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On the bulk modulus of the cell model of charged macromolecules
suspensions
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We study theoretically the bulk modulus~inverse of the compressibility! of a suspension of charged
objects~macroions!, making use of a cell model to account for the finite density of macroions. The
diffuse layer of charged microspecies around a macroion is described by a generic local density
functional theory. Within this general framework, we obtain the condition for a positive bulk
modulus, which is fulfilled by several proposals made in the literature and rules out the possibility
of a critical point. We show that a sufficient condition for a positive compressibility also ensures that
the same theory produces repulsive effective pair potentials. ©2003 American Institute of Physics.
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I. INTRODUCTION

Macromolecules soluble in aqueous suspensions usu
acquire an electric charge. Such systems are of conside
theoretical and experimental interest. Examples include p
teins in living cells, dispersion paints, or superabsorba
Their theoretical description is however a tremendous ta
and operational approximate treatments are needed.

In this work, we consider a cell model to account for t
macroions correlations,1 in conjunction with a local density
functional theory to describe the inhomogeneous elec
double layer around a macroion.2,3 This framework encom-
passes the standard mean-field Poisson–Boltzmann~PB!
theory, but also more recent approaches proposed to acc
for microions excluded volume,4 more general nonelectro
static effects,5 or to incorporate correlations between t
screening microions,6,7 that are neglected within PB theor
The cell model description may be considered as one of
simplest starting points, and provides an important ben
mark against which experiments and more refined theo
are tested. The resulting differential equations are howe
highly nonlinear, and even with the simplest of the a
proaches under consideration here~PB!, can only be solved
analytically in 1 or 2 dimensions without added salt~i.e., for
the situation of a flat double layer in a confining slab, or
that of a rod-like macroion of infinite length enclosed in
concentric confining cylinder8!. The linearized version of the
above problem has therefore always been an important a
native, but is not free of internal inconsistencies. In parti
lar, the linearized PB theory may lead to negative osmo
pressures9,10 and negative bulk modulus~inverse of the
compressibility!,10 whereas within the original nonlinear P
theory, it is straightforward to show that the osmotic press
is necessarily positive. For the bulk modulus, the situation

a!Electronic mail: gtellez@uniandes.edu.co
b!Electronic mail: emmanuel.trizac@th.u-psud.fr
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less clear: although this quantity is found positive in t
numerical solution of PB equation, it seems that no form
proof exists concerning its sign. In this article, we deri
such a proof and obtain the conditions under which a gen
local density functional theory leads to a positive compre
ibility within the cell model.

The article is organized as follows. The density fun
tional theory formalism is presented in Sec. II, where a f
useful identities are derived. The bulk modulus is then co
puted in Sec. III and cast in a form where a sufficient co
dition for its positivity clearly appears. Conclusions a
drawn in the the final section.

II. GENERAL FORMALISM

A. Density functional theory

We consider an-dimensional colloid with spherical sym
metry confined in its~concentric! Wigner–Seitz cell (n52
for a cylindrical colloid,n53 for a colloidal sphere!. The
cell is a spherical regionR of radius R and volumeV
5SnRn/n (Sn is the area of the unit radiusn-dimensional
sphere,S252p, S354p). The colloid~of fixed uniform sur-
face charge density! is immersed in an electrolyte solutio
with several different species of ions with charges$qa%, and
the local density of the speciesa is denotedna(r ). The
system inside the cell is globally neutral. In what follows, w
explicitly consider the semi-grand-canonical situation wh
the macroion’s suspension is in osmotic equilibrium with
salt reservoir through a semipermeable membrane~perme-
able to microspecies only!. We therefore consider the gran
potentialV$na%, which is a functional of microion densitie
that we write

V$na%5E
R

v~$na~r !%!dr1 1
2ER

r~r !c~r !dr

1lE
R

r~r !dr , ~2.1!
2 © 2003 American Institute of Physics
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where

r~r !5(
a

qana~r !1rcol~r ! ~2.2!

is the total charge density including that of the colloid~de-
notedrcol), l is a Lagrange multiplier to ensure global ele
troneutrality (]V/]l5*r50), andc(r ) is the electrostatic
potential. Within PB theory, the local part of the function
~2.1! embodied inv is entirely of entropic origin. In other
words, electrostatic interactions are taken into accoun
mean-field level only, through the term*rc/2. This feature
is shared by the theories of Refs. 4 and 5, but is not the c
of the formalism put forward by Barbosaet al.,6,7 where the
term v contains electrostatic corrections to the mean-fi
Coulomb contribution. By comparison with the results
molecular dynamics simulations, this framework was sho
to capture important correlations missed by the mean-fi
Poisson–Boltzmann.6

Within the standard Poisson–Boltzmann theory,
microions are treated as an ideal gas of charged part
reacting to the mean electrostatic potential. The fr
energy density therefore readsf ($na%)5 f id($na%)
5b21(ana$ ln@L3na#21%, where L is an irrelevant length
scale andb51/(kBT) the inverse temperature. The gran
potential functional describing the osmotic equilibrium wi
a salt reservoir is thusV5* f 2(ama

b*na1*rc/21l*r,
where the chemical potentialsma

b5] f id($na
b%)/]na

b

5b21 ln(L3na
b) are defined from the bulk densitiesna

b of
microspecies in the reservoir. The local grand potential d
sity finally takes the form

v~$na~r !%!5 f ~$na~r !%!2(
a

ma
bna~r !

5b21(
a

na~r !S ln
na~r !

na
b 21D . ~2.3!

As mentioned in the Introduction, other theories may be
scribed by our formalism, such as those proposed to acc
for steric effects,4 more general nonelectrostat
interactions,5 or to go beyond mean field and includ
correlations.6,7

The mean-field Coulomb term1
2*r(r )c(r )dr in Eq.

~2.1! is actually quadratic in the densities if one writes t
potential in term of the set$na%. Introducing the proper
Green’s functionG(r ,r 8) for the electrostatic problem in th
regionR, it is always possible to write the electrostatic p
tential in the form~see the Appendix!

c~r !5E
R

r~r 8!G~r ,r 8!dr 8, ~2.4!

with the cell boundary chosen as the potential referen
c(R)50.

The variational problem defined by the functional~2.1!
leads to the stationary condition

]v~$na~r !%!

]na
1qa~c~r !1l!50, ~2.5!

which, in the Poisson–Boltzmann theory, reduces to
Downloaded 13 Feb 2003 to 134.34.147.32. Redistribution subject to A
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na~r !5na
be2bqa[c(r )1l] . ~2.6!

Since the potential vanishes at the boundary of the cell, it
be seen in this equation that the Lagrange multiplierl coin-
cides with the so-called Donnan potential~potential drop
across the interface of the cell and the bulk reservoir, wh
is formally at a potential2l).

Finally, discriminating between the optimal density pr
files fulfilling Eq. ~2.5! and the generic arguments of th
grand potential functional leads to unnecessary heavy n
tions and will not be useful for the subsequent analysis.

B. A few useful identities

Consider a functionalQ of the density profilesna(r )
having an explicit dependence on the volumeV of the cell
and the potential dropl ~later, we shall be interested inQ
5V). The total derivativedQ/dV of Q when the volume of
the cell varies is10

dQ
dV

5
]Q
]V

1E
R(

a

dQ
dna~r !

dna~r !

dV
dr1

]Q
]l

dl

dV
, ~2.7!

where the first term is the variation due to the explicit d
pendence ofQ on V, the second is due to the variation of th
density profiles when the volume changes, and the last is
to the variation of the potential drop with the volume. Com
puting dna(r )/dV and dl/dV would require to solve the
variational problem~2.5! subject to the neutrality condition
for a cell of volumeV1dV and for a cell of volumeV,
before computing the difference of the two solutions. Ho
ever, this will not be necessary for our purposes.

We will be interested most of the time in quantities d
fined by a local density. In general, the partial derivative w
respect to the volume~explicit dependence! of such a quan-
tity may be computed by means of the dilatation method

]

]V F ER
g~r !dr G5

]

]V FVE
R̃

g~V1/n r̃ !dr̃ G
5

1

V E
R

g~r !dr1
1

Vn ER
r•

]g~r !

]r
dr

5
1

V E
R

g~r !dr1
1

Vn E]R
g~r !r•dS

2
1

Vn ER
ng~r !dr ~2.8!

5
1

Vn E]R
g~r !r•dS. ~2.9!

We first made a change of variabler5V1/n r̃ to show explic-
itly the volume dependence of the integral. After computi
the derivatives and returning to the unscaled variabler we
made an integration by parts~n is the dimensionality of the
cell n52,3). For the spherical isotropic geometry we a
interested in, this result reduces to

]

]V F ER
g~r !dr G5g~R!. ~2.10!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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We will need also to compute the derivative of some ter
given by a double integral. Following the same steps
above, this derivative is given by

]

]V F ER
g~r ,r 8!dr dr 8G

5E
R

g~R,r 8!dr 81E
R

g~r ,R!dr . ~2.11!

The key assumption here is that both quantities*g(r ,R)dr
and *g(R,r )dr only depend on the modulusR5uRu. An-
other important point to notice is that the volume total d
rivative is taken at constant total electric charge because
system is neutral. Applying Eq.~2.7! to (aqaNa

5*(aqana(r )dr then gives

(
a

qa

dNa

dV
505r~R!1E

R(
a

qa

dna~r !

dV
dr . ~2.12!

III. THE COMPRESSIBILITY

A. Derivation from the grand potential

Applying formula~2.7! to the grand potential once give
minus the pressure. However, as noticed in Ref. 10, the
ond and third terms vanish at the solution of the variatio
problem. Making use of Eqs.~2.10! and ~2.11!, we conse-
quently have

]V

]V
5v~$na~R!%!1r~R!@c~R!1l# ~3.1a!

5v~$na~R!%!1lr~R!. ~3.1b!

The last equality follows fromc(R)50 @see the property
~A10!# and is valid in general for arbitrary isotropic densiti
evenif they differ from the optimal ones solving the varia
tional problem. This will be used later. Note that the symm
try property of the Green’s function@G(r ,r 8)5G(r 8,r )# is
an important ingredient in obtaining the above equations12

Using the stationary condition~2.5! one finds the usua
result1,3,10

p5(
a

na~R!
]v

]na~R!
2v~$na~R!%!, ~3.2!

which reduces top5kBT(ana(R) within PB theory ~see
Ref. 13 for a general derivation of this result, valid beyo
PB!.

When computing the second total derivative with resp
to the volume ofV to obtain the bulk modulus, one shou
not disregard the second and third terms of Eq.~2.7! too
early.
Downloaded 13 Feb 2003 to 134.34.147.32. Redistribution subject to A
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d2V

dV2 5
]2V

]V2 ~3.3a!

12E
R(

a

d

dna~r ! F]V

]V G dna~r !

dV
dr ~3.3b!

12
]2V

]V]l

dl

dV
~3.3c!

1E
R 2(ag

d2V

dna~r !dng~r 8!

dna~r !

dV

dng~r 8!

dV
dr dr 8

~3.3d!

12E
R(

a

d

dna~r ! F]V

]l G dna~r !

dV

dl

dV
dr ~3.3e!

1
]2V

]l2 Fdl

dVG2

. ~3.3f!

At the solution of the variational problem most of the
terms vanish, as it will be shown below. The first term~3.3a!
is obtained taking the partial derivative of~3.1b! with respect
to V

]

]V
@v~$na~R!%!1lr~R!#

5
1

SnRn21 H(
a

]na~R!

]R F ]v

]na~R!
1qalG J 50. ~3.4!

We have used the variational equation~2.5! at r5RP]R
and the fact thatc(R)50. The second term~3.3b! is ob-
tained replacing the expression~3.1b! for ]V/]V into ~3.3b!

2(
a

F ]v

]na~R!
1qalG dna~R!

dV
50, ~3.5!

where we have once more used Eq.~2.5! at r5RP]R.
The third term~3.3c! is equal to

2r~R!
dl

dV
, ~3.6!

and with the fifth term~3.3e!

2
]

]l E
R(

a
F ]v

]na
1qa~c~r !1l!G dna~r !

dV

dl

dV
dr

52E
R(

a
qa

dna~r !

dV

dl

dV
dr522r~R!

dl

dV
, ~3.7!

gives a vanishing contribution. We have used in the prec
ing equation the relation~2.12!. The last term~3.3f! is zero
sinceV in linear onl. Finally, the inverse compressibility
may be cast in the form
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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x2152VS ]p

]VD
T,m i

5V
d2V

dV2

5VE
R 2(ag

d2V

dna~r !dng~r 8!

dna~r !

dV

dng~r 8!

dV
dr dr 8.

~3.8!

From Eq.~2.1! we have

d2V

dna~r !dng~r 8!
5

]v~$nd~r !%!

]na]ng
d~r2r 8!

1qaqbG~r ,r 8!. ~3.9!

The second term, the Coulomb contribution, when repla
into Eq. ~3.8!, gives

E
R 2(ag

qaqgG~r ,r 8!
dna~r !

dV

dng~r 8!

dV
dr dr 8

52
1

Sn
E

R
f~r !Df~r !dr ~3.10a!

52Rn21f~R!]nf~R!1
1

Sn
E

R
u¹f~r !u2 dr , ~3.10b!

where we have defined the ‘‘electric potential’’ created by
charge variation

f~r !5E
R

G~r ,r 8!(
a

qa

dna~r 8!

dV
dr 8, ~3.11!

and performed an integration by parts. The boundary term
~3.10b! vanishes because, from Eq.~A10!, one has

f~R!5E (
a

qa

dna~r 8!

dV
G~R,r 8!dr 850, ~3.12!

thus showing that the Coulomb contribution term is alwa
positive, and

x215VE
R(

ag

]2v

]na]ng

dna~r !

dV

dng~r !

dV

1
V

Sn
E

RU¹rF ER
G~r ,r 8!(

a
qa

dna~r 8!

dV
dr 8GU2

dr .

~3.13!

B. Discussion

From Eq.~3.13!, the positive definiteness of the integr
operator whose kernel is defined by

]2v~$nd~r !%!

]na]ng
d~r2r 8! ~3.14!

ensures that the compressibility is positive~this is a sufficient
but not necessary condition!. This is the case for Poisson
Boltzmann theory, wherev is simply the ideal gas gran
potential density, and it may be checked that it also holds
the theories presented in Refs. 4–6.
Downloaded 13 Feb 2003 to 134.34.147.32. Redistribution subject to A
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More generally, in any well-constructed approxima
theory for the colloid based on density functionals for t
grand potential of the form~2.1! ~that is, a local density term
plus an ‘‘interaction term’’ given by the mean-field Coulom
electrostatic energy!, the solution of the variational problem
should be a minimum, i.e., the quadratic form

d2V

dna~r !dng~r 8!
, ~3.15!

should be positive definite to ensure thermodynamic stabi
From expression~3.8!, it then follows that the compressibil
ity will always be positive in such a theory.

Equation~3.8! for the compressibility can be seen as
generalization for nonuniform fluids of the compressibili
sum rule for uniform fluids13,14

b~nx!21512nE c(2)~r !dr , ~3.16!

written here for a one-component system. In this relati
c(2)(r ) is the direct correlation function defined, in the mo
general situation of a mixture, from

d2V

dna~r !dng~r 8!
5

d2Fid

dna~r !dng~r 8!
2kBTcag

(2)~r ,r 8!,

~3.17!

where Fid is the ideal gas contribution to the free-ener
functional. When one replaces~3.17! into ~3.8! for a uniform
fluid @cag

(2)(r ,r 8)5cag
(2)(ur2r 8u)#, and knowing that for a uni-

form fluid dna(r )/dV52Na /V252na /V, one recovers
the compressibility sum rule

bx215(
a

na2E
R(

ag
nangcag

(2)~r !dr . ~3.18!

Although Eq. ~3.8! is a natural generalization of the com
pressibility sum rule and similar expressions exist in the
erature ~see, for instance, Ref. 14!, we included here the
derivation of this result in the context of the Poisson
Boltzmann and other generic local density functional the
ries because these theories are approximate~nonexact! and
nothing guarantees in advance the validity of Eq.~3.8! for
nonexact theories.

IV. CONCLUSION

Within the cell model and a generic local density fun
tional theory, we have considered a suspension of cha
spherical macromolecules of arbitrary dimension. We ha
cast the corresponding compressibility in a form where
sign of this quantity is positive under a~weak! sufficient
condition: the grand potentialv appearing in Eq.~2.1!
should be a convex-up function on densities$na%. This
proves that the stability requirement of a positive compre
ibility is fulfilled by Poisson–Boltzmann theory as well a
several improvements upon this mean-field approach.4–7 Our
results show that such theories yield stable suspensions,
cannot exhibit a critical point associated with a gas–liqu
phase separation.

This result should be put in perspective with the rec
proofs that within PB theory, the effective interactions b
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tween two identical colloids confined in a cylinder of infini
length is necessarily positive.15,16 This proof has been ex
tended to the more general family of local density functio
theories~2.1! in Refs. 3 and 17. It was shown that the po
tive definiteness of the local free-energy density~or equiva-
lently of the grand potential density in the semi-gran
canonical situation! was a sufficient condition for repulsiv
interactions. The results derived in this article show that
der the same circumstances exactly, the bulk modulus wi
a cell model is also a positive quantity.

We explicitly considered the semi-grand-canonical si
ation where the macroions suspension is dialyzed agains
electrolyte reservoir. Our results may, however, be exten
to other electrostatic situations, such as the canonical
where the mean salt content in the suspension is fixed, o
the situation where the macroions are held at constant po
tial rather than constant charge.

APPENDIX: ON THE CHOICE OF THE GREEN’S
FUNCTION

We consider the Green’s functionG(r ,r 8) satisfying

¹ r
2G~r ,r 8!52Snd~r2r 8!, ~A1!

with yet unspecified boundary conditions. From a stand
identity ~Green second identity!, the solution of Poisson’s
equation¹ r

2c52Snr(r ) obeys the relation11

c~r !5E
R

r~r 8!G~r ,r 8!dr 8

1
1

Sn
E

]R

]c~r 8!

]n8
G~r ,r 8!dS8

2
1

Sn
E

]R
c~r 8!

]G

]n8
~r ,r 8!dS8, ~A2!

where]n[]/]n denotes the normal derivative and]R is the
surface delimiting the regionR.

The Dirichlet GD and NeumannGN Green’s function
satisfy the boundary conditions

GD~r ,r 8!50 and ]n8GN~r ,r 8!521/Rn21

for r 8P]R. ~A3!

For Dirichlet boundary conditions, we therefore have

c~r !5E
R

r~r 8!GD~r ,r 8!dr 8

2
1

Sn
E

]R
c~r 8!

]GD

]n8
~r ,r 8!dS8. ~A4!

For the isotropic situation considered here and fr
Gauss law, the last term in Eq.~A4! may be written as

2c~R!
1

Sn
E

]R

]GD

]n8
~r ,r 8!dS85c~R!. ~A5!

So far, the choiceGD(r ,r 8)50 for r 8P]R does not ensure
thatc(R)50. We chose to fix the zero of the electric pote
Downloaded 13 Feb 2003 to 134.34.147.32. Redistribution subject to A
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tial at the boundary of the cellc(R)50 so that we recover
Eq. ~2.4!.

For Neumann boundary conditions

c~r !5^c&S1E
R

r~r 8!GN~r ,r 8!dr 8

1
1

Sn
E

]R

]c~r 8!

]n8
GN~r ,r 8!dS8, ~A6!

where the first term̂c&S5c(R) is the average of the electri
potential on the surface of the cell and we chose it to van
The last term in Eq.~A6! is

1

Sn
]nc~R!E

]R
GN~r ,r 8!dS852

1

Rn21 ER
r~r 8!dr 8

3E
]R

GN~r ,r 9!dS9. ~A7!

We have used Gauss law:2]nc(R)5*r(r 8)dr 8/Rn21. A
proper choice of the Green’s function ensures that the sur
integral on the right-hand side of~A7! is independent ofr ,
and vanishes~one can shiftGN by an arbitrary constant!.
Explicitly, in the three-dimensional case, the choice

GN~r ,r 8!52
1

R
1

1

r .
1 (

,51

` F r ,
,

r .
,11 1

,11

,

~rr 8!,

R2,11G
3P,~cosu!, ~A8!

with r .5max(r,r8) andr ,5min(r,r8), u the angle betweenr
and r 8 and P, the Legendre polynomial of order,, makes
the term ~A7! vanish. Finally, with this choice for the
Green’s function and for the reference potential, we have
both cases of boundary conditions

c~r !5E
R

r~r 8!G~r ,r 8!dr 8 and c~R!50. ~A9!

A useful property that follows from these considerations
that for any isotropic charge distributionr(r ) ~eventually
nonglobally neutral! we have in both cases of boundary co
ditions

E
R

r~r 8!G~R,r 8!dr 850, ~A10!

whereRP]R. This follows directly in the Dirichlet bound-
ary conditions case fromG(R,r 8)50 and in the Neumann
boundary conditions case form the particular choice~A8!.
Finally, we emphasize that the symmetry propertyG(r ,r 8)
5G(r 8,r ) is not necessarily fulfilled by a generic Green
function,12 but may be imposed as a separate requirem
and holds for the functions considered here.
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