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Abstract

In this paper, we show that the far field electrostatic potential createdhighly chargedinite size cylinder within the nonlinear Poisson—
Boltzmann (PB) theory, is remarkably close to the potential created within the linearized PB approximation by the same object at a well-
chosen fixed potential. Comparing the nonlinear electrostatic potential with its linear counterpart associated to a fixed potential boundary
condition (called the effective surface potential), we deduce the effective charge of the highly charged cylinder. Values of the effective surface
potential are provided as a function of the bare surface charge and Debye length of the ionic solution. This allows to compute the anisotropic
electrostatic interaction energy of two distant finite rods.
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1. Introduction /c,% =4nlg)_, pazg. The solvent is described at the level
of a dielectric continuum approximation with permittivity
Electrostatic interactions between charged macromole- and the Bjerrum lengthg is defined agg = ¢?/(4rekgT),
cules play a key role in the understanding of the structure andwherekg T is the thermal energy.
phase behavior of polyelectrolytes or colloidal suspensions.  However, the spherical shape is not the rule in nature
Interaction between charged colloids in a ionic medium are and colloids often take the form of anisotropic particles.
generally described within the framework of DLVO theory, Examples are numerous, such as clay platelets (laponite,
named after Derjaguin, Landau, Verwey, and Overtjék montmorillonite, gibbsite)1-3], ribbons (vanadium pen-
The interaction energy between two spherical colloids with toxide V»Os) [4], rigid rods (Tobacco Mosaic Virus—
chargeZe and identical radiug takes the form of the so-  TMV, boehmite, goethite)[5,6], to cite a few. Due to

called DLVO potential, their anisotropy these systems may exhibit orientational
7202 [ explkpal \ 2exp(—kpr) order (nematic, smectic, etg.) or may even organize into

Uro(r) = , Q) supramolecular structures like multiple helixes or lamel-
4re \ 1+ kpa r

lar multilayers[7,8]. From the theoretical point of view,
wheree is the elementary charge arg denotes the inverse  Onsager in a pioneering work has provided the first descrip-
Debye screening length. The latter is defined in terms of tjon of the entropy driven isotropic-to-nematic (I-N) transi-
the micro-ions bulk densitiefo,} (with valencies{z.}) @s  tjon [9] in an assembly of (infinitely long) rods. In the case of
charged polyelectrolytes, the results for the uncharged rods
" Corresponding author. might be extended using the intuitive concept of “dressed”
E-mail addresslbocquet@Ipmcen.univ-lyon1.{i. Bocquet). rods, which amounts to increasing the bare radius of the
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rod by the Debye length, the characteristic range of the xpa > 1[29]. A simple physical picture of this effect is that
screened Coulomb interaction. Stroobants and Lekkerkerkermicro-ions strongly accumulate in the vicinity of the col-
have provided a consistent description of this effect at the loid surface for a sufficiently large bare charge, resulting in
level of a second-virial-coefficient approximatifi?]. Such a strong screening of the electrostatic potential in the first
an approach provides predictions in good agreement with few micro-ion layers close to the surface. In other words,
the experimental observations, in particular for the volume the interaction at large distance is not characterized by the
fraction corresponding to the I-N transition of highly asym- bare charge, but by an effective, much lower one. For spher-
metrical rodlike particles like the fd virus (ratio of height ical and cylinder like shapes, this effective charge is fixed
over radiusL/R = 250) [11]. However the case of smaller at the LPB level from the effective condition of a fixed po-
aspect ratio is less clear cut. In particular, the dressed rodtential, ®g, on the surface of the colloid. This condition is
picture overestimates the I-N volume fraction for shorter independent of the bare charge of the colloid provided it is
rods like goethite £/R = 12), even within more sophisti-  sufficiently large (saturation limit). Moreover in thga > 1
cated versions of the dressed mofle3,14] Moreover, it limit, ®g reduces simply t@q = 4kgT /e.

is quite interesting to note that anisotropic charged colloids  This paper is organized into two parts:

with intermediate aspect ratio exhibit quite systematically

“gel” phases, competing with the orientational transitions, e In afirst part, we solve the NLPB equation for finite-size
which are not predicted by theoretical approaches based on  rod-like polyelectrolytes, with prescribed surface charge

an isotropic Yukawa interactiofl5]. This is, e.g., the case density.

for laponite (disks) and boehmite (rod8§)16-22,24] The e In a second part, we compare these NLPB results for
origin and nature of these transitions—experimentally de- the electrostatic potential, with the predictions oflihe
bated[26,27}—which occur at small volume fractions are earizedPoisson-Boltzmann equation, associated with a
still unclear today. fixed potential on the surface of the cylinder.

Coming back to basic ingredients, the electrostatic in-
teraction between moderately anisotropic colloids should  All results will be written in terms of dimensionless
therefore be specifically reconsidered. In a recent p@34r variables. All the lengths (such ds, KSl, or L) are ex-
we have generalized the DLVO description to express the in- pressed in terms of the radius of the cylinder Ladim —
teraction between charged colloids of arbitrary shapes (suchL/R, Kgd'm = kpR, etc. Dimensionless electrostatic poten-
as disks or rods). This framework provides a general expres-tial ® and surface charge densities are defined respectively
sion of the interaction between two colloids, which has the as ®29M = ¢® /kgT and oM = 47 ¢gRo /e, Wwherelg is
same status as the DLVO potential, now for arbitrary shapes.the Bjerrum length defined b§g = ¢2/(4rekgT) (for wa-
It turns out that the interactions remain anisotropic at all dis- ter at room temperaturég = 7 A). From now on, the index
tances (see al4@4,28)). adim will be skipped, but we will keef = 1 in the formulas

However, beyond these results, the calculationf28] to allow the reader to recover the initial dimensions.
rely on two specific assumption: (i) micro-ions are described
at the level of thdinearized Poisson—Boltzmar{bPB) ap-
proximation; (ii) colloids are assumed to be characterized 2. Calculation of the NL PB electrostatic potential for
by aconstant surface potentialNote that these are the as- finite size objects
sumptions underlying the expression of the DLVO interac-
tion potential, Eq(1) [10]. In this paper, we reconsider the 2.1. Method of resolution of NLPB in a Wigner—Seitz cell
validity of this approach to compute the interaction between
two charged colloids. In particular, we will show that these ~ We consider a cylinder, immersed in a monovalent liquid
assumptions are justified for finite rod-like polyelectrolytes medium with Debye lengtip and carrying a given surface
within the nonlinear Poisson—Boltzmann (NLPB) descrip- charge density. The NLPB equation reads
tion, in the saturation limit where the bare charge of the 5 .
colloid is large. More precisely, we will show that the elec- AP =«kp Sinh®, (@)
trostatic potential created by a strongly charged (anisotropic) and the boundary conditions are written (in dimensionless
colloid computed at the NLPB level coincides with the elec- o)
trostatic potential of a colloid with a fixed surface potential,

called the effective surface potential, computed at LPB level. , _ _@’ (3)
This result is valid for large distances from the colloid, cor- an
responding to the “far-field” limit. wheren is the outer unitary vector perpendicular to the sur-

In a previous worlf25], we have shown that this identi- face of the colloid. To solve Eq2), we make use of a
fication naturally emerges in the case of charged sphericalWigner—Seitz cell and use a procedure introduce{Boj.
colloids or infinite rods, and can be justified on the basis of The colloids are assumed to be confined into cylindrical cells
an asymptotic matching procedure in the case where the De-of volumeV. The normal component of the electrical fiéld
bye length is smaller than the radiusof the colloid, i.e., vanishes on the surface of the WS cell. We denote the radius
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Fig. 1. The Wigner—Seitz cell. In A, the finite cylindérof radiusR and lengthL and the WS cell of radiuRyys and heightis are represented in perspective.
In the lower left part of B the lattice aVg,,,5 X Npy5/2 points used to represent the electrostatic potential has been plotted with dashed lines. The upper right
part of B shows with dotted lines the cells used to compute integrals in the WS cell, which surrounds the points on the previously defined WS ¢dual) lattic

and height of the WS cell aBws andws, as represented : L i i
on Fig. 1, such thatnR&vshWS = V. In the present paper, B _ |
we are mostly interested in the infinite dilution limit of one 2 0
isolated cylinder in the liquid medium. The WS cell, which 3 %_2 ]
is used for technical convenience, needs therefore be large = %
enough (characteristic dimensions much larger than the De- © ’ < -4 i
bye length). P

To solve the NLPB equation in the WS geometry, the 1k i
NLPB equation is rewritten as a self consistent equation, by
transforming it from the action of Bnear operator applied 0
to the potential®, with sources composed of the charge 0 2 4 ZIR 6 8 10

carried by the cylinder and of a nonlinear term depending
on @ [30]. The solution is then obtained by solving this Fig. 2. Calculation of®infinite plane for o = 10 with different accuracies

self-consistent equation iteratively, using the Green function (dashed line) and comparison _W|th the exact solution (continuous line).
. . . . The parameters are the followin®ws = R, Ng,,g = 1, hws = 10R,
formalism. The details have been gatheredpendix A Ninyys = 40 or 200. Althoughty computed with 40 points along the

axis is obviously not constant inside the planar slab, it is in agreement with

2.2. Benchmark results for the NLPB electrostatic potentia| the exact solution outside. Note that the planar slab extends yfRte= 1
in the present geometry.

Before addressing the problem of a rod-like polyelec-
trolyte, we first consider two benchmark geometriesl in order the colloid, even iinsidethe solution has still not fully con-
to test the numerical procedure described\ppendices A verged toward the exadt = cst condition due to the discrete
and B The potential obtained from this procedure is de- grid.
noted®y,. The same conclusions are reached for the other bench-
The first case is that of an infinite charged plane, which is mark case, the infinite cylinder, which corresponds in our
exactly obtained within our geometry whetws = R and geometry toRws < R andhws = L/2; seeFig. 3. The ex-
hws > L/2. The “colloid” then takes the form of a pla- act solution is found in this case using a numerical equation
nar slab. The NLPB equation can be exactly solved for this solver.
geometry (see, e.g[25]) and is compared iffrig. 2 with
the numerical solution obtained within the present approach.2.3. NLPB electrostatic potential around a rodlike
Note that the potential inside the slab is expected to be con-polyelectrolyte
stant. In the numerical calculations, different grids have been
tested, showing that outside the colloid, the numerical solu-  The two limiting cases presented in the previous section
tion converges quite fast to the exact solution, even for loose validate the numerical procedure used, which we now apply
discretization grids. A good agreement is obtained outside to rod-like polyelectrolytes with finite lengtligs. 4 and 5
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> Dy : : show typical results for the nonlinear potential created by a
| . é ; i cylinder with a finite aspect ratio, hefe/ R = 4, immersed
-/ e} 0 in an ionic liquid characterized by different Debye lengths
NE *ec_z' i (herexpR = 0.2, 0.5, or 1.0). As for the benchmark cases,
= g} the electrostatic potentiahside the colloid is not exactly
© ok En -4 i constant due to the discretization grid, but we have checked
- 6' that the electrostatic potentialitsidethe colloid becomes
Wk i i independent of the discretization step for the grids used.
‘ 2 4 R 8 10 3. Far-field behavior of the electrostatic potential

Fig. 3. Calculation of®infinite cylinder for o = 12 with different accura- Having in mind the calculationn fine of electrostatic
cies (dashed lines) and comparison with the exact solution (continuous interactions between poneIectrontes our aim is now to ex-

line). The parameters are the followinBiys = 10R, Ng,q = 20 or 100, - . . .
s = R, Npyq = 2. Althouighp, computed with 20 points along the tract the asymptotic behavior of the electrostatic potential

axis is obviously not constant inside the cylinder, itis in agreement with the 1TOM the numerical solution of the NLPB equation.
exact solution outside. Note that the WS cell imposes a vanishing derivative
of the potential at/R = 10. A similar phenomenon may be observed with
the dashed line in the inset Bfg. 2 (the continuous line is free of such an
effect since it corresponds to the result whggs — o).

3.1. Asymptotic matching of the LPB and NLPB solution in
the far field limit

At large distances from the colloid, i.e., distances typi-
cally larger than the Debye length, the electrostatic poten-
tial becomes small and the NLPB equation, E®), re-

o0

6 @ J duces therefore to tHearizedPoisson—-Boltzmann equa-
o i tion (LPB),
= x 2
o 4 = J A A®ijin = K5 Plin - (4)
=)

To avoid confusion, we denotg;j, the solution of the LPB

2 r/R12 16 20 equation. This equation is much simpler than its nonlinear
counterpart and can be solved using the Green function for-

0 . . malism; see, e.g., Ref23]. However, the main problem

0 4 8 12 16 20

which still subsists concerns theffective boundary con-
ditions which the LPB potential@ji,, has to obey at the
colloid surface, in order to match the solutiahy, of the
NLPB equation in the asymptotic regime (distances larger
thankpt).

In a previous worK25], it was shown that provideeb R
is large enough, thisffective boundary conditiareduces to
a fixed potentiakt the surface of the colloid, in the satura-
tion limit where the bare charge of the colloid is large. Two
g geometries were specifically considered2b]: the sphere
. and the infinite cylinder. We show in the following that this
1 condition also emerges in the case of anisotropic polyelec-
trolytes with finite aspect ratio. The solution of the LPB
equation, Eq(4), with a fixed surface potential boundary
condition on the polyelectrolyte surface,

Fig. 4. Solution of the nonlinear PB equatidr, in the planez = 0 (con-
tinuous line) and = 3 (dashed line) foL /R = 4,0 =10, andkpR = 0.2,

1.0, and 5.0 (from top to bottom). On the vertical axis, the curves have been
multiplied by an arbitrary factor for the sake of readability. The inset shows
that @y, decreases as eipxpr)/r in the plane; = 0.

oo

Piin = Po, )

== 50 is discussed in Ref23] and we refer to this paper for tech-
nical details.

Fig. 5. Solution of the nonlinear PB equatign,, on the axis- = 0 (con-
tinuous line) and = 3 (dashed line) fol./R = 4,0 = 10, andkp R = 0.2,

1.0, 5.0 from top to bottom. On the vertical axis, the curves have been mul-
tiplied by an arbitrary factor for the sake of readability. The inset shows that
@ decreases as ekpkpz)/z on the axis- =0.

3.2. Numerical results

In this paragraph, we compare the solution of the NLPB
equation(2) with afixed bare chargé&oundary condition to
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Fig. 6. Comparison between the solution of the NLPB equation with fixed Fig. 7. Same as iffig. 6 for L/R =6, 0 = 10, kxp = 1.0, eff = 3.42
bare charge boundary conditiosy, (solid line), and the solution®jy, , of on the axisr =0, r = R + K51 =2R, r =R + 5,(51 =6R, 7 =0,
the LPB equation with a fixed effective surface potential boundary condi- _ _ —1_ _ —1_ : ;

tion et = 5.41 (dashed line). The aspect ratioZigR = 10, the Debye ¢=Lj2+up =4R and: =L/2+5¢q =8R. Onthe vertical axis, the
length iskp R = 0.2 and the bare charge is= 10. From top to bottom,
the potential is computed on the axis=0,r = R + I(El =6R, z=0,

curves have been multiplied by an arbitrary factor for the sake of readabil-
ity. As in Fig. 6, the inset emphasizes the asymptotic decay of the potential,
as @p(d) ~ exp(—kpd)/d, which is expected at large distances from the

-1 . .
andz = L/2+«p " = 10R. On the vertical axis, the curves have been mul-  cyjinder (7 = /2 + z2). Curves have been also shifted by arbitrary factors.
tiplied by an arbitrary factor for the sake of readability. In the inset, we

plot the logarithm ofd x & (d), with d the distance to theenterof the
cylinder (same legend as on the main graph). This plot emphasizes the ex-
pected asymptotic behavior of the potentlg](d) ~ exp(—«kpd)/d, with

5 T T T

An agreement between these two solutions is expected

d =+/r2 4 z2. Curves have been also shifted by arbitrary factors. r=————=- g 4 17
= — 0 ™ 7
. . . . . 9:3 ______ ;? 4 4 7
the solution of the LPB equatiof@) with a fixed potential @ &
boundary condition called theffective surface potential 022 £ 8 \ 14

to be valid in the saturation limit where the charge of the 1 T ey B
colloid is large[25]. We have therefore explored the para- diR

meter space (charge, aspect ratio) to test the validity of this 0 1 1
prescription. In this paragraph, we show results in the re- /R or zZ/R 4 6

gion of the parameter space where an agreement is found. In
other words, in the cases shown below, it is possible to fit the Fig- 8- Same as iffigs. 6 and #or /R =4, 0 = 10,kpR =50, Perr =
NLPB solution with a constant bare surface charge, with the 241 °" thef‘i"? =0r=R+kp = l‘zﬁ‘ r=R+5p" =2k =0,
LPB solution with a fixed potential boundary condition, us- <= %/2+#%p" =22k, andz=1/2+5¢"=3.
ing a single parameter fit: the effective surface poterdial
Such a fit should only holébr large distance$rom the col- lutions remarkably superimpose (the dashed lines are hardly
loid (say, typically for distances larger than a few Debye distinguishable from the continuous ones). We conclude
length), for which the NLPB equation reduces to the LPB from figuresFigs. 6, 7, and 8hat—at least in the conditions
equation. considered—a very good agreement can be found between
We shall precise in Sectio®i4the domain of validity, in the NLPB solution at fixed charge and the LPB solution at
parameter space, of the previous matching procedure. Thefixed potential.
results are presented ligs. 6, 7, and 8
It is important to emphasize that the agreement between3.3. Anisotropy of the electrostatic potential
these two solutions is not obviows priori. Indeed for fi-
nite rod-like cylinders, the solution of the LPB (or NLPB) We now focus on the anisotropy of the electrostatic poten-
equations is quite different depending on the boundary con-tial at large distances. As emphasized in the previous curves,
dition under consideration: fixed surface charge, or fixed sur- the potential decays a8ni(d) ~ exp(—«pd)/d in this limit,
face potential (at the colloid surface). This difference orig- and one may extract an anisotropy facfa®), defined as
inates in particular in the so-called edge effects associated
with the constant potential boundary condition. The fact that ¢ (q) = f[g]K_B exp(—kpd), (6)
an agreement may be found between the NLPB with fixed d
charge and the LPB with fixed surface potential is therefore which again is valid for large distancesfrom the center
a non trivial point25]. of the cylinder,d = +/r2 + z2. For the cylinder shape col-
The insets ofFigs. 6, 7, and &how that except in the  loid under consideration, the anisotropy factor depends only
immediate vicinity of the charged rods, NLPB and LPB so- on the angle® between the; axis and the directioiO M)



614 D. Chapot et al. / Journal of Colloid and Interface Science 285 (2005) 609-618

3 1 6 T T L T T 1 1
5 - -
@ 4r 1
E
& -
=
ﬂ' 2,_ -
1F .
O 0 i i L i 1 i 1 i 1 i 1 i 1 i 1 L
0 1.57 3.14 2 4 6 8 10 12 14 16 18 20
0 L/R
Fig. 9. Normalized anisotropic factof (6)/(f) (for L =10, o = 100, Fig. 10. Domain of validity of the constant potential prescription (see text)

kpR = 1.0). For any directiord, f is computed from the asymptotic be-  as a function of the dimensionless bare charge on the cylinder, and of
havior of the potential, according to E(). Solid line: anisotropic factor the aspect ratio of the cylinder (here fap R = 1.0). Above theojjm (L)
computed from the solutio?y,, of the nonlinear PB equation; dashed line:  curve, the agreement between the exact solutignof the nonlinear Pois-
anisotropic factor computed from the solution of the linearized PB equation, son-Boltzmann equation for a cylinder carrying the bare chaigge
Pjin, as obtained in Ref23]. and the solution®ji, of the linearized equation for the same cylinder at
a weII-c_hlosen fixed potential is better than 5% for distances larger than
(O being the origin of the cylinder an® the point with co- ro=4p".
ordinates{r, z}). This anisotropy factor is plotted iRig. 9
as a function ob (normalized by its average over the an- Of the previous constant effective surface potential prescrip-
gles, (f)). In this figure, we also compare this result with tion, as a function of the aspect rafig R (for a given Debye
the anisotropy factor obtained at the level of the linearized length). We have somewhat arbitrarily defined domain of va-
PB equation witHixed potential boundary conditiosn the ~ lidity of the previous prescription, as the region for which
cylinder. The agreement is found to be very good, empha- the two solutionspn and @iy differ by less than 5% for all
sizing again that the PB potential with fixed, large surface distances larger than a minimum distamgehere chosen as
charge, does indeed match the LPB solution with a fixed po- 70 = 4¢p (with £p the Debye length). One finds that such a
tential on the cylinder for large distances from the colloid.  requirement is reached for sufficiently large surface charges,
This figure reveals the strong anisotropy of the col- allowing to define a minimum surface charge on the colloid
loid, which, according to Eq(6), persists at large distance oiim above which the constant potential prescription holds.
from the colloid. In other words, the electrostatic potential, In the regime of aspect ratio around unity 2L /R < 4),
Eq.(6), never reduces to the spherical one at large distancesthe constant potential prescription appears to be always valid

even for moderate anisotropy of the colloid. according to the chosen criterion. This reflects the fact dis-
cussed above that for intermediate aspect rafif ~ 2, the

3.4. Domain of validity of the constant potential geometry is close to a spherical geometry, for which one may

prescription always define a potential such that the PB and LPB solutions

matches at large distances. This is clearly not the case for in-

We now consider the domain of validity of the previous termediate geometries with larger aspect ratios. However a
prescription. More precisely, we have exhibited above exam- constant potential prescription at the LPB level is recovered
ples showing that the LPB potential (with a fixed potential on for sufficiently large bare surface charge on the colloid, as
the cylinder) may be matched to the PB solution with fixed emphasized by the existence of a minimum chatge
large surface charge for large distances from the colloid. Note that in the present study, we only focused on cylin-

According to results in different geometries (spheres and ders with aspect ratio larger than one (in pracfigR > 2).
infinite cylinders)[25], such a prescription is actually ex- One expects similar results to hold in the disk cds&R
pected for large bare charge on the colloid. However, one < 1, with the existence of a minimum surface charge above
may also expect this prescription to be extended for all val- which the constant potential holds (especially in the strong
ues ofo when the colloid anisotropy is weak (i.e., for low anisotropy limit,L/R <« 1).
values ofkp L or aspects ratios /R of order 1). Indeed, in Figs. 6, 7, and 8how that the matching @by, by &jin on
these weak anisotropy cases, the geometry is quite close tdhe symmetry axis of the cylinder= 0 and plane =0 is
that of a sphere, for which, by construction, the general solu- valid as soon as the distance from the surface of the colloid
tion of the LPB (NLPB) equations are identical for constant is larger thanc|51 (at least forkpR = 0.2 and«kp R = 1.0),
surface charge and constant surface potential. In this limit, which is a much less restrictive condition than the arbitrary
it is therefore always possible to define a surface potential one chosen for definingjim in Fig. 10 For the sake of sim-
such that a matching between these two solutions is found. plicity, we shall keep in mind that the matching procedure

In Fig. 10 we gather results emerging from the previ- remains essentially valid at one Debye length of the colloid
ous matching procedure and represent the domain of validityif our strong criterion is fulfilled but may break down for
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Fig. 11. Dependence of the effective surface poteutigf as a function of Fig. 13. Dependence of the effective surface poteutigf as a function of
the (dimensionless) bare charge on the cylindef@dRopgre/e for L/R =4 the Debye screening factep R. The aspect ratio of the cylinder is here
andkp = 1.0. The inset is a zoom into the weak coupling region. L/R = 4 and the bare chargedge= 100. The dashed line represents the
value of the effective surface potential for infinite cylinders, in the saturation
6 T T T limit, as obtained numerically following the method of Rg¥1].
4 i over, as expected the value for large aspect rafi® re-
%, Geo duces to that of the infinite cylinder (as obtained numerically
o 3 ]

following the method put forward if81]).

2f . Let us now analyze the influence of the salt concentration
(seeFig. 13. A few remarks may be drawn from this figure.
First, as expected, the effective surface potential goes toward
0 1 L 1 a value close t@ef = 4 for large screening factors. This is

10 15 20 A
L/R because in this limit curvature effects no longer play a role

. . _ _ and the potential reduces to the planar reguyl = 4 [25].

Fig. 12. Dependence of the effective surface potediig as a function of S d. it is int fi t te that th |
the aspect ratio of the cylinddr/ R, for opgre= 10 andopare= 100 (solid econd, 1ti1s in ere_s Ing 0_”9 e a . ¢ Va_ues(j@ﬁ are .
lines from bottom to top). The Debye screening factorgsk = 1.0. Open close to those obtained for infinite cylinders in the saturation
symbols represent the computed values of the effective surface potential andimit (see the dashed line iRig. 13, even if the aspect ratio
filled squares indicate the values®gs; for an infinite cylinder. is quite low in the present case.

We conclude this section by providing a table of the ef-
particular regions (e.g., close to the edges) betwgeand fective surface potentiabes for several values of the para-

4¢p depending on the parameters of the problem«p R, meters of the cylinder. Sindeig. 12 shows thatdes does

andL). not much depend on the lengthof the rod, we only report
the asymptotic value for large/R values. In this table, the

3.5. Effective “linear” surface potential effective surface potentiabess is reported for given values

of the bare surface chargedim = 47¢gRo/e and Debye
We consider here the value of the effective surface po- lengthkpR:
tential of the colloid,®ef, found by the previous matching
procedure. As shown ifrig. 11, ®ef increases with the
value ofopare Moreover, for large values afypare the sat-

kDR||oagim 1 2 5 10 20 50 100
0.2 119 228 440 541 570 582 587

uration regime is reached and the effective surface potentialo'5 0867 166 324 425 465 477 485

: -~ P 1.0 0601 116 242 342 408 450 459
becomes independent of the bare charggs as for infinite 20 0375 Q737 165 260 2340 399 419
cylinders[25]. We recover the result obtained[R2B], that in 5.0 0161 Q322 Q777 141 219 304 344
the saturation regime, the effective potential of the polyelec-
trolyte is of the order of a fewgT /e. This table makes it possible to compute the interac-

This saturation regime originates in the accumulation of tion energyUi»(r) between two rodlike macromolecules for
counterions in the region very close to the colloid surface given values ofoadim = 47 ¢g Ropare/e andkpR. The ex-
as the bare charge of the cylinder increases. This nonlinearpression for the interaction energy for two rodlike macro-
“condensation” of counterions results in an effective surface molecules has been obtained in RE3] and recalled in
potential which is independent of the bare charge. Appendix C By replacing®g with the value provided by

We now turn to the influence of the aspect ratio of the this table in Eq(C.2) of Appendix G one deduces an ex-
cylinder on the effective surface potential. As shown in plicit expression for the interaction energy at large distances,
Fig. 12 this dependence is found to be quite weak. More- using Eq.(C.1).
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4. Conclusion operatorn(—A + «2),

In this paper, we have solved numerically thenlinear Vi eWS,  (—Ar + kDG (r 1) =8 — 1),
Poisson—Boltzmann (NLPB) equation for rodlike polyelec-
trolytes with finite aspect ratios and compared the results
to the solution of thdinearizedPoisson-Boltzmann (LPB) ¢ (r) = F[®](r)
equation. This led us to the conclusion that the NLPB so-

=//:/ Gi(r.r') dr,{Pcyl(r/)
WS

one may invert Eq(A.1) as

lution with a fixed bare charge for the electrostatic poten-

tial coincides with the LPB one at large distances from the

colloid, provided areffective boundary conditioof fixed 26 1/ w21/ /

potentialis applied in the LPB approach. This generalizes +[<*2 ) — i () sinh () ] A2)
therefore the results obtained for spheres and infinite cylin-  Note that in the case of the WS cell mod@l, (r, r’) may
ders[25], to polyelectrolytes with a finite anisotropy. The be chosen to obey the boundary conditions

effective surface potentiad found to be only weakly depen-

dent on the aspect ratio of the cylinder and Debye screening”’ €S ¥I' € WS, grad, G (r.r) - n(r) =0.

factor kxp R. When the bare charge of the colloid becomes ¢ \yas shown that in this case that the required Green’s func-
large, this effective surface potential reaches a saturationyion can be expressed in the form of the Bessel-Dini series
value fixed by the balance between electrostatic and entropic[30]

effects, i.e., of the order of a fekg7/e. We provide an

easy-to-use table to compute the interaction energy of two fi- , > iy r hws F z
nite charged rods for given values of its bare surface chargeCx (1) = 2_Grr)o( cos ’
n=0

A tgopare/e @nd of the Debye length of the ionic solution (A.3)

kDR. where (r, z) are the usual cylindrical coordinates (without
The present work shows that the far-field interaction be- the po|ar ang|ap because of the symmetry of revolution
tween two highly charged anisotropic colloids can be ac- ground the axis of’), the signs+ and — correspond to
counted for at the level of the LPB description with a fixed the situations > z/ andz < 7/, respectively,y, is thenth
effective surface potential. This problem has been consid- oot the Bessel function; (with the conventionyy = 0)
ered in Ref[23], providing a generalized anisotropic DLVO  gpg A2 = RZ o/(y2 + K?R%,s). The coefficient<> (1) are

n

interaction, in the form given by
—KDr
Ura(r) ~ fi(Un) f2(Uz2) —, (7) 24,R  Jo(n 7 hws + 7
Arer CE(r) = T (zn i) COS?‘( ws=< )
where f; (u;) characterizes the anisotropy of the interaction RWSsmi‘(A—WNS) Jo(n) An

(u; denoting a vector defining the orientation of the col- In order to solve the self-consistent equati@n2) nu-

loid) and depends on the specific geometry of the colloid merically, we divide the WS cell in subcels. As shown

under consideration. This anisotropy factor does moreover. . . i
take into account the charge accumulation in the vicinity of n Fig. 1 the WS cell of radiusRws and height Zws

the edges of the colloid (the so-called edge effect). We refer';’ d';//'(]j\?d m(VI\ergrSe lﬁiévgwsog?{::/nedir:q‘iz' grnissgi tr:);mradu
to Ref.[23] for further details on these aspects. WSE/ ¥ Rws b 9 Rws:

The next step of this study consists in analyzing the con- of width Rws/Nrys and of height Bws/Nays, which are

sequences of this anisotropic interaction on the phase behav_represented with dotted lines. Each of these cells, except the

; . . ones located in the vicinity of the boundary of the WS cell,
ior of highly charged rodlike macromolecules. Work along : )

. . are centered on the nodesof the lattice represented with
these lines is in progress.

dashed lines where we compubg;.

Equation(A.2) is accordingly discretized on the subcells.
Appendix A. Theiterative procedure followed The first source term on the r.h.s. can be re-expressed in
terms of the surface charge density

The NLPB equatioif2) can formally be written as

Ge(r,r' Ndr' = G(r,r')ds, A4
(=8 465D (1) = poyi(r) + [ (1) = kB (1) sinhd ()], /V{S/ (r e dr “E/ *.r (A4)

(A1)
wherepcy(r) is the bulk charge density carried by the cylin-
der (here, a surface charge densiky(r) the inverse of the
Debye length i (equal to O insid& and«p outside) and
« an arbitrary constant which will be chosen equakgtoto o

1= [[[ Geerrraar
ws

whose explicit expression is given &ppendix B The sec-
ond term on the r.h.s. of E¢A.2), which generically takes
the form

make the term between brackets vanish far fthrimtroduc- (A-5)

ing the Green functiorG, (r, r’) associated with the linear
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with f a smooth function of’, is discretized according to

If1= Zf(r)/f/Gm rpdr’,

rieC;

(A.6)

where the integrals on the Green functiGp are explicitly
computed in order to avoid numerical divergences.

The discretized self-consistent equati@?2) is solved
using an iterative procedure: after each step new poten-
tial ®@; 11(r) is computed through

Pi1(r) =a®i(r) + (1 — o) F[®;](r),

whereq is a mixing parameter(~ 0.9). The potentiatdy
is initialized at the first step with the solution of the LPB
equation,®ji,, created by the same object but with a given
surface potential boundary condition (nameby= 4 on the
surface). The iterations are stopped when the greatest value
of (@;11(r) — @;(r))/®;(r) is smaller than 10 for all the
pointsr of the WS cell. For example, the calculationdf
for kpR = 1.0, L = 4R, o = 10 with a 100x 200 points
lattice starting withd®,| can be achieved in approximately
100 iterations.

Typical values of the parameters are, in the case of infinite
dilution, Rws = 10¢p andhws — L/2 >~ 10(p, Np,s = 100
or 200,Np,,s = 200 or 400 and the sums oveare truncated
after 1500 Bessel-Dini modes.

(A7)

Appendix B. Expression of the Green functionsfor the
numerical resolution of NL PB

The source ternf[[ G(r, ") peyi(r') dr’ can be written as

o—fG(r,r’)dS’.
Straightforward but lengthy calculations lead to

o If |z <L/2

/// G(r,1r")peyi(r')dr’

= Giull infinite cyl (R, T)
o A2 Jo(yn gz ) Jo(Vn s
B nX(:J Rsvs J§m)
exp(—#:'z‘) — exf— 2hws—§‘Ln/2—|z|>]
{ 1 expl~ 2
exp(— %) —exp[— 2hws—§‘Ln/2+|z\)]
1-— exp(—Zh—"XS) }
* oAy S0 reg) o 7ag)
nX:: ynRws JEm)

{exp( LI2-I2L) . expf — 2us=(L/2-LD)

1ex

617

exp(— L/i—:lz\) +exp[— 2hws—5\1;/2+|2\)]

* 1-— exp(—M) ’

Arl

where Gl infinite ¢yl (R, 7) is the electrostatic potential
calculated in a WS cell of radiugws of an infinite
cylinder of radiusR immersed in an electrolyte with
Debye length¢p (the electrolyte filling the interior of
the cylinder) and carrying a uniform surface charge den-
sity . The expression oy infinite cyl (R, r) is written
—ifr<R

Gull infinite cyl (R, 1)
K1(kpRws)Io(kpR)
I1(kp Rws)

=O‘|:K0(KDR)+ ]IO(KDV)§

—ifr>R

Giull infinite cyl (R, T)
= o lo(kp R) Ko(kpr)

I1(kp Rws)
x Io(kpr).

o lfz=1L1/2

//f G(r,r")peyi(r'ydr’

_ Ginfinite cyI(R, r)
- 2
. Z O'A JO Yn RWS)JO()’n RWS)
R&VS JE(yn)
exp(——) exp(— 2us=L)
1—exp(— 2hWS)
+ Dyisk(R, 1, 0)
Jl(ynRL\;VS)JO(yn RLWS)
T§ ()
oxp( £,) + el 22p=)
x 1 2hws
— exp(—32)

where the expression @fgisk(R, r, 0) is

[e.0]

+Z oA,

5 ynRws

’

Gisk(R,1,0) = /Jl("DR”)JO(KDru)du.

s Ju? + k3 R?
o If |z| > L/2
f// G(r.r")pey(r')dr’

_ Z A JO Yn RWS)JO(yn RWS)
R\%\/S Jo )
[P et

1 exp(~ 2)




618
exqz_ ZhWS_%HL/Z)] N EXF{— %Ws—ﬂi\—la/z)]
* 1-— exp(—M)
oAy, Jl Yn RWS)JO(yn RWS)

+
;, ynRws JEOm)
exp(— IZ\ZL/Z) + exp[— Zth—glzl—L/Z)]
1— exp(~235)
exp(— IZH/;ia/z) + exq:_ ZhWS_ExliHL/Z)]

1 exp(— 2

Appendix C. Approximate generalized DLVO
expression of theinteraction potential between cylinders

In Ref. [23], we have obtained the electrostatic interac-
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