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Abstract. The electrostatic potential of a highly charged disc (clay platelet) in an electrolyte is investigated
in detail. The corresponding non-linear Poisson-Boltzmann (PB) equation is solved numerically, and we
show that the far-field behaviour (relevant for colloidal interactions in dilute suspensions) is exactly that
obtained within linearized PB theory, with the surface boundary condition of a uniform potential. The latter
linear problem is solved by a new semi-analytical procedure and both the potential amplitude (quantified
by an effective charge) and potential anisotropy coincide closely within PB and linearized PB, provided
the disc bare charge is high enough. This anisotropy remains at all scales; it is encoded in a function that
may vary over several orders of magnitude depending on the azimuthal angle under which the disc is seen.
The results allow to construct a pair potential for discs interaction, that is strongly orientation dependent.

PACS. 82.70.-y Disperse systems; complex fluids – 82.70.Kj Emulsions and suspensions – 83.80.Kn Phys-
ical gels and microgels

1 Introduction

Clays, in the generic form of charged platelets, enjoy
widespread use in applications ranging from drilling, rhe-
ology modification (for paints, cosmetics, cleansers . . . ),
catalysis etc. As a significant component of soils, clays
are also of importance for crop production. The difficulty
of synthesizing clays with well-controlled properties (size,
composition, charge . . . ) has long hindered their funda-
mental study. The situation has considerably changed in
the last ten years, with the increasing availability of cus-
tomized synthetic clays, among which Laponite is a promi-
nent example. Yet, our understanding of such systems is
rudimentary (see, e.g. [1–8] and references therein).

A reasonable model for Laponite platelets is that of
uniformly charged and infinitely thin discs [9]. In this
paper, the focus will be on electrostatic interactions be-
tween identical charged discs, a crucial ingredient for un-
derstanding the phase behaviour and stability of clays in
suspensions. The high anisotropy of these objects makes
analytical progress difficult. In addition, these discs are
typically highly charged, and the electrostatic coupling
with their electrolytic environment (microscopic charged
species) needs to be described by non-linear theories: the

a e-mail: trizac@ipno.in2p3.fr

plain linear Debye-Hückel approach should fail. We will
work here in the common framework of non-linear Poisson-
Boltzmann (PB) theory, where the (dimensionless) elec-
trostatic potential outside the charged macroions obeys
an equation of the form ∇2φ = κ2 sinhφ, assuming for
simplicity monovalent microions only, the density of which
governs the screening length κ−1 (the Debye length).

In a solution, the typical distance between macroions is
often larger than the Debye length (this condition requires
a minimal but nevertheless small amount of salt). At these
“large” scales, the potential created by a given disc is small
enough —compared to thermal agitation— to allow for
the linearization of the PB equation: ∇2φ ' κ2φ. Accord-
ingly, the potentials within non-linear PB on the one hand,
and linearized PB theory with a suitably chosen boundary
condition on the other hand, coincide at large enough dis-
tance from the colloids, be they of discotic or other shapes.
An analytical treatment within linearized PB (LPB) is
of course considerably simpler than within PB, but the
above remark may be of little practical help if one is
not able to derive the relevant boundary condition on
the colloid (effective potential), such that the correspond-
ing LPB solution reproduces the PB one in the region of
low enough potential. Close to the colloids, non-linear ef-
fects prevail (LPB and PB solutions strongly differ), and
broadly speaking, microions —essentially counterions—
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suffer there a high electrostatic coupling and may be con-
sidered as “bound”. They decrease the bare charge of the
colloid so that its electrostatic signature at large distance
defines an effective charge which is usually smaller in ab-
solute value than the bare one (close to the colloid, the ef-
fective potential is accordingly smaller in magnitude than
its non-linear counterpart).

For a unique charged sphere in an infinite electrolyte
(infinite dilution limit), PB and LPB theories give rise to
the same far-field behaviour, of Yukawa type (exp(−κr)/r,
where r is the radial coordinate); non-linear effects only
affect the prefactor (from which the effective charge is de-
fined), preserving the functional form of the potential; the
same remark equally applies to an infinite rod [10–12] (see
also [13]). The situation changes, however, for anisotropic
objects such as discs or finite-size rods [14], where non-
linear screening phenomena generically affect the func-
tional form of the potential and cannot be subsumed in an
effective charge only. In other words, whereas the symme-
try of the effective colloid clearly remains spherical in the
case of spheres, predicting the symmetry of the effective
charge distribution and associated electrostatic potential
for a highly charged disc is a non-trivial question.

It is the purpose of the present work to study how
non-linear screening effects and anisotropy conspire to af-
fect the far-field behaviour in the case of discs. It has
been shown in [15] that highly charged spheres and in-
finite rods may be considered as objects of constant ef-
fective potential φeff (in the sense that φeff becomes in-
dependent of physico-chemical parameters, provided that
κa > 1 where a is the colloid radius. The complementary
results reported here indicate that the constant potential
picture goes in fact beyond this analysis, and give the cor-
rect symmetry of the effective charge distribution onto the
disc. Such a boundary condition (within LPB theory) pro-
duces the same electrostatic potential as a highly charged
disc within PB. A physical argument allowing to antici-
pate this correspondence will be presented in Section 2.
Since the exact LPB solution for a disc held at constant
potential in an electrolyte is not known, we will introduce
in Section 3 a semi-analytical procedure to solve this prob-
lem. The characteristic features of the electrostatic poten-
tial relevant for clay discs will be obtained, and in order
to assess the validity of the constant potential picture, the
corresponding electrostatic potential will be compared in
Section 4 to the solutions of the full non-linear PB theory.
The latter will be obtained through an iterative numeri-
cal procedure. From these results, a pair potential will be
constructed for charged discs, that has the same status
as the celebrated Derjaguin-Landau-Verwey-Overbeek ex-
pression relevant for spheres [10–12], and includes charge
renormalization. Concluding remarks will finally be pre-
sented in Sections 5 and 6.

2 The constant effective potential picture:

why?

A disc of radius a and uniform surface charge density
σbare = Zbare e/(πa

2) is immersed in an infinite sea of elec-
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Fig. 1. Schematic side view of the charged platelet.

trolyte with bulk density ns. From the permittivity ε of the
solvent, the Bjerrum length is defined as `B = e2/(εkT ),
where kT is the thermal energy and e denotes the elemen-
tary charge. Within non-linear Poisson-Boltzmann theory,
the dimensionless potential (φ = eϕ/(kT ), ϕ being the
original electrostatic potential) created by the disc obeys
the following equation:

∇2φ = κ2 sinh(φ) , (1)

where κ is the inverse Debye length defined through κ2 =
8π`Bns. For convenience, φ is chosen to vanish at infinity.
Equation (1) holds outside the disc.

Considering a highly charged disc with furthermore
κa > 1, one may partition space into three regions, as
sketched in Figure 1. In region A, the electrostatic cou-
pling between the colloidal disc and the microions is most
important and one has φ > 1. Outside A, in regions B and
C, one has φ < 1 and PB equation (1) may be linearized;
the corresponding Helmholtz-like LPB equation reads

∇2φ = κ2φ. (2)

In addition, in region B, φ is of unidimensional character
and well approximated by the potential created by an infi-
nite charged plane. Ex contrario, in region C, φ regains its
full 3D nature (2D here with the present azimuthal sym-
metry). The lateral extension of the “non-linear region” A
is given by κ−1 while a measures the extension of region
B. Since we assume κa > 1, we have A⊂B and moving
away from the disc, non-linear effects disappear before the
finite size of the disc becomes relevant. In other words, B is
the non-vanishing intersection between the “linear” region
and its one-dimensional counterpart, where the solution of
equation (1) takes the form [16]

φ1D = 4arctanh
(
γe−κz

)
(3)

' 4γe−κz in region B. (4)

In these expressions, z denotes the distance to the plane
and, assuming without loss of generality a positive bare
charge σbare, γ is the positive root of the quadratic equa-
tion

γ2 − κe

πσbare`B
γ + 1 = 0. (5)

In colloidal dispersions, the relevant range for the interac-
tions is that of far field (except for dense systems) and the
behaviour in the non-linear region (A) is of little interest.
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From equation (4), it appears that the potential felt in
the linear region B+C, when extrapolated to contact
(z = 0), reads φeff = 4γ. As a consequence, solving LPB
equation (2) with this boundary condition should provide
the same potential outside region A as the PB solution
of equation (1).

The above remarks follow from the constraint a > κ−1

and apply irrespective of the value of the bare charge.
In particular, σbare (hence φeff through γ) may be posi-
tion dependent on the disc. However, we are interested
here in highly charged discs for which the non-linear re-
gion A exists (for low σbare, region A disappears; PB
and LPB solutions coincide at all distances and the is-
sue of effective potentials becomes trivial: effective and
bare charges are equal). From equation (5), it appears
that 0 < γ < 1 and that γ → 1 when σbare becomes large,
so that φeff → 4, and the field created is independent of
the bare charge. More details concerning the phenomenon
of effective charge saturation may be found in [15].

We conclude here that a highly charged disc should
effectively behave as a constant potential object treated
within a linear theory. The corresponding LPB problem
will be addressed in the following section but we em-
phasize before that the argument developed here pro-
vides φeff to leading order in κa. On the basis of the be-
haviour of charged spheres for which the curvature cor-
rection has been computed in [17] (leading to the result
φeff = 4 + 2/(1 + κa) +O(κa)−2), we anticipate that φeff
may exceed the threshold 4. A similar behaviour is ob-
served for cylinders of infinite length [17].

3 Semi-analytical solution of the Dirichlet

linearized PB problem

3.1 Methodology

If the solution of LPB equation (2) with Dirichlet bound-
ary condition φ = φ0 was known analytically, the effective
charge of highly charged discs [18] would follow imme-
diately, enforcing φ0 = 4 on the disc surface. Unfortu-
nately, such a solution only exists in vacuum (i.e. when
κ = 0 [19]). To our knowledge, the only solution known
at finite κ is that associated to Neumann boundary con-
ditions (uniform surface charge) [20]. To solve the Dirich-
let problem, we have therefore developed a semi-analytical
procedure where the problem at hand is recast into a Fred-
holm integral equation (see below and App. A).

The general solution of equation (2) may be written
assuming both cylindrical symmetry around an axis (Oz),
and reflection symmetry z ↔ −z:

φ(ρ, z) =

∫ ∞

0

A(k) J0(kρ) e
−
√
k2+κ2|z| dk. (6)

In this relation, (ρ, z) denote the cylindrical coordinates
and J0 is the Bessel function of order 0. The difficulty in
the present situation is that the boundary conditions im-
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Fig. 2. Solution of LPB equation (2) with Dirichlet boundary
condition of a uniform potential φ = φ0 on the disc surface.
The quantity rφ is shown on a linear-log scale to emphasize the
far-field behaviour. Here, κa = 2 and r =

√
ρ2 + z2 denotes

the distance to the disc center. The continuous curve shows the
potential in the direction θ = π/2 (as a function of r/a = ρ/a),
whereas the dashed line shows the behaviour as a function of
r/a = z/a along normal axis ρ = 0 (θ = 0). The inset shows
φ/φ0 on a linear scale, again in the two perpendicular directions
θ = 0 and θ = π/2.

ply that the weight function A(k) obeys the mixed system

∫ ∞

0

A(k) J0(kρ) dk = φ0 , for ρ < a , (7)

∫ ∞

0

√
k2 + κ2A(k) J0(kρ) dk = 0 , for ρ > a, (8)

where the second equation follows from the vanishing
of the normal electric field ∂zφ on the symmetry plane
z = 0. Starting from equations (7) and (8), the problem
is rephrased in terms of an integral equation, solved nu-
merically, from which the function A(k) is computed (see
App. A). The potential then follows from (6).

3.2 Properties of the solutions

A typical solution is shown in Figure 2. In the remainder,
the variable θ ∈ [0, π/2] denotes the angle between a given
direction and the normal to the disc (θ = π/2 in the sym-
metry plane z = 0 and θ = 0 along the normal to the disc,
i.e. when ρ = 0). It may be observed that the potential is
anisotropic at all distances, a generic feature of screened
electrostatics [4,14]: the behaviours for θ = 0 and θ = π/2
strongly differ, at all scales. The anisotropy of the poten-
tial at large scales is encoded in a function f(κa, θ), such
that expression (6) may be written, for κr À 1,

φ(r, θ) ∼ Z `B f(κa, θ)
e−κr

r
+ O

(
e−κr

r2

)
, (9)

where r = (ρ2 + z2)1/2 again denotes the distance to the
disc center. In equation (9), the total charge Z of the
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Fig. 3. Anisotropy function for κa = 1, 2 and 4 as a function
of the azimuthal angle. The inset shows the results on a linear-
log scale, for κa = 5 and κa = 10.

platelet appears. Z is the integral over the disc surface of
the surface charge density σ(ρ) [Ze =

∫
disc

σ(s)d2s]. This
density turns out to be related to the anisotropy function
through

f(κa, θ) =

∫

disc

σ(s)

Ze
exp (−κ r̂ · s) d2s, (10)

r̂ being a unit vector pointing in the θ-direction. As ex-
pected, without electrolyte, κ vanishes so that f = 1 and
the potential in (9) takes the familiar form of an isotropic
unscreened Coulomb expression.

The anisotropy function f and the total charge Z, are
the key quantities governing far-field behaviour. Note that
Z is not known a priori since only the surface potential is
imposed. It may be shown that f is related to the weight
function A(k) appearing in (6) through

Z e

ε
f(κa, θ) = −i A(i κ sin θ)

tan θ
. (11)

For small arguments, one has A(x) ∝ x so that f(κa, 0) =
1, which also means that the total charge is directly ac-
cessible through the behaviour along the θ = 0 axis:

φ(r, 0) ∼ Z `B
e−κr

r
. (12)

Note also that f(κa, 0) = 1 directly follows from (10) since
r̂ · s = 0 when θ = 0.

Figure 3 shows f(κa, θ) for different salinity condi-
tions. This function increases with θ and may take large
values when κa exceeds a few units (see the inset where
the y-axis is shown in log scale). On the other hand, for
κa < 1, f remains close to unity in all directions. The
potential is strongest in the disc plane (θ = π/2), and
increasing screening (κ), one also strongly increases the
anisotropy of the electrostatic potential. For a reasonable
value κa = 10, f(θ) varies by almost 3 orders of magnitude
(a factor 930). In Figure 4, the complementary information
concerning the total charge Z is displayed. This quantity
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Fig. 4. Charge 4Z`B/(aφ0) as a function of κa (continu-
ous curve). The dashed line shows the result obtained within
the simplified two-parameter model (Eqs. (15) and (17-18), see
text). The dotted line corresponds to equation (20).

will be further discussed in Section 3.3. Note that f(κa, θ)
does not depend on φ0, since it probes the repartition of
surface charge distribution, not its overall magnitude. On
the other hand, Z scales linearly with φ0.

3.3 An approximate expression for the anisotropy
function and charge

It is instructive and useful for practical purposes to have
an approximate analytical expression for the function
f(κa, θ). From equation (10), that may be rewritten

f(κa, θ) =
2π

Ze

∫ a

0

I0(κρ sin θ)σ(ρ) ρdρ, (13)

this amounts to look for an approximate expression for
the surface charge density σ. To this aim, we recall [21]
that for an ideal conducting disc when κ = 0, σ diverges
in the vicinity of the edge (ρ→ a), since

σ(ρ) =
e φ0

2π2a `B

1√
1− (ρ/a)2

. (14)

Recall that φ0 denotes the dimensionless electrostatic po-
tential φ = ϕ/(εkT ). The singularity of the electric field
near sharp edges, which is the reason for the efficiency
of lightning conductors, also pertains in presence of an
electrolyte. We indeed show in Appendix B that when
κ 6= 0, the Dirichlet solution to equation (2) exhibits a
similar divergence as that present in equation (14), namely
σ ∝ (a− ρ)−1/2.

A very simple two-parameter ansatz fulfilling this di-
vergence requirement is

σ(ρ) = σ0 + σ1
1

2
√

1− (ρ/a)2
. (15)
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the inset.

From this expression, the anisotropy function may be com-
puted and takes the form

f(κa, θ) =
σ0

σ0 + σ1

2I1(κa sin θ)

κa sin θ
+

σ1
σ0 + σ1

sinh(κa sin θ)

κa sin θ
.

(16)
In equations (13) and (16), I0 and I1 denote modified
Bessel functions of the first kind, of order 0 and 1. Ex-
pressions (15) and (16) are not exact and there are several
ways to choose the two parameters σ0 and σ1, that will be
determined by two constraints. The simplest possibility is
to enforce φ(0, 0) = φ(a, 0) = φ0, but it turned that the
choice (hereafter adopted)

φ(0, 0) = φ0 , (17)

〈φ(ρ, 0)〉 = φ0 , (18)

gave better results (the angular brackets denote average
over the disc surface). In the limit κ→ 0, expressions (15)
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Fig. 7. Dimensionless charges σ′0,1 = 2πa`B σ0,1/(eφ0) fol-
lowing from (15) supplemented with equations (17-18), as a
function of salinity conditions.

and (16) become exact (with σ0 = 0), and we expect that
the comparison with exact results at finite κ will be all the
better as κa is low. It is indeed the case, but when κa = 5,
the approximation is still reasonable (see Figs. 5 and 6).
By comparison with the exact solution Figure 6 shows
that the anisotropy of the potential is correctly captured.
The corresponding values of partial surface charges σ0 and
σ1 are shown in Figure 7, where it may be observed that
σ0 vanishes at low salt, as expected. The associated total
charge Z is given by

Z =
πa2

e
(σ0 + σ1) =

aφ0
2`B

(σ′0 + σ′1), (19)

where σ′0 and σ′1 are the quantities plotted in Figure 7.
The charge Z is displayed in Figure 4, and compares favor-
ably with its exact counterpart. In the above expression,
however, σ0 and σ1 are functions of κa with unknown an-
alytical expression. As it is desirable to have an analytical
formula, we propose the following argument: in the limit
of large κa, the disc essentially behaves as a an infinite
plane, from which we deduce Z`B/a ∼ φ0κa/2. To esti-
mate the next-order correction (constant term C in the
expansion Z`B/(aφ0) = (2κa/ + C)/4) we may take the
limit κa = 0, where the solution is given by (14), which
imposes Z`B/a = φ0/π. We, therefore, obtain

Z
`B
a
' φ0

4

(
2κa +

4

π

)
. (20)

Anticipating that the relevant values of φ0 are close to 4
(see Sects. 2 and 4), we have factorized the ratio φ0/4 in
the previous relation. The quality of approximation (20)
is assessed in Figure 4, which shows a good agreement. On
the other hand, extracting the correction factor C from the
large κa behaviour of the exact Z displayed in Figure 4
gives C ' 1.88, to be compared with C = 4/π ' 1.27 in
equation (20).
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4 Numerical resolution of the non-linear

Poisson-Boltzmann theory

In Section 3, we have obtained the solution of linearized
PB theory with uniform potential boundary condition on
the disc. From the discussion developed in Section 2, we
expect the properties described (with φ0 = 4) to charac-
terize also the far field created by a highly charged disc,
treated within non-linear PB theory. In the following, we
critically test this scenario. We first present the numerical
procedure used to solve the non-linear PB problem.

4.1 Green’s function formalism and numerical method

Introducing explictly the charge density qd(r) borne by
the disc, equation (1) is rewritten:

∇2φ = κ2 sinh(φ) + 4π`B
qd(r)

e
. (21)

In the subsequent analysis, we will consider the case of a
uniformly charged disc for which one has, in cylindrical
coordinates

qd(r) = σbare δ(z)Θ(a− ρ), (22)

where Θ is the Heaviside step function and δ the Dirac
distribution. However, it is important to emphasize that
the results that will be derived are more general, and hold
irrespective of the precise PB boundary condition on the
disc, provided the disc bare charge is high enough (phe-
nomenon of effective potential saturation).

In view of a numerical resolution, it is convenient to
rewrite (21) in the form

(∇2 − κ20)φ = κ2 sinh(φ) + 4π`B qd(r)/e− κ20φ, (23)

where κ0 is an arbitrary quantity that will be optimized
in order to speed up the resulting procedure (see below).
Introducing the Green’s function

G(r, r′) = −e
−κ0|r−r

′|

4π|r− r′| , (24)

solution of

(∇2 − κ20)G(r, r′) = δ(r− r
′), (25)

we may recast (23) into

φ(r) =

∫
G(r, r′)

[
κ2 sinh[φ(r′)] + 4π`B

qd(r
′)

e
− κ20 φ

]
dr′.

(26)
The contribution arising from qd may be computed ana-
lytically:

4π`B
e

∫
G(r, r′)qd(r′) dr′ =

2
Z`B
a

∫ ∞

0

J1(ak)J0(kρ)
exp(−|z|

√
k2 + κ2)√

k2 + κ2
dk (27)
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Fig. 8. Dashed line: electrostatic potential solution of PB
equation (1) for a highly charged disc with uniform bare surface
charge (Neumann-like boundary condition, Zbare `B/a = 60).
Here κa = 5. The continuous line shows the solution of LPB
theory with Dirichlet boundary condition φ0 = 4 (see Sect. 3).
The behaviour is shown along the two perpendicular direc-
tions θ = 0 and θ = π/2. The main graph shows rφ versus

r/a = (ρ2 + z2)1/2/a on a linear-log scale. The inset shows the
previous potentials versus r on a linear scale.

and equation (26) is solved iteratively. Starting from the
initial guess φ0 = 0, the right-hand side of (26), denoted
φout0 , is computed. This provides a new input potential
φ1 = αφout0 + (1− α)φ0, which is itself inserted in the rhs
of (26) to produce φout1 etc. The mixing parameter α is
chosen in the range [10−2; 10−1]. Convergence φn ' φoutn

is generally achieved for typically 50 to 200 iterations. The
procedure may be accelerated starting not from φ0 = 0
but from the solution of LPB theory (known in the present
Neumann case, and given by Eq. (27)). In addition, it
seems that the optimal choice for the numerical screen-
ing parameter κ0 is κ0 ' κ. We have checked that the
solutions found were independent of κ0 (as they should)
by changing this parameter in the range [κ/5; 5κ]. The
previous procedure bears similarities with the one used in
reference [22], where a confined geometry was considered
(whereas the situation is that of infinite dilution here).

4.2 Results

From the method sketched in Section 4.1, the numerical
solution of the non-linear PB equation (1) may be ob-
tained for arbitrary bare charges and salt content.

To test the constant potential picture put forward in
Section 2 (which dwells on the fact that κa is “large
enough”) we show in Figure 8 the PB potential corre-
sponding to a “large” bare charge. It appears that the PB
and LPB potential are in excellent agreement except in
the immediate vicinity of the disc, so that the constant
effective potential prescription seems accurate.

From the PB potentials, we may also extract the ef-
fective charge Zeff and anisotropy function f(κa, θ), that
convey a more complete information than a plot like that
of Figure 8. Zeff follows from the far-field behaviour along



R. Agra et al.: Screening effects for disc-like charged colloids 351

0 10 20 30 40 50 60

Zbarelb/a
0

5

10

15

20

Z ef
f  

l b /a

plane

cylinder

sphere
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κa = 5. The circles correspond to the PB solution, and the
dotted line has slope one to show the regime of weak coupling,
where Zeff = Zbare. The analytical expressions for a plane, a
cylinder and a sphere have also been plotted (see labels).

the θ = 0 axis [23] (see Eq. (12)):

φ(r, 0) ∼ Zeff `B
e−κr

r
. (28)

Once Zeff is known, f is computed from equation (9). Ex-
pressions (12) and (28) are very similar, but the charges
appearing have different status: in equation (12), the
charge scales linearly with the φ0 imposed within LPB,
whereas in (28), the effective charge is a non-linear func-
tion of the platelet bare charge Zbare. Note that in the
present situation of infinite dilution, no procedure such
as that proposed by Alexander and co-workers [24] is re-
quired: Zeff has a simple and clear-cut meaning, which is
not the case at finite density within a Wigner-Seitz cell,
the situation investigated in [24].

For fixed κa, Zeff is a function of the bare charge,
see Figure 9, where the corresponding analytical predic-
tions for planes, spheres and cylinders (of infinite length)
have also been reported [17]. Not surprisingly, the be-
haviour is intermediate between that of infinite planes
and spheres, and somehow resembles the results valid for
charged cylinders. In addition, Zeff reaches a saturation
plateau when Zbare becomes large [15] (see Fig. 9). This
asymptotic plateau defines the effective charge at sat-
uration Zsat

eff , which is shown in Figure 10. This quan-
tity is an increasing function of salt content (except for
κa < 0.5, see below), since an increase in salt density
enhances the macroion/microion screening, which dimin-
ishes the amount of “counterion condensation” and conse-
quently increases the effective charge [15]. Figure 10 shows
that the constant potential prescription of Section 2 with
φ0 = 4 provides a satisfying description of highly charged
platelets, as far as the (effective) charge is concerned. It
also appears that the best linear interpolation reads

Zsateff `B/a ' 2κa+ 2.9 , (29)
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Fig. 10. Saturated effective charge Zsateff as a function of salt
(circles). The LPB charge Z is also shown for φ0 = 4 (con-
tinuous line). The dashed line displays the empirical expres-
sion (29).
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Fig. 11. Anisotropy function f(κa, θ) as a function of the
azimuthal angle, for κa = 5. The crosses correspond to the
PB result with Zbare `B/a = 60 (i.e. in the saturation regime)
while the continuous curve shows the constant potential LPB
result obtained in Section 3. Inset: same for κa = 10.

which is rather close to approximation (20) with the choice
φ0 = 4. It may be observed in Figure 10 that for low
κa, the effective charge increases when κa decreases. This
aspect will be discussed in Section 5.2.

Computation of anisotropy functions confirms the rel-
evance of the constant effective potential picture (see the
comparison proposed in Fig. 11). As shown in the in-
set, the very high values f ' 900 predicted from the
analysis of Section 3 are indeed found within non-linear
PB. Note that the agreement reported in Figure 11 is
only expected at high bare charges. For low bare charges,
f(κa, θ) depends —at variance with its large bare charge
counterpart— on the details on the boundary conditions
chosen on the disc to solve PB. In the present situation
(uniform surface charge), f may be computed analytically
with the result [4]

f(κa, θ) = 2
I1(κa sin θ)

κa sin θ
. (30)
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Fig. 12. Same as Figure 11, for a low bare charge Zbare `B/a =
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2 and 5, respectively. The prediction of equation (30) is shown
by the continuous line. For the sake of comparison, we also plot
with a dashed line the constant potential LPB result already
displayed in Figure 11, which is relevant at high bare charges.

0 2 4 6 8 10
ρ/a

0,01

0,1

1

ρΦ
(ρ

,0
)

0 2 4 6 8
z/a

0,1

1

zΦ
(0

,z
)

θ=π/2

θ=0

Fig. 13. Plot of the PB potential (continuous line) versus the
distance from the disc center in the θ = π/2 direction (disc

plane). Also displayed are the LPB results for φ0 = φopt
0

= 5.7
(circles) and for φ0 = 4 (dotted curve). Here, κa = 0.5 and
Zbare`B/a = 15 corresponding to the saturation plateau (the
precise value of Zbare is therefore irrelevant). The inset shows
the same quantities along the disc normal.

This functional form is observed from our numerical data,
for Zbare `B/a < 1 (see Fig. 12). It turns out to differ much
from that reported in Section 3 (shown with a dashed
line in Fig. 12). We may also observe in Figure 12 that
the “Neumann” expression (30) is lower than the Dirich-
let one. The reason is the following: f is sensitive to the
charges lying near the edge of the disc (see, e.g. Eqs. (10)
and (13)). With Dirichlet boundary condition, the induced
surface charge diverges (see App. B), at variance with the
situation of a uniform surface charge, which therefore ex-
hibits a less anisotropic potential. The Dirichlet and Neu-
mann expressions, respectively, provide upper and lower
bounds for the anisotropy function.

In spite of the good agreement shown in Figure 8, a
slight difference may be observed between PB and LPB
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Fig. 14. Same as Figure 13 for κa = 0.1, with φ0 = φopt
0

= 9.0.
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Fig. 15. Circles: values of the optimal surface potential φopt
0

to be imposed within LPB theory to produce the same far-field
behaviour as a highly charged disc treated within PB (satura-
tion limit). The dotted line indicates the high salt limiting
behaviour φ0 = 4.

results. It may be concluded that a value φ0 slightly above
4 may give a better agreement between non-linear and
linear profiles. As mentioned at the end of Section 2, finite
κa corrections increase the value of the effective potential
above 4 for spherical and rod-like macroions. Figures 13
and 14 show that a similar effect exists for discs: when
the φ0 of LPB approach is considered as an adjustable
parameter, the agreement between PB and LPB (again for
highly charged discs) becomes excellent even at relatively
low values of κa, such as κa = 0.5 or even κa = 0.1. The
salt dependence of the above optimal potential, denoted
φopt0 , is shown in Figure 15. One observes that φopt0 is
close to 4 for κa > 5, but may take significantly different
values at lower κa. This leads to reconsider the plot of
Figure 10 since the (relative) discrepancy PB/LPB may
arise from discarding finite κa effects (i.e. enforcingφ0=4).
Figure 16 compares PB saturated effective charge to its
LPB counterpart, with φ0 = φopt0 . Both quantities now
agree very well. This latter comparison is a severe and
successful test for the relevance of the constant potential
prescription.
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(the latter
quantity being plotted in Fig. 15) instead of φ0 = 4. For com-
pleteness, the results obtained with φ0 = 4 are shown by the
dotted line.

5 Discussion

5.1 Pair potential

From the properties of the one-body electrostatic potential
φ discussed previously, one may obtain the large-distance
behaviour for the pair potential U12 in the situation of two
discs (radii a1 and a2) in an electrolyte

U12 = Zeff,1 Zeff,2 `B f(κ a1, θ1) f(κ a2, θ2)
e−κr

r
. (31)

Here θi is the angle between the normal to disc i and the
center-to-center direction r12 (with |r12| = r). The validity
of such an expression at intermediate or short distances
(i.e. κr of order 1) is unclear, since polarization effects
of disc i on disc j should at least perturb the symme-
try of the effective charge distribution, and hence alter
the one-body expression for f plotted in Figure 11. We
also note that the sub-leading terms in equation (31) that
become more important as κr decreases, involve a more
complex dependence on relative orientations (with all Eu-
ler angles becoming relevant, contrary to the far-field case
where only θ1 and θ2 matter).

We may conclude here that at fixed center-to-center
distance r, the favored configuration is that where the
discs are parallel and perpendicular to their center-to-
center vector r12. The T-shape configuration is interme-
diate and the most repulsive one corresponds to coplanar
discs (parallel to r12, as coins lying on a table). How-
ever, the situation changes if one fixes the closest distance
D between the two discs. Comparing the configuration
θ1 = θ2 = π/2, where D = r − a1 − a2, to that with
θ1 = θ2 = 0, for which D = r, requires to compare Q,
defined as

Q = f
(
κ a1,

π

2

)
f
(
κ a2,

π

2

)
e−κ(a1+a2), (32)

with 1. From the approximate expression (30), it appears
that Q is always smaller than 1. Instead of (30), a more

reliable expression for the anisotropy is provided by (16),
which leads to the same conclusion. We, therefore, recover
the intuitive result that the less repulsive configuration at
fixed D is for θ1 = θ2 = π/2 (two coins on a table).

5.2 Behaviour at low κa

In the present study, we have focused on the regime
κa > 1 since according to the argument of Section 2, it
corresponds to the situation where the effective potential
may be predicted analytically. It appears that the Debye
length acts as a local probe to reveal the anisotropy of
the macroion under study. Hence, in the limit of small
κa where this probe cannot resolve the disc dimension,
we found that the anisotropy disappears: f(κa = 0, θ) =
1, ∀ θ. We may then speculate that at small κa, the pre-
cise form of the macroion becomes irrelevant so that we
should recover the same results as for spheres [25]. From
the analysis of Ramanathan [26], we may consequently
expect in the saturation regime:

Zsateff

`B
a

κa¿1∼ − 2 ln(κa) + 2 ln[− ln(κa)] + 4 ln 2. (33)

Such an expression diverges for κa → 0, indicating that
potential (or charge) renormalization ultimately becomes
irrelevant. However, with the lowest value of κa investi-
gated in this work (κa = 0.1), we have measured Zsat

eff '
6.1 a/`B (see Fig. 10), whereas equation (33) gives approx-
imately a value 6.7. Whether this agreement is incidental
or not is unclear. We also note that if the discs behave as
spheres for very low κa, their saturated effective potential
should coincide with Zsat

eff `B/a. This is not the case for

κa = 0.1, where we measured φopt0 ' 9. This may indicate
what a salinity condition κa = 1/10 is not low enough to
enter the “spherical” regime.

5.3 Validity of the PB approach

We now discuss the validity of the Poisson-Boltzmann
theory underlying the present analysis. Such an ap-
proach neglects microionic correlations (be they of elec-
trostatic or other origin, such as excluded volume) while
macroion/microion electrostatic correlations are correctly
incorporated. In the vicinity of the charged discs where the
counterion density may become large, the neglected corre-
lations are most important, and may invalidate PB theory
if the disc bare charge is too large (say Zbare > Zcorrbare).
Since we have considered here the situation of high Zbare
to explore the PB saturation plateau, we need to jus-
tify the relevance of such a plateau. In other words, this
amounts to elucidating the circumstances under which
Zsat < Zcorr

bare, since for Zbare > Zsat, one has, roughly
speaking, Zeff ' Zsat.

For a salt-free system, Netz has considered the valid-
ity of PB theory in planar, cylindrical and spherical ge-
ometries [27]. Since no general result exists, we present
here a a simple argument concerning discs, which goes as
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follows (see [12] for the spherical case). Microionic corre-
lations may be accounted for by the coupling parameter
Γ = `B/d where d is a typical distance between microions
in the double layer. This distance is bounded from below
by that, denoted d∗, where all Z monovalent counterions
are artificially condensed onto the disc (as would happen
in the low-temperature limit). It may be estimated writ-
ing that the typical surface per microion (d∗)2 on the disc
is the mean value πa2/Z. Hence,

Γ '
√
`2B σbare '

√
Zbare `2B/(πa

2). (34)

For microions with valency z, one would obtain

Γ '
√
z3 Zbare `2B/(πa

2). (35)

For the sake of the argument, the factor π could be omit-
ted. The important point here is that Zbare `B/a may be
large, which corresponds to the saturation regime of PB
theory, with still Γ < 1, which justifies the mean-field as-
sumption underlying PB. With typical Laponite param-
eters [9] and monovalent microions, we have Γ ' 0.7 for
Zbare ' 700, a reasonable value for the charge. In addition,
Zbare `B/a ' 33 which is well beyond the linear regime
where effective and bare parameters coincide (see Fig. 9,
or Fig. 17 corresponding to a lower salt concentration for
which Zbare `B/a ' 33 lies in the saturated region). We
finally note that the intersection between the PB satura-
tion regime and the consistency condition Γ < 1 is all the
larger as a/`B is big [28]. But of course, when Zbare strictly
diverges, Γ exceeds a few units and PB breaks down. Fi-
nally, to be specific, Zcorr

bare would be defined as the value
of Zbare such that the coupling parameter Γ is of order
unity. The case of Laponite seems somehow borderline,
since Zbare does not differ much from Zcorr

bare (on the order
of a few thousands).

5.4 The case of asymmetric electrolytes

Bearing in mind the classical rule that increasing the va-
lency of microions decreases the range of validity of the

PB theory (see Eq. (35)), we may extend the previous re-
sults to 1 : 2 and 2 : 1 electrolytes. The key ingredient
in the constant effective potential prescription is indeed
the analytical solution of the planar (1D) PB equation.
The latter problem has been solved by Gouy almost a
century ago [29], and it turns out that the counterpart of
the monovalent result φ0 = 4 reads φ0 = 6 for 2 : 1 elec-
trolytes (i.e monovalent counterions and divalent coions,
or more precisely when the ratio of coion to counterion
valency equals 2). In the reverse 1 : 2 situation, we have

φ0 = 6(2−
√
3) ' 1.608. (36)

The 1 : 2 effective potential is smaller that the 2 : 1 po-
tential since screening by monovalent counterions is less
efficient than with divalent ones (hence a higher effective
potential, and a higher effective charge [30]).

By simply plugging the above expressions for φ0 into
the expressions derived in the previous sections for sym-
metric electrolytes, one may describe 1 : 2 and 2 : 1 situa-
tions as well. We finally note that the electrolyte asymme-
try does not affect the anisotropy function f(κa, θ): LPB
equation takes the same form (modulo a change in the
numerical value of κ) and only φ0 is affected.

5.5 Comparison with existing results

In reference [4], we have addressed a similar issue as in
the present paper. However, neither the LPB at constant
potential nor the PB theory were solved. The anisotropy
function has been estimated there from the Neumann LPB
result with a uniform surface charge. This leads to expres-
sion (30), which has been shown in Figure 12 be an un-
derestimation of the Dirichlet result (and the agreement
between PB and Eq. (30) is simply due to the low charge
in Fig. 12, see Fig. 11).

Following similar lines, the saturated effective charge
of discs have been estimated in [4] from the Neumann
LPB solution. When the resulting dimensionless potential
is equated to 4 on the disc center, we obtain [4]

Zsateff =
a

`B

2κa

1− exp(−κa) , (37)

which is very close to 2κa as soon as κa > 2. Such an
expression only captures the leading-order behaviour (the
planar limit), but misses the offset correction (2.9) as ap-
pears in equation (29).

6 Conclusion

We have presented in this paper a detailed comparison be-
tween the electrostatic potentials obtained within Poisson-
Boltzmann (PB) and linearized PB (LPB) approxima-
tions, for a charged disc in an electrolyte. We have pro-
posed a new and efficient semi-analytical method to solve
the LPB problem at constant surface potential φ0. The
procedure used is not restricted to the specific problem
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considered here, and allows to solve more general situa-
tions of the form given by equation (A.3). On the other
hand, the PB problem has been solved numerically fol-
lowing similar lines as in reference [22]. We have shown
that the far-field potential created by a highly charged
disc within PB is remarkably close to its LPB counterpart
with a suitably chosen value of φ0, which therefore defines
the effective potential of the charged discs. As expected
from the argument put forward in Section 2, the latter
quantity is close to 4 (meaning that the effective surface
potential is close to 4kT/e) whenever κa is larger than a
few units, say κa > 3. These results extend the conclusion
of reference [15]. The argument of Section 2 should in fact
apply for any charged macroion for which the curvature is
smaller than the inverse Debye length κ of the surrounding
electrolyte. Note also that in the limit of high bare charge,
the details of the bare charge distribution onto the discs
are irrelevant. In this respect, the results obtained here
within PB with uniform surface charge are generic and
would resist to charge modulation.

The scenario emerging is that due to non-linear screen-
ing phenomena, highly charged macroions may be consid-
ered as effective objects with a uniform surface poten-
tial and can be treated within a linear theory (provided
short-distance features are irrelevant) which considerably
simplifies the analysis and opens simulation routes. In ad-
dition, this potential is constant provided there is enough
salt in the solution, in the sense that it no longer depends
on physico-chemical parameters. Such a viewpoint not
only predicts satisfactorily their effective charge, but also
reproduces accurately the anisotropy of their potential.
The latter property, embodied in the function f(κa, θ) is a
key feature of screened electrostatic interactions and may
have non-negligible —and hitherto largely unexplored—
consequences. It is responsible for the rich-phase be-
haviour and orientational ordering of colloidal molecular
crystals [31]. Its effects on the phase behaviour of clays,
especially at moderately to high salt concentrations where
large energy barriers f(θ = π/2)− f(θ = 0) are observed,
will be the subject of future work.

The fact that highly charged asymmetric objects in
solution of neutralizing counterions and salt behave effec-
tively as objects with constant potential surfaces seems
to be that despite the underlying fixed charged groups
on the surface, the counterion cloud can freely adjust it-
self to “eliminate” unwanted lateral electric field by re-
organizing itself as necessary, as perfect conductors do in
Vacuum electrostatics. Since the focus so far as mostly
been on isotropic objects, this point and the ensuing sim-
plifications does not seem to have been appreciated.

The authors acknowledge fruitful discussions with J.J. Weis,
B. Jancovici, F. van Wijland, M. Aubouy and H. Lekkerkerker.
They would like to thank anonymous referees for valuable sug-
gestions.

Appendix A.

Mixed boundary value problems are rather frequent in
electrostatics but also in diffusion and elasticity prob-

lems [33,32] (conduction of heat, diffusion of thermal neu-
trons, punch or crack problems etc.). They may be encoun-
tered in hydrodynamics as well [34]. They generally arise
whenever a potential is prescribed over part of a boundary
whereas its normal derivative is specified over the comple-
mentary part. The theory of dual integral equations turns
out to be a powerful tool for such situations. In this ap-
pendix, we give more details about the problem of finding
the solution A(k) to equations (7) and (8). To begin with,
it is convenient to recast them in the form




∫ ∞

0

g(u)√
u2 + (κa)2

J0(xu) du = 1, for x < 1,

∫ ∞

0

g(u) J0(xu) du = 0, for x > 1,

(A.1)

where dimensionless quantities have been introduced: u =
k a, x = ρ/a and g(u) =

√
u2 + (κa)2A(u)/Φ0. Solutions

of the previous equations for κ = 0 (no salt case) have
been derived by Titchmarsh [35]. The procedure, based on
rephrasing the dual integral equations by means of some
invertible linear operators gives the solution

Aκ=0(u) =
2Φ0
π

sinu

u
(A.2)

and the corresponding potential is that which leads to
equation (14) for the charge. A generalization of Titch-
marsh’s method has been proposed by Sneddon [36] for
dual integral equations of the type





∫ ∞

0

u−2α (1 + ω(u)) g(u) Jν(xu) du = 1, for x < 1,

∫ ∞

0

g(u)Jν(xu) du = 0, for x > 1,

(A.3)
where ω is an arbitrary function. Equations (A.3) and
(A.1) can be made equivalent by taking

ω(u) =
u√

u2 + (κa)2
− 1 (A.4)

with α = 1/2 and ν = 0 (for ω(u) = 0, we recover the no
salt case). The problem at hand—that fits into the general
framework of [36]— may be reduced to that of solving a
Fredholm equation of the second kind. Following Sneddon,
we write equations (A.3) in the form:

S− 1

2
,1[(1 + ω(u))g(u)/u, x] = 2/x, for x < 1,

S0,0[g(u)/u, x] = 0, for x > 1,
(A.5)

where Sα,β is the modified Hankel operator defined by

Sα,β [λ(u), x] ≡ Sα,βλ(x)

= 2β x−β
∫ ∞

0

u−β λ(u) J2α+β(xu) du.

We then introduce the function h through

g(u) = uS0, 1
2

h(u). (A.6)
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Fig. 18. Plots of h1(x) (solution of the integral Eq. (A.7))
versus rescaled distance x for different values of κa. For κa =
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√
π ' 1.13.

This function h(u) is the central object in the present
procedure. After some cumbersome algebra based on the
properties of the modified Hankel operators (for details,
see [36]), we find that the function h2 = uh(u) defined on
[1;∞] vanishes while its counterpart h1 defined on [0; 1]
is the solution of the following Fredholm equation of the
second kind:

h1(x) +

∫ 1

0

h1(u)K(x, u)du = 2/
√
π. (A.7)

The kernel K(x, u) is defined in the whole xu-plane by

K(x, u) =

√
π

2
κa(I1(κa|x− u|)− L1(κa(x+ u))) (A.8)

and I1 and L1 denote, respectively, the modified Bessel
function and Struve function of the first kind, of order one.
The weight function g(u) appearing in equation (A.1) is
recovered by means of the integral

g(u) =
√
u2 + (κa)2A(u)/Φ0 (A.9)

=
u√
π

∫ 1

0

cos (ut)h1(t) dt. (A.10)

The potential finally follows from equation (6). The Fred-
holm equation (A.7) is solved numerically by an iterative
procedure, starting by an constant initial guess for h1.

In the limit κ = 0, K(x, u) = 0 so that, from equa-
tion (A.7), h1 = 2/

√
π. The function g(u) in (A.10) follows

immediately: g(u) = (2/π) sinu, which is fully consistent
with (A.2). Finally note that the functions h1(x), plot-
ted in Figure 18 for different values of κa, are related to
the surface charge density of the disk σ(x) through the
equation

σ(x) =
h1(x)√
π
√
1− x2

. (A.11)

The function h1 can be well approximated by a quadratic
polynomial. The corresponding charge σ(x) may then
be used to compute analytically approximated effective

β = 3π/2β = π/2 β = 2πβ = π

Fig. 19. The wedge geometry. The conductor is represented
as the shadowed part and its boundaries by the thick line.

charges, anisotropy functions and weigh functions A(u).
This procedure is an alternative to the ansatz proposed in
equation (15), the latter being more suited for an analyt-
ical treatment. We finally note that from equation (A.11)
and the regular behaviour of h1 observed in Figure 18 for
x → 1, the surface charge diverges near the edge of the
disc like (1− x)−1/2, see Appendix B.

Appendix B.

We show here that the LPB surface charge distribution
σ(ρ) —arising from the condition of constant surface po-
tential on the disc— exhibits in an electrolyte the same
edge effect as in vacuum, where it diverges as (a− ρ)−1/2
when ρ→ a− [21].

We consider the more general problem of a wedged-
shape conductor with angle β (see Fig. 19). The imposed
potential is denoted φ0. Being interested in the behaviour
near the sharp edge where the situation is of cylindrical
symmetry, we introduce the cylindrical coordinates (r, ψ)
in a plane perpendicular to the apex of the wedge. With
rescaled distance r̃ = κr, we look for solutions of LPB
equation (2):

r̃
∂

∂r̃

(
r̃
∂φ

∂r̃

)
+

∂2φ

∂ψ2
= r̃2φ , (B.1)

in a form with separated variables:

φ(r̃, ψ) = R(r̃)Ψ(ψ). (B.2)

With the boundary condition φ(r̃, ψ = 0) = φ(r̃, ψ =
β) = φ0 for all r̃ in the vicinity of the wedge (i.e. r̃ close
to 0), the solution reads

R(r̃) = AνIν(r̃), (B.3)

Ψ(ψ) = αν sin(νψ). (B.4)

Here, ν = nπ/β, where n ∈ N; Aν and αν are arbitrary
constants. In the vicinity of the wedge, the potential there-
fore takes the form

φ(r̃, ψ) = φ0 +

∞∑

n=1

An sin

(
nπψ

β

)
Inπ/β(r̃). (B.5)

The dominant term when r̃ → 0 corresponds to n = 1, and
scales like r̃ π/β . The associated surface charge behaves
like σ(r̃) ∝ r̃ π/β−1, hence like r̃−1/2 near the edge of a
disc (β = 2π). This result has been used to choose the
functional form (15).
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