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We study theoretically the bulk moduldisverse of the compressibilityf a suspension of charged
objects(macroion$, making use of a cell model to account for the finite density of macroions. The
diffuse layer of charged microspecies around a macroion is described by a generic local density
functional theory. Within this general framework, we obtain the condition for a positive bulk
modulus, which is fulfilled by several proposals made in the literature and rules out the possibility
of a critical point. We show that a sufficient condition for a positive compressibility also ensures that
the same theory produces repulsive effective pair potential20@8 American Institute of Physics.
[DOI: 10.1063/1.1538604

I. INTRODUCTION less clear: although this quantity is found positive in the
. . numerical solution of PB equation, it seems that no formal

Macromolecules soluble in aqueous suspensions usuallyioof exists concerning its sign. In this article, we derive
acquire an electric charge. Such systems are of considerallgch a proof and obtain the conditions under which a general

theoretical and experimental interest. Examples include pragcq| density functional theory leads to a positive compress-
teins in living cells, dispersion paints, or superabsorbantqb”ity within the cell model.

Their theoretical description is however a tremendous task, The article is organized as follows. The density func-

and operational approximate treatments are needed. tional theory formalism is presented in Sec. II, where a few
In this work, we consider a cell model to account for the sefy| identities are derived. The bulk modulus is then com-

macroions correlationsjn conjunction with a local density puted in Sec. Il and cast in a form where a sufficient con-

functional theory to describe the inhomogeneous electrigjiiion for its positivity clearly appears. Conclusions are

double layer around a macroidf.This framework encom- drawn in the the final section.

passes the standard mean-field Poisson—Boltzm&B)

theory, but also more recent approaches proposed to accouht GENERAL FORMALISM

for microions excluded volum&more general nonelectro- A Density functional theory

static effects, or to incorporate correlations between the . . . o .

screening microion&/ that are neglected within PB theory. We con_S|der_ a/-_dlmenS|ona_1I coI.I0|d with ;pherlcal sym-

The cell model description may be considered as one of thE'elry confined in itsiconcentri¢ Wigner—Seitz cell {=2

simplest starting points, and provides an important benchi©" & cylindrical colloid, »=3 for a colloidal sphere The

mark against which experiments and more refined theorieS€!! 1S @ spherical regiorR of radius R and volumeV

— v 1 1 1 1 1
are tested. The resulting differential equations are however >R’/ (S, is the area of the unit radiug-dimensional

highly nonlinear, and even with the simplest of the ap-SPNereS;=2m, Sg=4m). The colloid(of fixed uniform sur-

proaches under consideration héR®), can only be solved fa_ce charge d_ensuyis imm_ersed_in an_electrolyte solution
analytically in 1 or 2 dimensions without added sak., for ~ With several different species of ions with charges}, and

the situation of a flat double layer in a confining slab, or forthe Ioca}l ‘?'ens'ty of the species is denotedn,(r). The
that of a rod-like macroion of infinite length enclosed in asystgm inside Fhe cellis glqbally neutral. !n th"‘t fO!IOWS' we
concentric confining cylind8y. The linearized version of the €XPlicitly consider the semi-grand-canonical situation where

above problem has therefore always been an important alteflé Macroion's suspension is in osmotic equilibrium with a
salt reservoir through a semipermeable membrg@eme-

native, but is not free of internal inconsistencies. In particu- bl ! ) I heref der th d
lar, the linearized PB theory may lead to negative osmotic@PI€ t0 microspecies onlyWe therefore consider the gran

pressures® and negative bulk moduluginverse of the potential(2{n,}, which is a functional of microion densities
compressibility,}° whereas within the original nonlinear PB that we write

theory, it is straightforward to show that the osmotic pressure _ 1

is necessarily positive. For the bulk modulus, the situation is {ng}= R“’({n“(r)})dH 2 Rp(r)z//(r)dr

¥Electronic mail: gtellez@uniandes.edu.co +)\f p(r)dr, (2.1
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where N, (r)=nPe Adal¥(+A] (2.6)

Since the potential vanishes at the boundary of the cell, it can
be seen in this equation that the Lagrange multiplieoin-
cides with the so-called Donnan potentig@otential drop

is the total charge density including that of the coll@ée-  5cross the interface of the cell and the bulk reservoir, which
notedpcy), N is @ Lagrange multiplier to ensure global elec- jg formally at a potentiak-\).

troneutrality (€2/d\=[p=0), andy(r) is the electrostatic Finally, discriminating between the optimal density pro-
potential. Within PB theory, the local part of the functional g fulfiling Eq. (2.5 and the generic arguments of the

(2.1) embodied inw is entirely of entropic origin. In other a0 potential functional leads to unnecessary heavy nota-
words, electrostatic interactions are taken into account akons and will not be useful for the subsequent analysis.

mean-field level only, through the terfip/2. This feature

is shared by the theories of Refs. 4 and 5, but is not the case

of the formalism put forward by Barbo al.®’ where the

term w contains electrostatic corrections to the mean-fiel

Coulomb contribution. By comparison with the results of Consider a functional) of the density profiles (r)

molecular dynamics simulations, this framework was showrhaving an explicit dependence on the volumef the cell

to capture important correlations missed by the mean-fielénd the potential drop (later, we shall be interested i@

Poisson—Boltzmanh. =()). The total derivatived Q/dV of Q when the volume of
Within the standard Poisson—Boltzmann theory, thethe cell varies i¥

micrqions are treated as an ideal gas of charged particles 40 40 50 dn(r) 50 dn

reacting to the mean electrostatic potential. The free- ——=_—4 — " dr+ ——,

energy density therefore readsf({n,})="fq({n.}) dv. dV - Jr%& dny(r) dV an dv

=B ' an {In[A°n,]—-1}, where A is an irrelevant length \here the first term is the variation due to the explicit de-
scale andB=1/(kgT) the inverse temperature. The grand pendence of onV, the second is due to the variation of the
potential functional describing the osmotic equilibrium with density profiles when the volume changes, and the last is due
a salt reservoir is thUQfo_EgﬂgfganfPW%;L UPB to the variation of the potential drop with the volume. Com-
where theb chemical  potentials u,= dfig({na})/dN,  puting dn,(r)/dV and d\/dV would require to solve the
=B~ 1In(A’n}) are defined from the bulk densities, of  yariational problen(2.5) subject to the neutrality condition
microspecies in the reservoir. The local grand potential denfor a cell of volumeV+dV and for a cell of volumeV,

p(1)=2 Ny (1) + peoi(r) (2.2

aB' A few useful identities

2.7)

sity finally takes the form before computing the difference of the two solutions. How-
ever, this will not be necessary for our purposes.
w({na(r)})zf({na(r)})—Z wPn,(r) We will be interested most of the time in quantities de-
“ fined by a local density. In general, the partial derivative with
n,(r) respect to the voluméexplicit dependengeof such a quan-
=71 ﬂa(r)( |n—nb——1>- (2.3 tity may be computed by means of the dilatation method

. . . . d
As mentioned in the Introduction, other theories may be de-—

\Y,

J
scribed by our formalism, such as those proposed to accoufit NV

f g(r)dr Vﬁg(vl”’F)d?}
R R

for steric effectd more general nonelectrostatic 1 1 ag(r)
interactions, or to go beyond mean field and include :Vf g(r)dr+v—f r 5 dr
correlations’ R VIR r

The mean-field Coulomb terng[p(r)y(r)dr in Eq. 1 1
(2.1) is actually quadratic in the densities if one writes the = Vj g(r)dr+ V—f g(r)r-ds
potential in term of the sefn,}. Introducing the proper R VIR
Green's functiorG(r,r’) for the electrostatic problem in the 1
regionR, it is always possible to write the electrostatic po- v vag(r)dr (2.8
tential in the form(see the Appendjx

1
l//(r):f p(r')G(r,r’)dr’, (24) =WJ3Rg(r)r'dS. (29)
R

. . We first made a change of variable: V¥'F to show explic-
with the cell boundary chosen as the potential reference . .
W(R)=0. itly the volume dependence of the integral. After computing

The variational problem defined by the functioriall) the denva_tlves ar_1d returning _to the qnscalt_—:-d ""?‘”‘”‘b“”e
. o made an integration by parte is the dimensionality of the
leads to the stationary condition s :
cell v=2,3). For the spherical isotropic geometry we are

dw({n,(r)}) interested in, this result reduces to
o (DTN =0, 2.5 )
- rydr|=g(R). 2.1
which, in the Poisson—Boltzmann theory, reduces to v ng( ) } 9(R) (219
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We will need also to compute the derivative of some termsg2() 520
given by a double integral. Following the same steps ag\zZ =~ gv2 (3.33
above, this derivative is given by

s ) [aQ dn,(r) (3.3
a — .
52 f o(r 1) dr,} RS on,(n|av| dv
N| Jr
#?Q d\
=ng(R,r’)dr’vaRg(r,R)dr. (2.1) N VENELY, (3.30
_ _ , 520 dn,(r) dn(r’)
The key assumption here is that both quantitiggr,R)dr + 22 N (en.(r) dv qv dr dr’
and fg(R,r)dr only depend on the modullR=|R|. An- R%ay Ta Y
other important point to notice is that the volume total de- (3.30
rivative is taken at constant total electric charge because the s la0ld ~
system is neutral. Applying Eq.(2.7 to X,9,N, 2 > [_ Na(1) —dr (3.30
=[2,9.N.(r)dr then gives R @ N, (r)[on]| dV dV
??Q[d\]?
dN, dn,(r) +—|== (3.3f)
— =0= 2 . .
S a gy -0-pR+ [ 3, e lar 212 nE|av
At the solution of the variational problem most of these
terms vanish, as it will be shown below. The first te(313a
lll. THE COMPRESSIBILITY is obtained taking the partial derivative @&.1b) with respect
A. Derivation from the grand potential toV

Applying formula(2.7) to the grand potential once gives
minus the pressure. However, as noticed in Ref. 10, the seﬁ[w({n (R +Ap(R)]
ond and third terms vanish at the solution of the variationadV “
problem. Making use of Eqg2.10 and (2.11), we conse-

1 n (R Jdo
uently have = a =

quently sval[Ea: R | R +qa)\H 0. (3.9

a0 - ) _
= (N (RN + p(R[H(R)+] (3.13 We have used the va_rlatlonal equati¢hb) at r—R_e IR
Vv and the fact thai/(R)=0. The second tern3.3b is ob-
tained replacing the expressi¢d.1b for 9Q)/dV into (3.3b

= + . .
o({na(RI+\p(R) (3.1 5 [ an®_ .

2 mﬂh?\ av_ O (3.9

The last equality follows from)(R)=0 [see the property

(A10)] and is valid in general for arbitrary isotropic densities

evenif they differ from the optimal ones solving the varia-

tional problem. This will be used later. Note that the symme-

try property of the Green’s functiopG(r,r’')=G(r’,r)] is

an important ingredient in obtaining the above equatidns. 2p(R)d—)\ (3.6)
Using the stationary conditio2.5 one finds the usual dv’

result-310

where we have once more used E215) atr=Re JR.
The third term(3.30 is equal to

and with the fifth term(3.3@

Jw

p=2 n.(R) —o({n(R)}), 32 L7 f Jo. dng(r) dx
7 No(R) 255 |2 | an, T A0+ 0) | =55 G dr
which reduces tgp=kgTZ ,n,(R) within PB theory (see :zf > g dna(r) d—)\drz—zp(R)d—)\, (3.7
Ref. 13 for a general derivation of this result, valid beyond r@ ¢ dV o dV dv

PB).

When computing the second total derivative with respecgives a vanishing contribution. We have used in the preced-
to the volume of() to obtain the bulk modulus, one should ing equation the relatiof2.12). The last term(3.3f) is zero
not disregard the second and third terms of Efj7) too  since(} in linear on\. Finally, the inverse compressibility
early. may be cast in the form
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. ap More generally, in any well-constructed approximate
X =-V a—v) theory for the colloid based on density functionals for the
T grand potential of the forn(2.1) (that is, a local density term
d20 plus an “interaction term” given by the mean-field Coulomb
:VW electrostatic energythe solution of the variational problem
should be a minimum, i.e., the quadratic form
5%Q) dn,(r) dn,(r’ 2
R2ay ONy(r)on,(r") \Y \Y —6na(r)5ny(r’)’ .
(3.9 should be positive definite to ensure thermodynamic stability.
From Eq.(2.1) we have From expressiofi3.8), it then follows that the compressibil-
2 ity will always be positive in such a theory.
°Q _ = Jo({ns(r)}) S(r—r’) Equation(3.8) for the compressibility can be seen as a
ony(r)on,(r') angan,, generalization for nonuniform fluids of the compressibility
+Gu0G(rr) (3.9  sum rule for uniform fluids>14
The second ter.m, the Coulomb contribution, when replaced ﬁ(n)()flzl—nf c@(r)dr, (3.16
into Eq. (3.8), gives
dn,(r) dn.(r’) written here for a one-component system. In this relation,
22 q,9,G(r,r") daV cTV dr dr’ c@(r) is the direct correlation function defined, in the more
RS ay general situation of a mixture, from
1 20) 2
=— §f B(r)A¢(r)dr (3.10a i = i ke Telrr),
v JR ong(ryon,(r')  ony(ryén,(r') ay

(3.17

1
Z—RV*1¢(R)0n¢(R)+S—f V()| dr, (3.100  where Fy is the ideal gas contribution to the free-energy
IR functional. When one replac€3.17) into (3.8) for a uniform
where we have defined the “electric potential” created by thefluid [c¢2)(r,r")=cZ)(/r—r'[)], and knowing that for a uni-

charge variation form fluid dna(r)/JV= —N,/V?=—n,/V, one recovers
dn.(r') the compressibility sum rule
¢<r)=f G(r,r')2 do—gy—dr'. (3.1
R « Bx =2 n,— | X n,n,c@rdr. (3.18
and performed an integration by parts. The boundary term in “ Ray
(3.10h vanishes because, from E@10), one has Although Eq.(3.8) is a natural generalization of the com-
an.(r') pressibility sum rule and similar expressions exist in the lit-
¢(R)=J > q,———G(R,r")dr’'=0, (3.1  erature(see, for instance, Ref. J4we included here the
a dv derivation of this result in the context of the Poisson—
thus showing that the Coulomb contribution term is alwaysBltzmann and other generic local density functional theo-
positive, and ries because these theories are approxin@d@exact and
5 nothing guarantees in advance the validity of E38) for
vi=v| S 9w dny(r) dn,(r) nonexact theories.
Ray dNgon, dV  dV
v dn,(r") 2 IV. CONCLUSION
+—f i f G(r,r') >, q, dr’} dr. . _ .
S, Jr R m dv Within the cell model and a generic local density func-

(3.13 tional theory, we have considered a suspension of charged
spherical macromolecules of arbitrary dimension. We have
cast the corresponding compressibility in a form where the
sign of this quantity is positive under @eak sufficient

From Eq.(3.13, the positive definiteness of the integral condition: the grand potential» appearing in Eq.(2.1)

B. Discussion

operator whose kernel is defined by should be a convex-up function on densitifis,}. This
Po(lngnh) proves that.the stability requirement of a positive compress-
onan S(r—r'") (3.149 ibility is fulfilled by Poisson—Boltzmann theory as well as
a®lly several improvements upon this mean-field apprda¢ur

ensures that the compressibility is positittas is a sufficient  results show that such theories yield stable suspensions, and
but not necessary conditionThis is the case for Poisson— cannot exhibit a critical point associated with a gas—liquid
Boltzmann theory, wherev is simply the ideal gas grand phase separation.

potential density, and it may be checked that it also holds for ~ This result should be put in perspective with the recent
the theories presented in Refs. 4—6. proofs that within PB theory, the effective interactions be-
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tween two identical colloids confined in a cylinder of infinite tial at the boundary of the cell(R)=0 so that we recover
length is necessarily positiVé:!® This proof has been ex- Eq.(2.4).

tended to the more general family of local density functional =~ For Neumann boundary conditions

theories(2.1) in Refs. 3 and 17. It was shown that the posi-
tive definiteness of the local free-energy densiy equiva- ‘/'(r)=<‘/’>S+J p(r")Gy(r,r")dr’
lently of the grand potential density in the semi-grand- R

canonical situationwas a sufficient condition for repulsive 1 (W( 3
interactions. The results derived in this article show that un- + = Gy(r,
der the same circumstances exactly, the bulk modulus within Sy Jom o

a cell model is also a positive quantity. where the first terndi)s= #(R) is the average of the electric

We explicitly considered the semi-grand-canonical situ-potential on the surface of the cell and we chose it to vanish.
ation where the macroions suspension is dialyzed against ahe last term in Eq(A6) is

electrolyte reservoir. Our results may, however, be extended

to other electrostatic situations, such as the canonical one 1 — 9 lﬂ(R)f Gy(r,r')dS = Vl 1[ p(r')dr’
where the mean salt content in the suspension is fixed, orto S, R

the situation where the macroions are held at constant poten-
tial rather than constant charge.

r'yds, (AB)

xf Gy(r,r"dS’. (A7)
IR

We have used Gauss law: d,,(R)=[p(r')dr’'/R" 1. A
proper choice of the Green’s function ensures that the surface
integral on the right-hand side ¢A7) is independent of,

and vanishegone can shiftGy by an arbitrary constant
Explicitly, in the three-dimensional case, the choice

APPENDIX: ON THE CHOICE OF THE GREEN'S
FUNCTION

We consider the Green’s functida(r,r’) satisfying

V2G(r,r')=-S,8(r—r’"), (A1) 1 1 i (L 41 (rr)
Gn(rr')=—g+—+
with yet unspecified boundary conditions. From a standard NI =" r- Attt ¢ R

identity (Green second identity the solution of Poisson’s

equationV,Zzzfz —S,p(r) obeys the relatiott X P(cos), (A8)
with r— =max(,r’) andr -=min(r,r'), 6 the angle between
'ﬂ(f):f p(r")G(r,r")dr’ andr’ and P, the Legendre polynomial of orddt, makes

R

the term (A7) vanish. Finally, with this choice for the
Green’s function and for the reference potential, we have in
both cases of boundary conditions

_faw)

——f w(r) (r r'ds,

r,r')yds

¢(r)=pr(r’)G(r,r’)dr’ and #(R)=0. (A9)

(A2)
A useful property that follows from these considerations is

whered,=d/dn denotes the normal derivative afi® is the
surface delimiting the regioR.
The Dirichlet G and NeumanrGy Green’s function
satisfy the boundary conditions
Gp(r,r')=0 and d,Gy(r,r')=—1R""1
for r'edR. (A3)

For Dirichlet boundary conditions, we therefore have

w(r)=fnp(r’)GD(r,r’)dr’

1 .. 9Gp ) ,
_S_mew(r )W(r,r )dS. (A4)

that for any isotropic charge distributiom(r) (eventually
nonglobally neutralwe have in both cases of boundary con-
ditions

f p(r"YG(R,r")dr'=0, (A10)

R

whereR e gR. This follows directly in the Dirichlet bound-
ary conditions case frons(R,r’')=0 and in the Neumann
boundary conditions case form the particular choié@).
Finally, we emphasize that the symmetry prope&fr,r’)
=G(r',r) is not necessarily fulfilled by a generic Green'’s
function? but may be imposed as a separate requirement,
and holds for the functions considered here.

For the isotropic situation considered here and from

Gauss law, the last term in EGA4) may be written as

1 dGp
uRg [ SR rrds = uR). (85)

ACKNOWLEDGMENTS

The visit of G.T. at LPT Orsay was supported by ECOS
Nord/COLCIENCIAS-ICETEX-ICFES action CO0P02 of
French and Colombian cooperation. G.T. acknowledge par-

So far, the choic&p(r,r')=0 forr’ € 9R does not ensure tial financial support from COLCIENCIAS and BID through
that #(R) =0. We chose to fix the zero of the electric poten- Project No. 1204-05-10078.

Downloaded 13 Feb 2003 to 134.34.147.32. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 118, No. 7, 15 February 2003

IR. A. Marcus, J. Chem. Phy&3, 1057(1955.

2M. J. Stevens, M. L. Falk, and M. O. Robbins, J. Chem. Phgd, 5209
(1996.

3E. Trizac, Phys. Rev. B2, R1465(2000).

“M. Eigen and E. Wicke, J. Phys. CheB8, 702(1954; V. Kralj-Iglic and

A. Iglic, J. Phys. 116, 477 (1996; |. Borukhov, D. Andelman, and H.

Orland, Phys. Rev. Let79, 435(1997.

5L. Lue, N. Zoeller, and D. Blankschtein, Langmuib, 3726(1999.

SM. C. Barbosa, M. Deserno, and C. Holm, Europhys. L&, 80
(2000.

M. C. Barbosa, J. Phys.: Condens. Mattdy 2461 (2002.

Cell model of charged macromolecules suspensions 3367

37, 579(195)). See also T. Alfrey, P. Berg, and H. J. Morawetz, J. Polym.
Sci. 7, 543(1951).

9E. Trizac and J.-P. Hansen, Phys. Re\6@& 3137(1997.

10M. Deserno and H.-H. von Gniberg, Phys. Rev. B6, 011401(2002.

13, D. JacksonClassical Electrodynamicgiley, New York, 1962.

12K -J. Kim and J. D. Jackson, Am. J. Phyi, 1144(1993.

BH. Wennerstrm, B. Jmsson, and P. Linse, J. Chem. Phy§, 4665
(1982.

Ygee, e.g., D. Henderson undamentals of Inhomogeneous Flutiited
by D. HendersoriDekker, New York, 1992

15J. C. Neu, Phys. Rev. Let82, 1072(1999.

163, E. Sader and D. Y. Chan, Langmig, 324 (2000.

8R. M. Fuoss, A. Katchalsky, and S. Lifson, Proc. Natl. Acad. Sci. U.S.A. YE. Trizac, Langmuirl7, 4793(2001).

Downloaded 13 Feb 2003 to 134.34.147.32. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



