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Abstract

In this paper, we show that the far field electrostatic potential created by ahighly chargedfinite size cylinder within the nonlinear Poisson
Boltzmann (PB) theory, is remarkably close to the potential created within the linearized PB approximation by the same object
chosen fixed potential. Comparing the nonlinear electrostatic potential with its linear counterpart associated to a fixed potential
condition (called the effective surface potential), we deduce the effective charge of the highly charged cylinder. Values of the effectiv
potential are provided as a function of the bare surface charge and Debye length of the ionic solution. This allows to compute the a
electrostatic interaction energy of two distant finite rods.
 2005 Published by Elsevier Inc.
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1. Introduction

Electrostatic interactions between charged macrom
cules play a key role in the understanding of the structure
phase behavior of polyelectrolytes or colloidal suspensi
Interaction between charged colloids in a ionic medium
generally described within the framework of DLVO theo
named after Derjaguin, Landau, Verwey, and Overbeek[10].
The interaction energy between two spherical colloids w
chargeZe and identical radiusa takes the form of the so
called DLVO potential,

(1)U12(r) = Z2e2

4πε

(
exp[κDa]
1+ κDa

)2 exp(−κDr)

r
,

wheree is the elementary charge andκD denotes the invers
Debye screening length. The latter is defined in terms
the micro-ions bulk densities{ρα} (with valencies{zα}) as
* Corresponding author.
E-mail address:lbocquet@lpmcn.univ-lyon1.fr(L. Bocquet).
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κ2
D = 4π�B

∑
α ραz2

α . The solvent is described at the lev
of a dielectric continuum approximation with permittivityε,
and the Bjerrum length�B is defined as�B = e2/(4πεkBT ),
wherekBT is the thermal energy.

However, the spherical shape is not the rule in na
and colloids often take the form of anisotropic particl
Examples are numerous, such as clay platelets (lapo
montmorillonite, gibbsite)[1–3], ribbons (vanadium pen
toxide V2O5) [4], rigid rods (Tobacco Mosaïc Virus—
TMV, boehmite, goethite)[5,6], to cite a few. Due to
their anisotropy these systems may exhibit orientatio
order (nematic, smectic, etc.) or may even organize
supramolecular structures like multiple helixes or lam
lar multilayers [7,8]. From the theoretical point of view
Onsager in a pioneering work has provided the first desc
tion of the entropy driven isotropic-to-nematic (I–N) tran
tion [9] in an assembly of (infinitely long) rods. In the case

charged polyelectrolytes, the results for the uncharged rods
might be extended using the intuitive concept of “dressed”
rods, which amounts to increasing the bare radius of the
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rod by the Debye length, the characteristic range of
screened Coulomb interaction. Stroobants and Lekkerke
have provided a consistent description of this effect at
level of a second-virial-coefficient approximation[12]. Such
an approach provides predictions in good agreement
the experimental observations, in particular for the volu
fraction corresponding to the I–N transition of highly asy
metrical rodlike particles like the fd virus (ratio of heig
over radiusL/R = 250) [11]. However the case of smalle
aspect ratio is less clear cut. In particular, the dressed
picture overestimates the I–N volume fraction for sho
rods like goethite (L/R = 12), even within more sophist
cated versions of the dressed model[13,14]. Moreover, it
is quite interesting to note that anisotropic charged collo
with intermediate aspect ratio exhibit quite systematic
“gel” phases, competing with the orientational transitio
which are not predicted by theoretical approaches base
an isotropic Yukawa interaction[15]. This is, e.g., the cas
for laponite (disks) and boehmite (rods)[3,16–22,24]. The
origin and nature of these transitions—experimentally
bated[26,27]—which occur at small volume fractions a
still unclear today.

Coming back to basic ingredients, the electrostatic
teraction between moderately anisotropic colloids sho
therefore be specifically reconsidered. In a recent paper[23],
we have generalized the DLVO description to express the
teraction between charged colloids of arbitrary shapes (
as disks or rods). This framework provides a general exp
sion of the interaction between two colloids, which has
same status as the DLVO potential, now for arbitrary sha
It turns out that the interactions remain anisotropic at all
tances (see also[24,28]).

However, beyond these results, the calculations in[23]
rely on two specific assumption: (i) micro-ions are descri
at the level of thelinearized Poisson–Boltzmann(LPB) ap-
proximation; (ii) colloids are assumed to be characteri
by a constant surface potential. Note that these are the a
sumptions underlying the expression of the DLVO inter
tion potential, Eq.(1) [10]. In this paper, we reconsider th
validity of this approach to compute the interaction betw
two charged colloids. In particular, we will show that the
assumptions are justified for finite rod-like polyelectroly
within the nonlinear Poisson–Boltzmann (NLPB) descr
tion, in the saturation limit where the bare charge of
colloid is large. More precisely, we will show that the ele
trostatic potential created by a strongly charged (anisotro
colloid computed at the NLPB level coincides with the el
trostatic potential of a colloid with a fixed surface potent
called the effective surface potential, computed at LPB le
This result is valid for large distances from the colloid, c
responding to the “far-field” limit.

In a previous work[25], we have shown that this ident
fication naturally emerges in the case of charged sphe

colloids or infinite rods, and can be justified on the basis of
an asymptotic matching procedure in the case where the De
bye length is smaller than the radiusa of the colloid, i.e.,
Interface Science 285 (2005) 609–618
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κDa � 1 [29]. A simple physical picture of this effect is th
micro-ions strongly accumulate in the vicinity of the co
loid surface for a sufficiently large bare charge, resulting
a strong screening of the electrostatic potential in the
few micro-ion layers close to the surface. In other wor
the interaction at large distance is not characterized by
bare charge, but by an effective, much lower one. For sp
ical and cylinder like shapes, this effective charge is fi
at the LPB level from the effective condition of a fixed p
tential,Φ0, on the surface of the colloid. This condition
independent of the bare charge of the colloid provided
sufficiently large (saturation limit). Moreover in theκDa � 1
limit, Φ0 reduces simply toΦ0 = 4kBT/e.

This paper is organized into two parts:

• In a first part, we solve the NLPB equation for finite-s
rod-like polyelectrolytes, with prescribed surface cha
density.

• In a second part, we compare these NLPB results
the electrostatic potential, with the predictions of thelin-
earizedPoisson–Boltzmann equation, associated wi
fixed potential on the surface of the cylinder.

All results will be written in terms of dimensionles
variables. All the lengths (such as�B, κ−1

D , or L) are ex-
pressed in terms of the radius of the cylinderR: Ladim =
L/R, κadim

D = κDR, etc. Dimensionless electrostatic pote
tial Φ and surface charge densities are defined respect
asΦadim = eΦ/kBT andσ adim = 4π�BRσ/e, where�B is
the Bjerrum length defined by�B = e2/(4πεkBT ) (for wa-
ter at room temperature,�B = 7 Å). From now on, the index
adim will be skipped, but we will keepR = 1 in the formulas
to allow the reader to recover the initial dimensions.

2. Calculation of the NLPB electrostatic potential for
finite size objects

2.1. Method of resolution of NLPB in a Wigner–Seitz ce

We consider a cylinder, immersed in a monovalent liq
medium with Debye length�D and carrying a given surfac
charge densityσ . The NLPB equation reads

(2)
Φ = κ2
D sinhΦ,

and the boundary conditions are written (in dimension
form)

(3)σ = −∂Φ

∂n
,

wheren is the outer unitary vector perpendicular to the s
face of the colloid. To solve Eq.(2), we make use of a
Wigner–Seitz cell and use a procedure introduced in[30].
-
The colloids are assumed to be confined into cylindrical cells
of volumeV . The normal component of the electrical fieldE
vanishes on the surface of the WS cell. We denote the radius
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(A) (B)

Fig. 1. The Wigner–Seitz cell. In A, the finite cylinderC of radiusR and lengthL and the WS cell of radiusRWS and heighthWS are represented in perspectiv
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In the lower left part of B the lattice ofNRWS ×NhWS/2 points used to rep
part of B shows with dotted lines the cells used to compute integrals in

and height of the WS cell asRWS andhWS, as represente
on Fig. 1, such thatπR2

WShWS = V . In the present pape
we are mostly interested in the infinite dilution limit of on
isolated cylinder in the liquid medium. The WS cell, whi
is used for technical convenience, needs therefore be
enough (characteristic dimensions much larger than the
bye length).

To solve the NLPB equation in the WS geometry,
NLPB equation is rewritten as a self consistent equation
transforming it from the action of alinear operator applied
to the potentialΦ, with sources composed of the char
carried by the cylinder and of a nonlinear term depend
on Φ [30]. The solution is then obtained by solving th
self-consistent equation iteratively, using the Green func
formalism. The details have been gathered inAppendix A.

2.2. Benchmark results for the NLPB electrostatic poten

Before addressing the problem of a rod-like polyel
trolyte, we first consider two benchmark geometries, in or
to test the numerical procedure described inAppendices A
and B. The potential obtained from this procedure is d
notedΦnl.

The first case is that of an infinite charged plane, whic
exactly obtained within our geometry whenRWS = R and
hWS � L/2. The “colloid” then takes the form of a pla
nar slab. The NLPB equation can be exactly solved for
geometry (see, e.g.,[25]) and is compared inFig. 2 with
the numerical solution obtained within the present appro
Note that the potential inside the slab is expected to be
stant. In the numerical calculations, different grids have b

tested, showing that outside the colloid, the numerical solu-
tion converges quite fast to the exact solution, even for loose
discretization grids. A good agreement is obtained outside
nt the electrostatic potential has been plotted with dashed lines. The up
S cell, which surrounds the points on the previously defined WS (duae.

Fig. 2. Calculation ofΦinfinite plane for σ = 10 with different accuracies
(dashed line) and comparison with the exact solution (continuous l
The parameters are the following:RWS = R, NRWS = 1, hWS = 10R,
NhWS = 40 or 200. AlthoughΦnl computed with 40 points along thez
axis is obviously not constant inside the planar slab, it is in agreement
the exact solution outside. Note that the planar slab extends up toz/R = 1
in the present geometry.

the colloid, even ifinsidethe solution has still not fully con
verged toward the exactΦ = cst condition due to the discre
grid.

The same conclusions are reached for the other be
mark case, the infinite cylinder, which corresponds in
geometry toRWS < R andhWS = L/2; seeFig. 3. The ex-
act solution is found in this case using a numerical equa
solver.

2.3. NLPB electrostatic potential around a rodlike
polyelectrolyte
The two limiting cases presented in the previous section
validate the numerical procedure used, which we now apply
to rod-like polyelectrolytes with finite length.Figs. 4 and 5
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Fig. 3. Calculation ofΦinfinite cylinder for σ = 12 with different accura-
cies (dashed lines) and comparison with the exact solution (continuous
line). The parameters are the following:RWS = 10R, NRWS = 20 or 100,
hWS = R, NhWS = 2. AlthoughΦnl computed with 20 points along ther
axis is obviously not constant inside the cylinder, it is in agreement with the
exact solution outside. Note that the WS cell imposes a vanishing derivative
of the potential atr/R = 10. A similar phenomenon may be observed with
the dashed line in the inset ofFig. 2 (the continuous line is free of such an
effect since it corresponds to the result whenhWS → ∞).

Fig. 4. Solution of the nonlinear PB equationΦnl in the planez = 0 (con-
tinuous line) andz = 3 (dashed line) forL/R = 4, σ = 10, andκDR = 0.2,
1.0, and 5.0 (from top to bottom). On the vertical axis, the curves have been
multiplied by an arbitrary factor for the sake of readability. The inset shows
thatΦnl decreases as exp(−κDr)/r in the planez = 0.

Fig. 5. Solution of the nonlinear PB equationΦnl, on the axisr = 0 (con-
tinuous line) andr = 3 (dashed line) forL/R = 4, σ = 10, andκDR = 0.2,

show typical results for the nonlinear potential created b
cylinder with a finite aspect ratio, hereL/R = 4, immersed
in an ionic liquid characterized by different Debye leng
(hereκDR = 0.2, 0.5, or 1.0). As for the benchmark cas
the electrostatic potentialinside the colloid is not exactly
constant due to the discretization grid, but we have chec
that the electrostatic potentialoutsidethe colloid becomes
independent of the discretization step for the grids used

3. Far-field behavior of the electrostatic potential

Having in mind the calculationin fine of electrostatic
interactions between polyelectrolytes, our aim is now to
tract the asymptotic behavior of the electrostatic poten
from the numerical solution of the NLPB equation.

3.1. Asymptotic matching of the LPB and NLPB solution
the far field limit

At large distances from the colloid, i.e., distances ty
cally larger than the Debye length, the electrostatic po
tial becomes small and the NLPB equation, Eq.(2), re-
duces therefore to thelinearizedPoisson–Boltzmann equa
tion (LPB),

(4)
Φlin = κ2
DΦlin .

To avoid confusion, we denoteΦlin the solution of the LPB
equation. This equation is much simpler than its nonlin
counterpart and can be solved using the Green function
malism; see, e.g., Ref.[23]. However, the main problem
which still subsists concerns theeffective boundary con
ditions which the LPB potential,Φlin , has to obey at the
colloid surface, in order to match the solution,Φnl, of the
NLPB equation in the asymptotic regime (distances lar
thanκ−1

D ).
In a previous work[25], it was shown that providedκDR

is large enough, thiseffective boundary conditionreduces to
a fixed potentialat the surface of the colloid, in the satur
tion limit where the bare charge of the colloid is large. T
geometries were specifically considered in[25]: the sphere
and the infinite cylinder. We show in the following that th
condition also emerges in the case of anisotropic polye
trolytes with finite aspect ratio. The solution of the LP
equation, Eq.(4), with a fixed surface potential bounda
condition on the polyelectrolyte surface,

(5)Φlin = Φ0,

is discussed in Ref.[23] and we refer to this paper for tec
nical details.

3.2. Numerical results
1.0, 5.0 from top to bottom. On the vertical axis, the curves have been mul-
tiplied by an arbitrary factor for the sake of readability. The inset shows that
Φnl decreases as exp(−κDz)/z on the axisr = 0.
In this paragraph, we compare the solution of the NLPB
equation(2) with a fixed bare chargeboundary condition to
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Fig. 6. Comparison between the solution of the NLPB equation with fi
bare charge boundary condition,Φnl (solid line), and the solution,Φlin , of
the LPB equation with a fixed effective surface potential boundary co
tion Φeff = 5.41 (dashed line). The aspect ratio isL/R = 10, the Debye
length isκDR = 0.2 and the bare charge isσ = 10. From top to bottom
the potential is computed on the axisr = 0, r = R + κ−1

D = 6R, z = 0,

andz = L/2+ κ−1
D = 10R. On the vertical axis, the curves have been m

tiplied by an arbitrary factor for the sake of readability. In the inset,
plot the logarithm ofd × Φnl(d), with d the distance to thecenterof the
cylinder (same legend as on the main graph). This plot emphasizes th
pected asymptotic behavior of the potentialΦnl(d) ∼ exp(−κDd)/d , with

d =
√

r2 + z2. Curves have been also shifted by arbitrary factors.

the solution of the LPB equation(4) with a fixed potential
boundary condition called theeffective surface potential.

An agreement between these two solutions is expe
to be valid in the saturation limit where the charge of
colloid is large[25]. We have therefore explored the pa
meter space (charge, aspect ratio) to test the validity of
prescription. In this paragraph, we show results in the
gion of the parameter space where an agreement is foun
other words, in the cases shown below, it is possible to fit
NLPB solution with a constant bare surface charge, with
LPB solution with a fixed potential boundary condition, u
ing a single parameter fit: the effective surface potentialΦ0.
Such a fit should only holdfor large distancesfrom the col-
loid (say, typically for distances larger than a few Deb
length), for which the NLPB equation reduces to the L
equation.

We shall precise in Section3.4 the domain of validity, in
parameter space, of the previous matching procedure.
results are presented inFigs. 6, 7, and 8.

It is important to emphasize that the agreement betw
these two solutions is not obviousa priori. Indeed for fi-
nite rod-like cylinders, the solution of the LPB (or NLPB
equations is quite different depending on the boundary c
dition under consideration: fixed surface charge, or fixed
face potential (at the colloid surface). This difference or
inates in particular in the so-called edge effects associ
with the constant potential boundary condition. The fact t
an agreement may be found between the NLPB with fi
charge and the LPB with fixed surface potential is there

a non trivial point[25].

The insets ofFigs. 6, 7, and 8show that except in the
immediate vicinity of the charged rods, NLPB and LPB so-
Interface Science 285 (2005) 609–618 613
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Fig. 7. Same as inFig. 6 for L/R = 6, σ = 10, κD = 1.0, Φeff = 3.42
on the axisr = 0, r = R + κ−1

D = 2R, r = R + 5κ−1
D = 6R, z = 0,

z = L/2+ κ−1
D = 4R, andz = L/2+ 5κ−1

D = 8R. On the vertical axis, the
curves have been multiplied by an arbitrary factor for the sake of read
ity. As in Fig. 6, the inset emphasizes the asymptotic decay of the poten
asΦnl(d) ∼ exp(−κDd)/d , which is expected at large distances from

cylinder (d =
√

r2 + z2). Curves have been also shifted by arbitrary facto

Fig. 8. Same as inFigs. 6 and 7for L/R = 4, σ = 10, κDR = 5.0, Φeff =
1.41 on the axisr = 0, r = R + κ−1

D = 1.2R, r = R + 5κ−1
D = 2R, z = 0,

z = L/2+ κ−1
D = 2.2R, andz = L/2+ 5κ−1

D = 3.

lutions remarkably superimpose (the dashed lines are ha
distinguishable from the continuous ones). We concl
from figuresFigs. 6, 7, and 8that—at least in the condition
considered—a very good agreement can be found betw
the NLPB solution at fixed charge and the LPB solution
fixed potential.

3.3. Anisotropy of the electrostatic potential

We now focus on the anisotropy of the electrostatic po
tial at large distances. As emphasized in the previous cu
the potential decays asΦnl(d) ∼ exp(−κDd)/d in this limit,
and one may extract an anisotropy factorf (θ), defined as

(6)Φnl(d) = f [θ ]�B

d
exp(−κDd),

which again is valid for large distancesd from the center√
2 2
of the cylinder,d = r + z . For the cylinder shape col-

loid under consideration, the anisotropy factor depends only
on the angleθ between thez axis and the direction(OM)
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Fig. 9. Normalized anisotropic factorf (θ)/〈f 〉 (for L = 10, σ = 100,
κDR = 1.0). For any directionθ , f is computed from the asymptotic be
havior of the potential, according to Eq.(6). Solid line: anisotropic facto
computed from the solution,Φnl, of the nonlinear PB equation; dashed lin
anisotropic factor computed from the solution of the linearized PB equa
Φlin , as obtained in Ref.[23].

(O being the origin of the cylinder andM the point with co-
ordinates{r, z}). This anisotropy factor is plotted inFig. 9
as a function ofθ (normalized by its average over the a
gles, 〈f 〉). In this figure, we also compare this result w
the anisotropy factor obtained at the level of the lineari
PB equation withfixed potential boundary conditionon the
cylinder. The agreement is found to be very good, emp
sizing again that the PB potential with fixed, large surf
charge, does indeed match the LPB solution with a fixed
tential on the cylinder for large distances from the colloid

This figure reveals the strong anisotropy of the c
loid, which, according to Eq.(6), persists at large distanc
from the colloid. In other words, the electrostatic potent
Eq.(6), never reduces to the spherical one at large distan
even for moderate anisotropy of the colloid.

3.4. Domain of validity of the constant potential
prescription

We now consider the domain of validity of the previo
prescription. More precisely, we have exhibited above ex
ples showing that the LPB potential (with a fixed potential
the cylinder) may be matched to the PB solution with fix
large surface charge for large distances from the colloid

According to results in different geometries (spheres
infinite cylinders)[25], such a prescription is actually e
pected for large bare charge on the colloid. However,
may also expect this prescription to be extended for all
ues ofσ when the colloid anisotropy is weak (i.e., for lo
values ofκDL or aspects ratiosL/R of order 1). Indeed, in
these weak anisotropy cases, the geometry is quite clo
that of a sphere, for which, by construction, the general s
tion of the LPB (NLPB) equations are identical for const
surface charge and constant surface potential. In this l
it is therefore always possible to define a surface pote

such that a matching between these two solutions is found.

In Fig. 10, we gather results emerging from the previ-
ous matching procedure and represent the domain of validity
Interface Science 285 (2005) 609–618

,

Fig. 10. Domain of validity of the constant potential prescription (see t
as a function of the dimensionless bare charge on the cylinder, an
the aspect ratio of the cylinder (here forκDR = 1.0). Above theσlim(L)

curve, the agreement between the exact solutionΦnl of the nonlinear Pois-
son–Boltzmann equation for a cylinder carrying the bare chargeσbare
and the solutionΦlin of the linearized equation for the same cylinder
a well-chosen fixed potential is better than 5% for distances larger
r0 = 4κ−1

D .

of the previous constant effective surface potential presc
tion, as a function of the aspect ratioL/R (for a given Debye
length). We have somewhat arbitrarily defined domain of
lidity of the previous prescription, as the region for whi
the two solutionsΦnl andΦlin differ by less than 5% for al
distances larger than a minimum distancer0, here chosen a
r0 = 4�D (with �D the Debye length). One finds that such
requirement is reached for sufficiently large surface char
allowing to define a minimum surface charge on the coll
σlim above which the constant potential prescription ho
In the regime of aspect ratio around unity (2< L/R < 4),
the constant potential prescription appears to be always
according to the chosen criterion. This reflects the fact
cussed above that for intermediate aspect ratioL/R ∼ 2, the
geometry is close to a spherical geometry, for which one
always define a potential such that the PB and LPB solut
matches at large distances. This is clearly not the case fo
termediate geometries with larger aspect ratios. Howev
constant potential prescription at the LPB level is recove
for sufficiently large bare surface charge on the colloid
emphasized by the existence of a minimum chargeσlim .

Note that in the present study, we only focused on cy
ders with aspect ratio larger than one (in practiceL/R > 2).
One expects similar results to hold in the disk caseL/R

< 1, with the existence of a minimum surface charge ab
which the constant potential holds (especially in the str
anisotropy limit,L/R 	 1).

Figs. 6, 7, and 8show that the matching ofΦnl by Φlin on
the symmetry axis of the cylinderr = 0 and planez = 0 is
valid as soon as the distance from the surface of the co
is larger thanκ−1

D (at least forκDR = 0.2 andκDR = 1.0),
which is a much less restrictive condition than the arbitr
one chosen for definingσlim in Fig. 10. For the sake of sim

plicity, we shall keep in mind that the matching procedure
remains essentially valid at one Debye length of the colloid
if our strong criterion is fulfilled but may break down for
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Fig. 11. Dependence of the effective surface potentialΦeff as a function of
the (dimensionless) bare charge on the cylinder 4π�BRσbare/e for L/R = 4
andκD = 1.0. The inset is a zoom into the weak coupling region.

Fig. 12. Dependence of the effective surface potentialΦeff as a function of
the aspect ratio of the cylinderL/R, for σbare= 10 andσbare= 100 (solid
lines from bottom to top). The Debye screening factor isκDR = 1.0. Open
symbols represent the computed values of the effective surface potenti
filled squares indicate the values ofΦeff for an infinite cylinder.

particular regions (e.g., close to the edges) between�D and
4�D depending on the parameters of the problem (σ , κDR,
andL).

3.5. Effective “linear” surface potential

We consider here the value of the effective surface
tential of the colloid,Φeff, found by the previous matchin
procedure. As shown inFig. 11, Φeff increases with the
value ofσbare. Moreover, for large values ofσbare, the sat-
uration regime is reached and the effective surface pote
becomes independent of the bare chargeσbare, as for infinite
cylinders[25]. We recover the result obtained in[25], that in
the saturation regime, the effective potential of the polye
trolyte is of the order of a fewkBT/e.

This saturation regime originates in the accumulation
counterions in the region very close to the colloid surf
as the bare charge of the cylinder increases. This nonli
“condensation” of counterions results in an effective surf
potential which is independent of the bare charge.
We now turn to the influence of the aspect ratio of the
cylinder on the effective surface potential. As shown in
Fig. 12, this dependence is found to be quite weak. More-
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r

Fig. 13. Dependence of the effective surface potentialΦeff as a function of
the Debye screening factorκDR. The aspect ratio of the cylinder is he
L/R = 4 and the bare charge isσbare= 100. The dashed line represents t
value of the effective surface potential for infinite cylinders, in the satura
limit, as obtained numerically following the method of Ref.[31].

over, as expected the value for large aspect ratioL/R re-
duces to that of the infinite cylinder (as obtained numeric
following the method put forward in[31]).

Let us now analyze the influence of the salt concentra
(seeFig. 13). A few remarks may be drawn from this figur
First, as expected, the effective surface potential goes to
a value close toΦeff = 4 for large screening factors. This
because in this limit curvature effects no longer play a r
and the potential reduces to the planar resultΦeff = 4 [25].
Second, it is interesting to note that the values forΦeff are
close to those obtained for infinite cylinders in the satura
limit (see the dashed line inFig. 13), even if the aspect rati
is quite low in the present case.

We conclude this section by providing a table of the
fective surface potentialΦeff for several values of the para
meters of the cylinder. SinceFig. 12 shows thatΦeff does
not much depend on the lengthL of the rod, we only repor
the asymptotic value for largeL/R values. In this table, th
effective surface potentialΦeff is reported for given value
of the bare surface chargeσadim = 4π�BRσ/e and Debye
lengthκDR:

κDR||σadim 1 2 5 10 20 50 100

0.2 1.19 2.28 4.40 5.41 5.70 5.82 5.87
0.5 0.867 1.66 3.24 4.25 4.65 4.77 4.85
1.0 0.601 1.16 2.42 3.42 4.08 4.50 4.59
2.0 0.375 0.737 1.65 2.60 3.40 3.99 4.19
5.0 0.161 0.322 0.777 1.41 2.19 3.04 3.44

This table makes it possible to compute the inter
tion energyU12(r) between two rodlike macromolecules f
given values ofσadim = 4π�BRσbare/e and κDR. The ex-
pression for the interaction energy for two rodlike mac
molecules has been obtained in Ref.[23] and recalled in
Appendix C. By replacingΦ0 with the value provided by

this table in Eq.(C.2) of Appendix C, one deduces an ex-
plicit expression for the interaction energy at large distances,
using Eq.(C.1).
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4. Conclusion

In this paper, we have solved numerically thenonlinear
Poisson–Boltzmann (NLPB) equation for rodlike polyele
trolytes with finite aspect ratios and compared the res
to the solution of thelinearizedPoisson–Boltzmann (LPB
equation. This led us to the conclusion that the NLPB
lution with a fixed bare charge for the electrostatic pot
tial coincides with the LPB one at large distances from
colloid, provided aneffective boundary conditionof fixed
potential is applied in the LPB approach. This generaliz
therefore the results obtained for spheres and infinite cy
ders[25], to polyelectrolytes with a finite anisotropy. Th
effective surface potentialis found to be only weakly depen
dent on the aspect ratio of the cylinder and Debye scree
factor κDR. When the bare charge of the colloid becom
large, this effective surface potential reaches a satura
value fixed by the balance between electrostatic and entr
effects, i.e., of the order of a fewkBT/e. We provide an
easy-to-use table to compute the interaction energy of tw
nite charged rods for given values of its bare surface ch
4π�Bσbare/e and of the Debye length of the ionic solutio
κDR.

The present work shows that the far-field interaction
tween two highly charged anisotropic colloids can be
counted for at the level of the LPB description with a fix
effective surface potential. This problem has been con
ered in Ref.[23], providing a generalized anisotropic DLV
interaction, in the form

(7)U12(r) ∼ f1(u1)f2(u2)
e−κDr

4πεr
,

wherefi(ui ) characterizes the anisotropy of the interact
(ui denoting a vector defining the orientation of the c
loid) and depends on the specific geometry of the col
under consideration. This anisotropy factor does more
take into account the charge accumulation in the vicinity
the edges of the colloid (the so-called edge effect). We r
to Ref.[23] for further details on these aspects.

The next step of this study consists in analyzing the c
sequences of this anisotropic interaction on the phase be
ior of highly charged rodlike macromolecules. Work alo
these lines is in progress.

Appendix A. The iterative procedure followed

The NLPB equation(2) can formally be written as

(A.1)

(−
 + κ2)Φ(r) = ρcyl(r) + [
κ2Φ(r) − κ2

D(r)sinhΦ(r)
]
,

whereρcyl(r) is the bulk charge density carried by the cyl
der (here, a surface charge density),κD(r) the inverse of the
Debye length inr (equal to 0 insideC andκD outside) and

κ an arbitrary constant which will be chosen equal toκD to
make the term between brackets vanish far fromC. Introduc-
ing the Green functionGκ(r, r′) associated with the linear
Interface Science 285 (2005) 609–618
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operator(−
 + κ2),

∀r, r′ ∈ WS, (−
r + κ2)Gκ(r, r′) = δ(r − r′),

one may invert Eq.(A.1) as

Φ(r) = F [Φ](r)
=

∫ ∫ ∫
WS

Gκ(r, r′)dr′ {ρcyl(r′)

(A.2)+ [
κ2Φ(r′) − κ2

D(r′)sinhΦ(r′)
]}

.

Note that in the case of the WS cell model,Gκ(r, r′) may
be chosen to obey the boundary conditions

∀r ∈ S, ∀r′ ∈ WS, gradrGκ(r, r′) · n(r) = 0.

It was shown that in this case that the required Green’s fu
tion can be expressed in the form of the Bessel–Dini se
[30]

(A.3)

Gκ(r, r′) =
∞∑

n=0

C±
n (r′)J0

(
yn

r

RWS

)
cosh

(
hWS ∓ z

Λn

)
,

where (r, z) are the usual cylindrical coordinates (witho
the polar angleϕ because of the symmetry of revolutio
around the axis ofC), the signs+ and − correspond to
the situationsz > z′ andz < z′, respectively,yn is thenth
root the Bessel functionJ1 (with the conventiony0 = 0)
andΛ2

n = R2
WS/(y2

n + κ2R2
WS). The coefficientsC±

n (r′) are
given by

C±
n (r′) = 2ΛnR

R2
WSsinh

(2hWS
Λn

) J0
(
yn

r ′
RWS

)
J 2

0 (yn)
cosh

(
hWS ± z′

Λn

)
.

In order to solve the self-consistent equation(A.2) nu-
merically, we divide the WS cell in subcellsCi . As shown
in Fig. 1, the WS cell of radiusRWS and height 2hWS
is divided in NRWS × NhWS cylindrical rings Ci of radii
RWSi/NRWS (wherei is a positive integer less thanNRWS,
of width RWS/NRWS and of height 2hWS/NhWS, which are
represented with dotted lines. Each of these cells, excep
ones located in the vicinity of the boundary of the WS c
are centered on the nodesri of the lattice represented wit
dashed lines where we computeΦnl.

Equation(A.2) is accordingly discretized on the subcel
The first source term on the r.h.s. can be re-expresse
terms of the surface charge densityσ ,

(A.4)
∫ ∫ ∫

WS

Gκ(r, r′)ρcyl(r′)dr′ = σ

∫
Σ

Gκ(r, r′)dS′,

whose explicit expression is given inAppendix B. The sec-
ond term on the r.h.s. of Eq.(A.2), which generically takes
the form∫ ∫ ∫
(A.5)I [f ] =
WS

Gκ(r, r′)f (r′)dr′,
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with f a smooth function ofr′, is discretized according to

(A.6)I [f ] =
∑

r′
i∈Ci

f (r′
i )

∫ ∫ ∫
Ci

Gκ(r, r′
i )dr′,

where the integrals on the Green functionGκ are explicitly
computed in order to avoid numerical divergences.

The discretized self-consistent equation(A.2) is solved
using an iterative procedure: after each stepi, a new poten-
tial Φi+1(r) is computed through

(A.7)Φi+1(r) = αΦi(r) + (1− α)F [Φi](r),
whereα is a mixing parameter (α ∼ 0.9). The potentialΦnl
is initialized at the first step with the solution of the LP
equation,Φlin , created by the same object but with a giv
surface potential boundary condition (namely,Φ = 4 on the
surface). The iterations are stopped when the greatest
of (Φi+1(r) − Φi(r))/Φi(r) is smaller than 10−4 for all the
pointsr of the WS cell. For example, the calculation ofΦnl
for κDR = 1.0, L = 4R, σ = 10 with a 100× 200 points
lattice starting withΦnl can be achieved in approximate
100 iterations.

Typical values of the parameters are, in the case of infi
dilution, RWS = 10�D andhWS − L/2� 10�D, NRWS = 100
or 200,NhWS = 200 or 400 and the sums overn are truncated
after 1500 Bessel–Dini modes.

Appendix B. Expression of the Green functions for the
numerical resolution of NLPB

The source term
∫∫∫

G(r, r′)ρcyl(r′)dr′ can be written as

σ

∫
G(r, r′)dS′.

Straightforward but lengthy calculations lead to

• If |z| � L/2∫ ∫ ∫
G(r, r′)ρcyl(r′)dr′

= Gfull infinite cyl(R, r)

−
∞∑

n=0

σΛ2
n

R2
WS

J0
(
yn

R
RWS

)
J0

(
yn

r
RWS

)
J 2

0 (yn)

×
{

exp
(−L/2−|z|

Λn

) − exp
[−2hWS−(L/2−|z|)

Λn

]
1− exp

(−2hWS
Λn

)
+ exp

(−L/2+|z|
Λn

) − exp
[−2hWS−(L/2+|z|)

Λn

]
1− exp

(−2hWS
Λn

)
}

+
∞∑

n=0

σΛn

ynRWS

J1
(
yn

R
RWS

)
J0

(
yn

r
RWS

)
J 2

0 (yn)
×
{

exp
(−L/2−|z|

Λn

) + exp
[−2hWS−(L/2−|z|)

Λn

]
1− exp

(−2hWS
Λn

)

Interface Science 285 (2005) 609–618 617

e

+ exp
(−L/2+|z|

Λn

) + exp
[−2hWS−(L/2+|z|)

Λn

]
1− exp

(−2hWS
Λn

)
}

,

whereGfull infinite cyl(R, r) is the electrostatic potentia
calculated in a WS cell of radiusRWS of an infinite
cylinder of radiusR immersed in an electrolyte wit
Debye length�D (the electrolyte filling the interior o
the cylinder) and carrying a uniform surface charge d
sity σ . The expression ofGfull infinite cyl(R, r) is written
– if r � R

Gfull infinite cyl(R, r)

= σ

[
K0(κDR) + K1(κDRWS)I0(κDR)

I1(κDRWS)

]
I0(κDr);

– if r � R

Gfull infinite cyl(R, r)

= σI0(κDR)K0(κDr)

+ σ

[
K0(κDR) + K1(κDRWS)I0(κDR)

I1(κDRWS)

]
× I0(κDr).

• If z = L/2∫ ∫ ∫
G(r, r′)ρcyl(r′)dr′

= Ginfinite cyl(R, r)

2

−
∞∑

n=0

σΛ2
n

R2
WS

J0
(
yn

R
RWS

)
J0

(
yn

r
RWS

)
J 2

0 (yn)

× exp
(− L

Λn

) − exp
(−2hWS−L

Λn

)
1− exp

(−2hWS
Λn

)
+ Φdisk(R, r,0)

+
∞∑

n=0

σΛn

ynRWS

J1
(
yn

R
RWS

)
J0

(
yn

r
RWS

)
J 2

0 (yn)

× exp
(− L

Λn

) + exp
(−2hWS−L

Λn

)
1− exp

(−2hWS
Λn

) ,

where the expression ofGdisk(R, r,0) is

Gdisk(R, r,0) = 1

2

∞∫
0

J1(κDRu)J0(κDru)du√
u2 + κ2

DR2
.

• If |z| > L/2∫ ∫ ∫
G(r, r′)ρcyl(r′)dr′

=
∞∑

n=0

σΛ2
n

R2
WS

J0
(
yn

R
RWS

)
J0

(
yn

r
RWS

)
J 2

0 (yn)
×
{

exp
(−|z|−L/2

Λn

) − exp
(−|z|+L/2

Λn

)
1− exp

(−2hWS
Λn

)



and

ac-
hich

ctor
gth

nd
n

02.
. 48

. 63

G.

, J.

n, P.

bic

rie,

19

ozov,

g-

996)

14

15

ys.

o-

9.
on-

8;
01.
g-

15

E 61

19
618 D. Chapot et al. / Journal of Colloid

+ exp
[−2hWS−(|z|+L/2)

Λn

] − exp
[−2hWS−(|z|−L/2)

Λn

]
1− exp

(−2hWS
Λn

)
}

+
∞∑

n=0

σΛn

ynRWS

J1
(
yn

R
RWS

)
J0

(
yn

r
RWS

)
J 2

0 (yn)

×
{

exp
(−|z|−L/2

Λn

) + exp
[−2hWS−(|z|−L/2)

Λn

]
1− exp

(−2hWS
Λn

)
+ exp

(−|z|+L/2
Λn

) + exp
[−2hWS−(|z|+L/2)

Λn

]
1− exp

(−2hWS
Λn

)
}

.

Appendix C. Approximate generalized DLVO
expression of the interaction potential between cylinders

In Ref. [23], we have obtained the electrostatic inter
tion energy between two anisotropic macromolecules, w
writes

(C.1)U12(r) = Z̃1Z̃2�Bf1(u1)f2(u2)e
−κDr

r
.

Simple approximate expressions for the anisotropic fa
f (�u) have been obtained for a finite-size cylinder of len
L and radiusR at fixed potentialΦ0, in the form[23]

(C.2)f (�u) = Z̃cyl

Z̃
fcyl(θ) + Z̃head

Z̃
fhead(θ),

with θ the angle between the main axis of the cylinder a
the directionOM (M being the point under consideratio
andO the center of the cylinder).

In the above expression, the auxiliary chargesZ̃cyl, Z̃head,
andZ̃, as well as the anisotropy factorsfcyl(θ) andfhead(θ)

are given by

Z̃cyl
�B

R
= 1

2

L

R
Φ0

1

I0(κDR)K0(κDR)
,

Z̃head
�B

R
= κDRΦ0

1− e−κDR

[
1− 1

2I0(κDR)

]
,

Z̃ = Z̃cyl + Z̃head

and

fcyl(θ) = I0(κDR sinθ)
sinh

(
κDLcosθ

2

)
(

κDLcosθ
2

) ,

2I1(κDR sinθ)
(

κDLcosθ
)

fhead(θ) =
κDr0 sinθ

cosh
2

.
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