for µ(α1d|gx) (and also for P (v)). The fol-
lowing characteristics of µ(α1d|gx) have been obtained: at
constant gx, µ(α1d|gx) is almost constant for α1d ∈ [0, α0],
has a small peak at α0, and decreases as exp(−A(gx)α2

1d)
for α1d > α0, with A(gx) ∝ g2

x.

3 Random restitution coefficient model

We have considered the possibility to mimic the experi-
mental distributions by including randomness in the resti-
tution coefficient, following the approach of [20], where
a random restitution coefficient (RRC) model was intro-
duced to account for the fact that, in vertically shaken
granular gases, the energy is transferred to the vertical
degrees of freedom by the moving piston, and then to
the horizontal ones through grain/grain collisions only.
The heating of horizontal degrees of freedom thus occurs
through the inter-particle collisions, and not in between
as in the “stochastic thermostat” approach. Moreover, a
globally dissipative collision may correspond to an en-
ergy gain for the horizontal components of the velocities.
This leads to the study of horizontally projected collisions
with an effective restitution coefficient that can be either
smaller or larger than 1, as the experimental data of Fig-
ure 1 indeed show. In our case, the RRC model is therefore
an effective approach in 1 dimension (since the original col-
lisions are two-dimensional), in which IHS undergo binary,
momentum-conserving collisions with a restitution coeffi-
cient α1d drawn randomly at each collision from a given
distribution µ(α1d) which should mimic µexp(α1d). Even if
the original collisions are not random, the projected ones
may be considered as such.

Note that the energy injection is here given solely by
the values of α1d larger than 1. The simulations are per-
formed at the mean-field level of the homogeneous non-
linear Boltzmann equation for point particles, solved by

the direct simulation Monte Carlo method (DSMC) [22].
The velocity statistics is computed in the non-equilibrium
steady state which is reached after a transient.

We have first considered distributions with a large tail
in order to reproduce the experimental µ(α1d), but with-
out any correlations with the relative velocities of the col-
liding particles; in this case, it turns out that P (v) has a
power law decay at large v, in marked contrast with ex-
perimental results 2. This approach consequently needs to
be refined and the next crucial step is to take into account
the correlations between α1d and gx, with the insight given
by the experimental scatter plot (inset of Fig. 1) and by
the molecular-dynamics results [7].

We have thus used distributions decaying as
µ(α1d|g̃x) ∼ exp[−(α1dg̃x)2/R] at large α1d, where g̃x =
gx/v0 is the rescaled velocity defined from the total ki-
netic energy of the system (v2

0 = 〈v2〉), and the param-
eter R can be varied with values of order 1. The func-
tion µ(α1d|gx) is the only input needed to simulate the
RRC model. For the consistency of the approach, the dis-
tribution µ(α1d) measured in the simulation needs to be
close to its experimental counterpart. This comparison is
displayed in Figure 1 and justifies a posteriori the choice
made for µ(α1d|gx). Both experimental and numerical dis-
tributions µ(α1d) display a power law tail of the form α−n

1d
with n � 3.

The velocity distribution obtained from the RRC
model is compared to the experimental measure in Fig-
ure 2. The agreement is satisfactory over the whole range
of velocities; in particular, the RRC distributions is com-
patible with the stretched-exponential behavior reported
in [4], with an exponent ν close to 1.5. Note that, since no
precise experimental data is available for the distributions
of restitution parameters conditioned by relative precolli-
sional velocity, the parameters R are tunable (as long as
the global µ(α1d) coincides with the experimental one),
and the value giving the best agreement has been chosen
(2 ≤ R ≤ 4). The agreement remains satisfactory upon
changing R, provided that the resulting large α cutoff re-
mains sharp (i.e. R should not be too large).

The RRC model therefore provides a self-consistent
framework which allows to reproduce the experimental
P (v) if implemented with the correct distribution of effec-
tive coefficients. Moreover, the velocity statistics depends
on the distribution of effective restitution coefficients: a
broader µ(α1d|gx) leads to a broader P (v), consistently
with the numerical study of [7] which showed both broader
P (v) and µ(α1d|gx) as, e.g., the density is increased. Both
distributions P and µ are equally sensitive to a possible
non-universality (dependence on material properties). As
a consequence, an accurate experimental measure of µ
appears as complementary to the direct computation of
P (v), in order to assess the experimentally difficult ques-
tion of the velocity statistics universality.

2 It is noteworthy that a large v power law is actually ob-
tained for any distribution µ(α1d), see [20].
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Fig. 2. Rescaled distribution P (cx) of horizontal velocities,
on a linear-log scale (a) and linear scale (b). All distributions
have the same variance 〈c2

x〉 = 1/2. Circles represent the ex-
perimental data for steel beads [4]; filled triangles correspond
to the Monte Carlo simulation of the RRC model, with α1d/gx

correlations.

4 Stochastic thermostat model

For comparison, we have also considered heating of inelas-
tic hard discs (2D) through the “stochastic thermostat”, in
the framework of the non-linear homogeneous Boltzmann
equation, where the large velocity tail has been shown to
behave like exp(−v3/2) [9]: this result has subsequently of-
ten been considered as an agreement with the experimen-
tal results. In this model, the energy injection is achieved
through a random force η(t) acting on each particle,

dv
dt

= F + η(t), 〈ηi(t)ηj(t′)〉 = 2Dδ(t − t′)δij , (3)

where D is the amplitude of the injected power and F
the systematic force due to inelastic collisions. The vari-
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Fig. 3. Rescaled distribution P (cx) of horizontal velocities,
on a linear-log scale (a) and linear scale (b). All distributions
have the same variance 〈c2

x〉 = 1/2. Circles represent the exper-
imental data for steel beads [4]; squares correspond to a simula-
tion of the “stochastic thermostat” with α0 = 0.6, whereas for
α0 > 0.7, the corresponding P (cx) is indistinguishable from
the Gaussian shown by the full line. The dashed line (very
close to the squares) corresponds to a simulation of the three
parameters model [23–25] with αn = 0.7, αt = 0.5, µ = 0.5.
Filled triangles show the results for the multiplicative driving
stochastic thermostat with δ = 0.6 and α = 0.9 [17].

ance of η determines the granular temperature in the non-
equilibrium steady state, but has no influence on the form
of the rescaled distribution function P (cx).

With the accuracy of Figure 3 (the current exper-
imental resolution), the corresponding numerical veloc-
ity distributions are then found indistinguishable from a
Gaussian, for physically relevant inelasticities in the range
0.7 ≤ α0 ≤ 1. Departure from Maxwell-Boltzmann behav-
ior becomes manifest below α0 = 0.6 (squares in Fig. 3),
which is unphysically low, but the velocity distribution
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is still incompatible with its experimental counterpart.
We also investigated the possibility to describe the effec-
tive horizontal dynamics with the 1D stochastic thermo-
stat: for 0.7 < α0 < 1 the velocity distributions are in-
compatible with the experimental P (v) displayed in Fig-
ure 2, with opposite non-Maxwellian features (underpop-
ulated both at vanishing and high energies [26]). More
precisely, within the stochastic thermostat approach the
kurtosis 〈v4

x〉/〈v2
x〉2 − 3 of the distribution is negative for

α0 > 1/
√

2 � 0.71 [9], irrespective of dimension, which
corresponds to an underpopulated low-velocity behavior
at variance with the experimental data shown in Figure 2.

We have also considered the stochastic thermostat mo-
del for two-dimensional IHS with both tangential αt and
normal αn(= α0) restitution coefficients [27]. No numer-
ical studies of P (v) can indeed be found in the litera-
ture in this case, although an investigation into the non-
equipartition between translational and rotational kinetic
energies has been performed in [27]. The resulting veloc-
ity distributions P (v) remain very close to a Gaussian
for αn ≥ 0.7 and arbitrary αt (where −1 ≤ αt ≤ 1),
as for smooth spheres (corresponding to αt = −1). How-
ever, such a two parameter model may be too schematic
compared to the experiments [23] and we have also con-
sidered a more realistic approach with Coulomb friction
along the simplifications discussed in [24]: a friction coef-
ficient µ, is introduced in addition to (αt, αn) [25]. This
does not change significantly P (cx) (see the squares and
dashed line in Fig. 3). This seems to discard the relevance
of such an approach for the comparison of the velocity
distributions with experimental data.

The above analysis shows that the stochastic thermo-
stat in its original formulation (including some possible
extensions) does not provide a relevant model of energy
injection as far as the velocity distribution is concerned,
although it may be useful to investigate other features
such as kinetic energy non-equipartition in granular mix-
tures [28]. However, a variant of this model may improve
the picture. In particular, a multiplicative driving (corre-
sponding to a velocity-dependent amplitude D ∝ |v|2δ

in Eq. (3)) has been studied in references [17,18]. We
have performed DSMC simulations for this model, choos-
ing the value of δ that, for a given reasonable inelasticity
parameter (α = 0.9), gives the best agreement with the
experimental P (v). We obtained δ � 0.6, which leads to
the distribution shown by the triangles in Figure 3. The
agreement with the experimental data is satisfactory, and
displays a similar accuracy as obtained within the RRC
model. Consequently, models with homogeneous energy
injection may also describe quite accurately the experi-
mental P (v), with the problem of predicting the values of
the various parameters involved.

5 Conclusion

In conclusion, the random restitution coefficient model
with point particles captures the essential features re-
sponsible for the observed non-Gaussian character of the

velocity distribution P (v) in vibrated granular gases ex-
periments [4], and represents therefore a self-consistent
framework. The conditional distribution µ(α1d|gx) defin-
ing the appropriate collision rule has been shown to encode
the relevant dynamic information and provides an alter-
native route to characterize the non-equilibrium steady
state, complementary to the direct measure of P (v). An
interesting point would be to obtain an analytical predic-
tion for µ(α1d|g). It is noteworthy that our approach is
mean-field (Boltzmann) like, the only correlations consid-
ered being in the collision law. Its self-consistency, which
was not an obvious point a priori, has been established by
comparison with experiments.

While we have restricted our analysis to the two-
dimensional case, such investigations can be extended to
three-dimensional systems, for which, however, experi-
mental measures of effective restitution coefficients seem
more difficult. As implemented here, without an analyti-
cal knowledge of µ(α1d|gx), the RRC model is not predic-
tive since an experimental input is required to obtain the
correct velocity statistics. Our results however suggest to
assess experimentally the question of the universality of
P (v) from the direct measure of the distribution of effec-
tive restitution coefficients. These characteristics are in-
deed linked within the RRC model: the exponent ν, and
the whole shape of P (v), depend on the functional form of
µ(α1d|gx). At this point, the fact that with a rather poor
accuracy, similar P and µ have been obtained for the case
investigated in [4,19] simply confirms the RRC picture,
and calls for experiments with widely different collisional
properties, such as hollow spheres.

We are grateful to K. Feitosa and N. Menon for generous pro-
vision of unpublished experimental data and interesting corre-
spondence.
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