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Abstract The homogeneous Boltzmann equation for inelas-
tic Maxwell mixtures is considered to study the dynamics of
tracer particles or impurities (solvent) immersed in a uni-
form granular gas (solute). The analysis is based on exact
results derived for a granular binary mixture in the homo-
geneous cooling state (HCS) that apply for arbitrary val-
ues of the parameters of the mixture (particle masses mi ,
mole fractions ci , and coefficients of restitution αi j ). In the
tracer limit (c1 → 0), it is shown that the HCS supports
two distinct phases that are evidenced by the corresponding
value of E1/E , the relative contribution of the tracer species
to the total energy. Defining the mass ratio μ ≡ m1/m2,
there indeed exist two critical values μ

(−)
HCS and μ

(+)
HCS (which

depend on the coefficients of restitution), such that E1/E = 0
for μ

(−)
HCS < μ < μ

(+)
HCS (disordered or normal phase), while

E1/E �= 0 for μ < μ
(−)
HCS and/or μ > μ

(+)
HCS (ordered phase).

Keywords Inelastic Maxwell mixtures · Tracer limit ·
Non-equilibrium phase transition

Granular assemblies depart from molecular systems not
only from the difference of the length scales involved, but
more importantly in that the interactions among constituents
are dissipative [1]. In conjunction with the use of powerful
experimental and numerical techniques, the application of
non-equilibrium statistical mechanics to the field has yielded
much progress in the last 20 years, whereas the questions
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were hitherto more centred on civil and mechanical engi-
neering issues. Among the factors that explain this upsurge
of interest for fundamental approaches, the pioneering work
by Goldhirsch and Zanetti [2], pertaining to the clustering
instability in an unforced granular gas, should certainly be
recognised. Isaac Goldhirsch subsequently became a leading
figure in the granular matter community, much contributing
to the improvement of methods and understanding of mod-
els. As a tribute to his achievements and insights, we address
here the particularly simple situation of a mixture of grains,
where spatial homogeneity is enforced, thereby discarding
instabilities in the vein of the clustering phenomenon, but
where non trivial out-of-equilibrium phase transitions take
place.

We consider a binary mixture of inelastic Maxwell gases
at low density in the homogeneous cooling state (HCS). The
corresponding set of coupled Boltzmann equations for the
velocity distributions fi (v, t)(i = 1, 2) then read

∂

∂t
fi =

∑

j

Ji j [v| fi , f j ], (1)

where the Boltzmann collision operator Ji j [ fi , f j ] for dissi-
pative Maxwell mixtures is

Ji j
[
v1| fi , f j

] = ωi j

n j�d

∫
dv2

∫
dσ̂

[
α−1

i j fi (v′
1) f j (v′

2)

− fi (v1) f j (v2)
]
. (2)

Here, ni is the number density of species i,�d is the total
solid angle in d dimensions, and αi j ≤ 1 denotes the (con-
stant) coefficient of restitution for collisions between parti-

cles of species i with j . Moreover, v′
1 = v1 −μ21

(
1 + α−1

12

)

(σ̂ · g)σ̂ , v′
2 = v2 + μ12

(
1 + α−1

21

)
(σ̂ · g)σ̂ , where g =
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v1 − v2, σ̂ is a unit vector directed along the centers of the
two colliding spheres, and μi j = mi/(mi + m j ).

The effective collision frequencies ωi j for collisions i j are
independent of the relative velocities of the colliding parti-
cles but can depend on space and time through its depen-
dence on densities ni and granular temperature T (see e.g.
Ref. [3] for a discussion of this kinetic notion). They can be
also seen as free parameters of the model. In previous works
on multicomponent granular systems [4–6], ωrs was cho-
sen to guarantee that the cooling rate for inelastic Maxwell
models (IMM) be the same as that of inelastic hard spheres
(IHS). With this choice, the collision rates ωi j are (intricate)
functions of the temperature ratio T1/T2, which precludes
analytical progress. Here, since our problem involves a del-
icate tracer limit, we aim at the simplest possible approach.
Specifically, we assume that ωi j is independent of the partial
temperatures Ti of each species but depend on the global
temperature T = c1T1 + c2T2, ci = ni/(n1 + n2) being the
mole fraction of species i . Thus, one considers the simple
“plain vanilla” Maxwell model defined as ωi j = νc j , where
ν = An

√
T is an effective collision frequency and the value

of the constant A is irrelevant for our purposes. The form of
ωi j is closer to the original model of Maxwell molecules for
ordinary gas mixtures [7]. The plain vanilla Maxwell model
has been previously considered by several authors [8–11] in
homogeneous problems pertaining to granular mixtures.

In the absence of any external energy input, the granular
temperature T (t) monotonically decays in time due to the
inelastic nature of the collisions. We are here mainly inter-
ested in the time evolution of the partial temperatures Ti (or
equivalently, the partial pressures pi = ni Ti ). In the hydro-
dynamic regime (for times much longer than the effective
mean free time ν−1), it is expected that all the time depen-
dence of pi is only through its dependence on the global
temperature T (t) [12]. The time evolution of T (t) is simply
∂t T = −ζ T where

ζ = − 1

dnT

∑

i, j

mi

∫
dvv2 Ji j [ fi , f j ] (3)

is the total cooling rate. In order to solve the temperature
equation, it is convenient to change to a new time vari-
able defined as τ = ∫ t

0 ν(T (t ′))dt ′ yielding T (t) = T (0)

exp(−ζ ∗τ) where ζ ∗ = ζ/ν. To find the relation between the
“internal” clock (related to the average number of collisions
suffered per particle) and the “external” time t , one integrates
the relation for dτ using ν ∼ √

T and gets the usual Haff’s
law [13]

T (t) = T (0)
[
1 + 1

2ζ(0)t
]2 . (4)

The partial pressures pi can be determined by multiplying
both sides of Eq. (1) by miv

2 and integrating over velocity.

Taking into account previous results [4] derived for dissipa-
tive Maxwell mixtures, one obtains
(

∂

∂τ
+ L

)
P = 0, (5)

where P is the column matrix

P =
(

p∗
1

p∗
2

)
(6)

and L is the square matrix

L =
(

λ + A11 A12

A21 λ + A22

)
. (7)

Here, p∗
i = pi/nT and we have introduced the dimension-

less quantities

A11 = ω∗
11

2d
(1 − α2

11) + 2ω∗
12

d
μ21(1 + α12)

×
[
1 − μ21

2
(1 + α12)

]
, (8)

A12 = −ω∗
12

d

ρ1

ρ2
μ2

21(1 + α12)
2, (9)

where ω∗
i j = ωi j/ν and ρi = ni mi is the mass density of spe-

cies i . The coefficients A22 and A21 can be easily obtained
from Eqs. (8) and (9) by change of indices 1 ↔ 2. In addition,
as pointed out earlier, the temperature T (t) behaves for long
times as T (t) = T (0)eλτ where λ is a nonlinear function of
αi j and the parameters of the mixture.

After a certain kinetic regime lasting a few collision times,
one expects that the reduced partial pressures p∗

1 and p∗
2 =

1− p∗
1 reach well-defined steady values p∗

1,s and p∗
2,s, respec-

tively. These steady values are obtained by solving the homo-
geneous equation LP = 0. This equation has a nontrivial
solution if det L = 0. This is a second-degree polynomial
equation whose largest root λmax = max(λ1, λ2) = −ζ ∗
governs the time evolution of the temperature in the long-
time limit. Here, λ1 and λ2 are the solutions of the equation
det L = 0,

λ1,2 = −(A11 + A22) ∓ √
(A11 − A22)2+ 4A12 A21

2d
. (10)

The steady solution p∗
1,s is given by

p∗
1,s(λ) = A12

A12 − A11 − λ
, (11)

where λ = λmax. Consequently, for long times, the time
dependence of the partial pressure p∗

1(t) (or equivalently,
the energy ratio E1/E ≡ p∗

1) can be written as

p∗
1(t) = Ap∗

1,s(λ2) + Bp∗
1,s(λ1)e−(λ2−λ1)ντ

A + Be−(λ2−λ1)ντ
, (12)

where A and B are constants depending on the initial condi-
tions and the function p∗

1,s(λ) is defined in Eq. (11). In con-
clusion, after a relaxation time of the order of |(λ2 −λ1)ν|−1,
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the energy ratio p∗
1 reaches the steady state value p∗

1,s(λmax).
As long as the mole fraction c1 �= 0, one has λ1 �= λ2 for any
value of the mass ratio μ ≡ m1/m2 and the coefficients of
restitution. It must be remarked that the results derived so far
coincide with those previously obtained in the one-dimen-
sional case [9].

Let us consider now the tracer limit (c1 → 0). In this limit,
according to Eq. (10), λ1 and λ2 become simply

λ1 → λ
(0)
1 = − 2

d
μ21(1 + α12)

[
1 − μ21

2
(1 + α12)

]
, (13)

λ2 → λ
(0)
2 = −1 − α2

22

2d
. (14)

The root λ
(0)
1 gives the time behavior of the temperature T1

of the tracer particles while λ
(0)
2 is associated with the time

evolution of the granular temperature T2 of the excess com-
ponent. For given values of the coefficients of restitution α22

and α12, it can be easily proved that λ
(0)
2 > λ

(0)
1 if the mass

ratio μ lies in the range μ
(−)
HCS < μ < μ

(+)
HCS, where the

critical mass ratios μ
(−)
HCS and μ

(+)
HCS are obtained from the

condition λ
(0)
2 = λ

(0)
1 . They are given by

μ
(−)
HCS = α12 −

√
1+α2

22
2

1 +
√

1+α2
22

2

, μ
(+)
HCS = α12 +

√
1+α2

22
2

1 −
√

1+α2
22

2

. (15)

On the other hand, if the mass ratio μ is smaller (resp. larger)
than μ

(−)
HCS (resp. μ

(+)
HCS), then λ

(0)
1 > λ

(0)
2 . For elastic colli-

sions (α22 = α12 = 1), μ
(−)
HCS = 0 and μ

(+)
HCS → ∞ and so

λ
(0)
2 is always larger than λ

(0)
1 .

The above results show clearly that there are two different
regimes of behavior. When λ

(0)
2 > λ

(0)
1 , the tracer tempera-

ture T1(t) is enslaved to the granular temperature T2(t) and
so, the temperature ratio asymptotically reaches the steady
state value p∗

1,s(λ
(0)
2 )/c1. More explicitly,

lim
t→∞

T1(t)

T2(t)

= 2μ12μ21(1 + α12)
2

4μ21(1 + α12)
[
1 − μ21

2 (1 + α12)
] − 1 + α2

22

. (16)

On the other hand, if λ
(0)
1 > λ

(0)
2 , then the combination

A12− A11−λ
(0)
1 vanishes in the tracer limit so that, according

to Eq. (11), the temperature ratio p∗
1,s(λ

(0)
1 )/c1 tends to infin-

ity. This latter case corresponds to an extreme breakdown of
the energy equipartition since the tracer particles are very
energetic compared with the gas particles and the impurities
essentially scatter off a static fluid background. The transi-
tion toward the heavy-impurity phase (i.e., when μ > μ

(+)
HCS)

was already found by Ben-Naim and Krapivksy [8] in their
analysis on the velocity statistics of an impurity immersed
in a uniform granular fluid. The light-impurity phase (i.e.,
when μ < μ

(−)
HCS) is not reported in Ref. [8]; it only appears

when α12 >

√
(1 + α2

22)/2. Thus, this new phase disappears

(since μ
(−)
HCS becomes negative) when α12 = α22 or when

α12 < 1/
√

2. It must also be remarked that a similar non-
equilibrium transition has been found for IHS [14,15] show-
ing that, in the anomalous or ordered phase, the ratio of the
mean square velocities for the impurity and fluid particles
T1m2/T2m1 is finite (and so, the temperature ratio is infi-
nite) even for extremely large mass ratios (m1/m2 → ∞).
Although the transition to the heavy-impurity phase detected
for IMM occurs in general for large mass ratios (for instance,
μ

(+)
HCS  18.05 for α22 = α12 = 0.8), the transition phe-

nomenon found in Ref. [14,15] is less pronounced for hard
spheres interaction since at a practical point one needs to
consider much bigger values of the mass ratio for IHS to find
the above transition.

The expression (16) for the temperature ratio derived in
the tracer limit (c1 → 0) agrees with the one obtained in
Ref. [8] from the Boltzmann-Lorentz equation. It appears
that in general T1/T2 �= 1, although Eq. (16) shows that
energy equipartition occurs when the mass ratio is given by
μeq = (1 + α2

22 − 2α2
12)/(1 − α2

22), provided α22 �= 1.
Moreover, when the particles of the gas collide elastically
(α22 = 1), then T1/T2 = (1+α12)/[2+(1−α12)(μ21/μ12)].
This expression coincides with the one obtained [16] for IHS.
Beyond this case, the dependence of T1/T2 on the parame-
ters of the system in the normal phase is different from that
of hard spheres [12]. Figure 1 shows the dependence of the
temperature ratio on the mass ratio for α22 = α12 = 0.8.
In this case, μ

(−)
HCS  −0.055 and μ

(+)
HCS  18.05 and so,

there is only heavy-impurity phase. The μ-dependence of
the temperature ratio for IHS (with the same diameter for the
tracer and gas particles) is also shown for comparison. We
observe that IMM capture well the trends of IHS, except of
course close to the mass critical value where T1/T2 grows
very fast with m1/m2 for IMM. This growing is less dra-
matic for IHS. Likewise, the plain vanilla approach exagger-
ates the features of the more refined Maxwell model alluded
to above [4–6]; the trends evidenced, though, appear to be
robust.

We now explore the physical consequences of the exis-
tence of critical mass ratios in the tracer limit. In order to
analyze this point, we consider for instance the energy ratio
E1/E ≡ p∗

1,s. For c1 �= 0, the expression of E1/E is given
by Eq. (11) where the explicit dependence of A11 and A12

on c1, μ and αi j are given by Eqs. (8) and (9), respectively.
If c1 → 0, Eq. (11) becomes

E1

E
≈ c1

A(1)
12

(A(1)
12 − A(1)

11 )c1 − A(0)
11 − λ

, (17)

where
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Fig. 1 Plot of the temperature ratio T1/T2 versus the mass ratio m1/m2
for d = 3 in the case α22 = α12 = 0.8. The solid line is the result
for IMM (Inelastic Maxwell Model) while the dashed line is for IHS
(Inelastic Hard Spheres)

A(0)
11 = −λ

(0)
1 = 2

d
μ21(1 + α12)

[
1 − μ21

2
(1 + α12)

]
, (18)

A(1)
11 = 1 − α2

11

2d
, A(1)

12 = −μ21

d
μ12(1 + α12)

2. (19)

Equation (17) holds for λ1 and λ2 which are still functions
of c1. To first order in c1, they can be written as

λ1(c1) ≈ λ
(0)
1 + λ

(1)
1 c1, λ2(c1) ≈ λ

(0)
2 + λ

(1)
1 c1, (20)

where λ
(0)
1 and λ

(0)
2 are given by Eqs. (13) and (14), respec-

tively. The expressions of λ
(1)
1 and λ

(1)
2 can be obtained from

their forms (10) and (11) for arbitrary c1. After some algebra,
one gets

λ
(1)
1 = −1 − α2

11

2d
− μ2

21μ
2
12(1 + α12)

4

d2(λ
(0)
2 − λ

(0)
1 )

, (21)

λ
(1)
2 = − 2

d
μ12(1 + α12)

[
1 − μ12

2
(1 + α12)

]

−μ2
21μ

2
12(1 + α12)

4

d2(λ
(0)
1 − λ

(0)
2 )

. (22)

It must be noted that if λ = λ
(0)
2 in Eq. (17), then [according

to Eqs. (14) and (18)] A(0)
11 +λ

(0)
2 �= 0 and so the energy ratio

E1/E = 0 when c1 → 0 as expected. However, if λ = λ
(0)
1

in Eq. (17), A(0)
11 + λ

(0)
1 = 0 and so, E1/E �= 0. More spe-

cifically, by taking the tracer limit in Eq. (17) when λ = λ1

one gets

lim
c1→0

E1

E
= A(1)

12

A(1)
12 − A(1)

11 − λ
(1)
1

= α2
22 − 1 + 4μ21(1 + α12)

[
1 − μ21

2 (1 + α12)
]

α2
22 − 1 + 2μ21(1 − α2

22)
.

(23)

Note that although A(1)
11 and λ

(1)
1 depend on the coefficient

of restitution α11, the energy ratio is independent on colli-
sions among tracer particles themselves. This means that one
could neglect the Boltzmann collision operator J11[ f1, f1]
in the kinetic equation of the one-particle velocity distribu-
tion function f1 (Boltzmann-Lorentz description). This is
quite a natural assumption when one analyzes the tracer prob-
lem. In addition, it is also usual to assume that the presence
of tracer particles does not affect the state of the solvent
(excess component) and so, collisions of type 2-1 can be
neglected (closed Boltzmann equation for the gas). On the
other hand, in the heavy or light impurity phase, one needs to
consider the contributions coming from the Boltzmann oper-
ator J21[ f2, f1] to get Eq. (23). This is clearly shown in the
Appendix A where the expression (23) is derived from an
alternative route.

In conclusion, when μ
(−)
HCS < μ < μ

(+)
HCS, the temperature

ratio T1/T2 is finite and so, the energy ratio E1/E = 0. On
the other hand, if μ < μ

(−)
HCS or μ > μ

(+)
HCS, the temperature

ratio diverges to infinity and the energy ratio becomes finite.
This change of behavior is similar to an ordering process
where the impurity is enslaved to the host fluid (E1/E = 0),
or carries a finite fraction of the total kinetic energy of the
system (E1/E �= 0). The latter situation can be referred to
as the “ordered” phase (extreme breakdown of the energy
equipartition) while the first one can be coined “disordered”
phase. Figures 2 and 3 illustrate the transition phenomenon

0.001 0.01 0.1 1 10 100 1000

m
1
 / m

2

0

0.5

1

E
1
 / 

E

α
22

 = 0.6

μ
HCS
 (-) μ

HCS
 (+)

Fig. 2 Plot of the order parameter E1/E versus the mass ratio m1/m2
for α12 = 0.9 and α12 = 0.6. The hatched regions indicate the ordered
phases while the arrows correspond to the critical mass ratios μ

(−)
HCS �

0.041 and μ
(+)
HCS � 9.83
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Fig. 3 Phase diagram in the dissipation/mass ratio plane, for a fixed
value of tracer-fluid inelasticity α12 = 0.9. The vertical dotted line
indicates the cut corresponding to Fig. 2

found here. Specifically, Fig. 2 shows the energy ratio E1/E
as a function of the mass ratio m1/m2 for α22 = 0.6 and
α12 = 0.9. In this case, according to Eq. (15), one gets
μ

(−)
HCS � 0.041 and μ

(+)
HCS � 9.83. It is apparent that, for

asymptotically small or large mass ratios, the contribution
of the impurities to the total energy can be even larger than
that of the host gas. Figure 3 shows a phase diagram in the
{α22, m1/m2}-plane at α12 = 0.9. The light impurity ordered
phase appears for values of the mass ratio μ � 0.113 pro-
vided that α22 � 0.787 while the heavy impurity ordered
phase is present for mass ratios μ � 5.487 in the com-
plete range of values of the coefficient of restitution α22.
Finally, it must be noted that a similar non-equilibrium phase
transition has been found for a sheared granular mixture
[17].
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Appendix A

Energy ratio in the ordered phase

In this Appendix we will obtain the expression (23) of the
energy ratio E1/E in the ordered phase from the condition
ζ1 = ζ2 (this is the condition to determine the temperature
ratio in the HCS [12]) when the collisions among tracer par-
ticles themselves are neglected. Here, ζi refers to the partial
cooling rate associated to species i . In the case of IMM, the
cooling rates ζi have been exactly obtained in Ref. [4]. In the
tracer limit (c1 → 0), if one neglects the effect of collisions
1-1, one has ζ1  ζ12 and ζ2 = ζ21 + ζ22 where

ζ12 = −λ
(0)
1 ν = 2

d
νμ21(1 + α12)

[
1 − μ21

2
(1 + α12)

]
,

(24)

ζ22 = −λ
(0)
2 ν = 1 − α2

22

2d
ν, (25)

ζ21 = −μ21μ12

d
ν(1 + α12)

2
p∗

1,s

1 − p∗
1,s

, (26)

where use has been made of the identity p∗
2,s = 1 − p∗

1,s.
Moreover, we are considering the ordered phase and so p∗

1,s
is finite (and T1/T is infinite). If one neglects the tracer col-
lisions, the condition to get p∗

1,s reduces to ζ12 = ζ22 + ζ21.
Substitution of Eqs. (24), (25), and (26) into the previous
relation yields

d

2
(λ

(0)
1 − λ

(0)
2 ) = 1

2
μ21μ12(1 + α12)

2
p∗

1,s

1 − p∗
1,s

. (27)

The solution to Eq. (27) is

p∗
1,s = α2

22 − 1 + 4μ21(1 + α12)
[
1 − μ21

2 (1 + α12)
]

α2
22 − 1 + 2μ21(1 − α2

12)
. (28)

Upon writing this equation the explicit forms of λ
(0)
1 and λ

(0)
2

have been considered. The expression (28) coincides with
Eq. (23).
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