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In this paper we propose a framework allowing one to compute the effective interactions between
two anisotropic macromolecules, thereby generalizing the Derjaguin, Landau, Verwey, and
Overbeek theory@E. J. W. Verwey and J. T. G. Overbeek,Theory of the Stability of Lyophobic
Colloids ~Elsevier, Amsterdam, 1948!# to nonspherical finite size colloids. We show in particular
that the effective interaction potential remains anisotropic at all distances and provide an expression
for the anisotropy factor. We then apply this framework to the case of finite rod-like
polyelectrolytes. The calculation of the interaction energy requires the numerical computation of the
surface charge profiles, which result here from a constant surface potential on the rod-like colloids.
However, a simplified analytical description is proposed, leading to an excellent agreement with the
full numerical solution. Conclusions on the phase properties of rod-like colloids are proposed in this
context. © 2004 American Institute of Physics.@DOI: 10.1063/1.1642617#

I. INTRODUCTION

The DLVO theory, named after Derjaguin, Landau, Ver-
wey, and Overbeek,1 is one of the most influential and still
very important descriptions of charged colloidal suspensions.
It was developed more than 50 years ago to rationalize the
stability of lyophobic colloidal suspensions. One specific
prediction of the DLVO theory is the far-field pair potential
between two spherical colloids of like radiia which, within a
linearization approximation, takes a Yukawa form:

U12~r !5
Z2e2

4pe S exp@kDa#

11kDa D 2 exp~2kDr !

r
, ~1!

whereZ is the valence of the object,e the elementary charge,
andkD denotes the inverse Debye screening length. The lat-
ter is defined in terms of the micro-ions bulk densities$ra%
~with valencies$za%) askD

2 54p,B(araza
2. At the level of a

dielectric continuum approximation for the solvent with per-
mittivity e, the Bjerrum length ,B is defined as ,B

5e2/(4pekBT), where kBT is the thermal energy:,B

57 Å for water at room temperature. Note that the Debye
screening factor,kD , does characterize the decay rate of the
interaction potential in the far field region, therefore provid-
ing an experimental measurement of the screening factor
from interaction force measurements~see, e.g., Ref. 2!.

However, in the colloid world, the spherical shape is not
the rule and many macromolecules are intrinsically very
anistropic: rod-like or ribbon-like shapes~DNA molecules,

TMV or fd virus, V2O5 ribbons, Boehmite rods, etc.!,3–7

disk-like shapes~e.g., for clays, as laponite, bentonite,
etc.!.8–11 Since the seminal work of Langmuir on bentonite
clay particles published in 1938,12 these systems have been
the object of considerable attention, in particular in the con-
text of orientational phase transitions~such as isotropic to
nematic I–N, etc.!.13 From the theoretical side, these transi-
tions were first addressed by Onsager,14 who showed that the
nematic phase was stabilized at high density by purely en-
tropic effects. The extension to charged rods has been recon-
sidered more recently by Stroobantset al.,15 showing that the
electrostatic interaction between the polyelectrolytes lead to
a twisting effect which enhances the concentration at the I–N
transition. The picture of Onsager correctly reproduces the
experimental results for highly disymmetric particles, such
as TMV or fd viruses.3,4 However in many anisotropic sys-
tems, a gelation occurs before any I–N transition.6,8,9 Ac-
cording to the DLVO theory, gelation is usually assumed to
result from the presence of van der Waals attraction between
the macromolecules, which overcome at high salinity the
double layer repulsion. However, the origin of gelation in
many rod- and platelet-like systems remains quite
obscure.6,9,16 The ‘‘gel’’ denomination is also misleading in
some cases since the texture of the ‘‘gelled’’ system may be
closer to a glassy like phase, in which the orientational and
translational degrees of freedom are frozen.16,17The origin of
such a glass-like transition is still under debate.

In this paper, we shall stay at a more ‘‘microscopic’’
level and consider the effects of anisotropy on the interaction
between two macromolecules, much in the spirit of thea!Electronic mail: lbocquet@lpmcn.univ-lyon1.fr
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DLVO approach. One specific question we raise is the fol-
lowing. We consider two anisotropic particles, separated by a
‘‘large’’ distance ~i.e., a distancer larger than their typical
dimensiona!. Can the electrostatic interaction between these
two individual objects be modeled by the previous DLVO
result, i.e., is the anisotropy lost for large distances? This is
of course the case in the absence of salt.18 Does this result
generalize with an electrolyte?

Before delving into the details, let us first consider a
much simpler problem, namely that of two identical charges
q, with positionsz56a/2 along thez axis ~a fixed! and
embedded in an electrolyte~1!: what is the electrostatic po-
tential f created by these two charges at large distances?

Naively, one would expect that the anisotropy is lost for
large distances~i.e., distances larger than the sizea of the
object, or larger than the Debye length 1/kD) and the poten-
tial should reduce to its Yukawa form

F~r !5
2q

4pe

exp~2kDr !

r
.

But this is actuallynot the case! This can be understood by
computing—within a linear Debye–Hu¨ckel-type theory—the
potential at large distances in thex andz directions: along the
axis x, one gets as expected

F~r !.
2q

4pe

exp~2kDr !

r

to lowest order ina/r ; but on thez axis, one gets at the same
order

F~r !.
2q cosh~kDa!

4pe

exp~2kDr !

r
.

There is consequently a residual anistropy factor@here
cosh(kDa)] between the two directions, which does not dis-
appear at large distancesr from the charges~Fig. 1!.

The same result is expected to hold for anisotropic mac-
romolecules, with a residual and potentially strong anisot-
ropy at large distances. The corresponding generalization of
the DLVO theory is thus required. We emphasize immedi-
ately that the proposed description is mostly relevant in the
case of moderately disymmetric objects, i.e., not too large
aspect ratio, since the interaction energy we shall compute is

valid for distances between the objects larger than their typi-
cal size~this precludes infinite objects!. This is anyway the
case for many macromolecules~Laponite clays, Boehmite
rods, etc.!.

The purpose of the present paper is twofold.
~1! We shall first describe in a general way the far field

interaction between two anisotropic macromolecules. This
will lead to a generalized DLVO interaction between two
nonspherical molecules, with a formal expression of the an-
isotropic interaction factor.

~2! We shall then apply these results to the case of finite
cylinders. A by-product of this part of the work is the charge
carried by the finite cylinder and a description of the edge
effects on the cylinders. An approximate analytical model is
proposed yielding results in good agreement with numerical
calculations. Note that we chose the finite cylinder geometry,
not only for its relevance for polyelectrolytes, but also be-
cause we expect edge effects to be particularly marked. This
geometry is therefore a ‘‘benchmark’’ for the study of aniso-
tropic electrostatic interactions.

As in the original calculation of Verwey and Overbeek,1

the macromolecules are specified by a constant electrostatic
potential on their surfaces and the electrostatic potential in
the electrolyte solution is described at the level of the linear-
ized mean-field Poisson–Boltzmann equation. However we
will show extensively in a subsequent paper19 that this as-
sumption is justified for colloids bearing a large constant
charge on their surfaces.20 For small surface charges, the
sketch of resolution presented thereafter can also be easily
adapted.

This paper is organized as follows: We begin by present-
ing the general method we have developed to construct the
solution of the problem. Then we deduce the general formula
for the interaction between two anisotropic colloids at large
distances. This yields a formal expression of the above-
discussed anisotropic factors. We then apply this general
method to the specific case of finite cylinders. We first obtain
the charge distributions on the cylinder, exhibiting the so-
called edge effects. The influence of electrolyte concentra-
tion and finite-size effects are discussed. An approximate
analytical model is eventually proposed to describe these ef-
fects, yielding results in quantitative agreement with the nu-
merical solution.

II. GENERAL CONSIDERATIONS AND DESCRIPTION
OF THE PROBLEM

A. Method of resolution: The auxiliary surface charge

We consider a single charged macromolecule embeded
in an infinite electrolyte solution. The solution is character-
ized by a Debye screening length,,D51/kD and as empha-
sized earlier, we assume that the electrostatic potential at the
surface of the macromolecule,F0 , is held constant.1 The
electrical double layer around the macromolecule is de-
scribed at the level of the linearized Poisson–Boltzmann
theory. This relies on a mean-field description of the micro-
ion clouds, together with a small potential assumption. An
extensive discussion of all these assumptions can be found in

FIG. 1. Illustration of the anisotropic effect. In thex and z directions, the
far-field potentials differ from a factor cosh(kDa) which does not vanish at
any distance.
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Refs. 1 and 20. We anticipate, however, that the assumption
of a constant potential at the macromolecule boundary natu-
rally emerges as aneffective conditionto describe correctly
the far field obtained within the full nonlinear Poisson–
Boltzmann theory, for colloids with a large bare charge, pro-
vided kDa is not too small.20,19

In this context, outside the macromolecule, the electro-
static potential obeys the linearized Poisson–Boltzmann
~LPB! equation,

DF~r !5kD
2 F~r !, ~2!

together with the boundary condition on the molecule sur-
faceS,

F~r !5F0 . ~3!

Note that we assume that the macromolecule interior is
empty of charges, so thatF(r )5F0 for any pointr inside
the macroion@this amounts to writingDF~r !50#.

The surface charge density,s, is then obtained from the
derivative of the electrostatic potential at the molecule sur-
face:

s~r !52eS ]F

]n D
S1

, ~4!

wheren is the ~outer! unitary vector perpendicular toS and
the notation (]F/]n)S1 stands forn"“F ~Fig. 2!.

The standard Green function formalism is too cumber-
some to be applied in its simplest version to solve the previ-
ous equations—Eqs.~2! and~3!. This is due to the existence
of a nonvanishing excluded region for the microions~inside
the macromolecule!, where the LPB equation, Eq.~2!, does
not apply. In other words, the relevant Green’s function for
the problem depends on particular shape and size, which
seriously limit its practical interest. To circumvent this diffi-
culty, we have therefore introduced an auxilary system, in
which the LPB equation applies everywhere in the volume.
This is defined as

H for rPC DF~r !5kD
2 F~r !,

for r¹C DF~r !5kD
2 F~r !,

for rPS F~r !5F0 .

~5!

The corresponding surface charge on the molecule,s̃, is
defined here in terms of the solutionF full(r ) of the previous
system of equations:

s̃~r !5eF S ]F full~r !

]n D
S2

2S ]F full~r !

]n D
S1

G . ~6!

Of course, the solution of Eq.~5!, F full(r ), reduces to
the solution of Eq.~2!, Fempty(r ), outside the macromol-
ecule. This matching originates in the unicity theorem for the
operator2D1kD

2 with Neumann or Dirichlet boundary con-
ditions ~see Ref. 18 for a similar result concerning the bare
Laplace operatorD!.

Now, the solution of Eq.~5!, F full(r ) can be defined in
terms of the surface charges̃:

F full~r !5E E
S
s̃~r 8!G~r ,r 8!dS8, ~7!

whereG(r ,r 8) is the screened electrostatic Green function,
G(r ,r 8)5exp(2kDur2r 8u)/(4peur2r 8u). The unknown
auxiliary charge,s̃, is found by inverting the boundary con-
dition on the macromolecule. This can be explicitly written
as: for any pointr on the molecule,

F05E E
S
s̃~r 8!G~r ,r 8!dS8. ~8!

The overall result of these general considerations is a
formal solution of the LPB equation, Eq.~2!, for any point
outside the macromolecule:

F~r !5eE E
S
s̃~r 8!G~r ,r 8!dS8 ~9!

with the auxiliary charges̃ defined in Eq.~8!.
To get back to the ‘‘real’’ charge on the macromolecule,

one has to compute the surface charge density as a function
of the auxiliary quantity,s̃. Using the definition

s~r !52eS ]F~r !

]n D
S1

on any pointr on the colloid surfaceS, one obtains:

s~r !5E E
S
s̃~r 8!F2

]@G~r 8,r !#

]n G
S1

dS8. ~10!

In practice, the calculation ofs̃ which requires the in-
version of the boundary condition, Eq.~8!, can be performed
analytically for simple geometries only, spheres or infinite
rods ~see the following!. For a more complex case, such
as finite cylinders as considered in this paper, a numerical
calculation has to be performed to compute the inverse ma-
trix of G(r ,r 8) on the~discretized! macroion. We shall show,
however, that a simple model can be proposed which yields
results in quantitative agreement with the numerical
calculation.

FIG. 2. Geometry of the problem. A macromoleculeC, with a surface po-
tentialF5F0 , is immersed in an infinite electrolyte. The permittivity of the
macromolecule is assumed to be much lower than that of the solvent~water!,
so that the electrostatic potential is assumed to be constant in the interior
of C.
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In the case of a given surface charges~r !, this method of
resolution can also be used to calculate the electrostatic po-
tential F~r ! outside the colloid by computing the auxiliary
charges̃(r 8) at any pointr 8 of S using Eq.~10! and then
applying Eq.~9!. Once again, the auxiliary charges̃ is the
most relevant parameter to deal with the electrostatic poten-
tial created by a colloid immersed in an ionic fluid.

B. The spherical case as an illustrative example

Before going further, we come back to the simple spheri-
cal problem, where all previous different quantities, such as
the bare and auxiliary surface charge, can be explicitly com-
puted either by solving the LPB equation straightforwardly,
or by using the above-sketched auxiliary charge method.

We consider an empty sphereS of radiusa, at a constant
surface potentielF0 . On the one hand, the solution of the
LPB equation is the usual Yukawa potential:

F~r !5F0a
e2kD~r 2a!

r
. ~11!

The surface charges is defined as

s52e
dF

dr
~r 5a!

and is therefore given by

s5ekDS 11
1

kDaDF0 . ~12!

On the other hand, the above-described auxiliary prob-
lem consists in a sphereS filled with the electrolyte.
Using the screened electrostatic Green functionG(r ,r 8)
5exp(2kDur2r 8u)/(4peur2r 8u), one may invert the inte-
gral equation, Eq.~8!, to obtain the ~uniform! auxiliary
charge:

s̃5ekD@11coth~kDa!#F0 . ~13!

It is then straightforward to show that performing the integral
in Eq. ~10! allows one to recover the above-obtained surface
charge density, Eq.~12!.

This simple example illustrates the difference between
the bare and auxiliary problems which we have introduced in
the previous section and two ways to calculate the real
charges as a function ofF0 . The first method could only be
used because we knew the formal solution of LPB for a
sphere at fixed potential but this is an exception rather than
the rule. On the contrary, the auxiliary charge method, even
if it seems less straightforward in this case, is a systematic
way to compute the solution of LPB for given boundary
conditions.

We now turn to the calculation of the interaction energy
between two macromolecules.

III. FAR-FIELD INTERACTION BETWEEN
ANISOTROPIC HIGHLY CHARGED COLLOIDS

Before focusing on a specific geometry, we first use the
previous results to describe the interaction between two an-
isotropic charged macromolecules.

We consider two colloidsCi ( i 51,2) separated by a dis-
tancer much larger than the typical sizeD of the colloids. As
we already noticed in Sec. I, it is important to note that the
restriction r>D makes sense for moderately disymmetric
macromolecules only. We assume at this level that the charge
profiless i(r ), and equivalentlys̃ i(r ), are known. The posi-
tion of each colloidCi is characterized by fixing a~somewhat
arbitrary! origin Oi for the molecule~this may coincide for
example with the colloid center if it is symmetrical!. On the
other hand, we assume that the orientation of the anisotropic
colloid is described by a unit vectorui pointing into a direc-
tion V i and an anglew i corresponding to a rotation ofC
aroundui . We finally define the colloid–colloid direction
using the unit vectoru5O1O2 /uO1O2u and introduce the
bisector plane,P, of @O1O2# and O the intersection ofP
with (O1O2). It will prove useful to introduce of system of
coordinates$O,x,y,z%, with the x axis corresponding to the
axis (O1O2) ~see Fig. 3!. The distance betweenO and a
point P is denoted asr.

We shall estimate the interaction force~acting on one
macromolecule due to the other! by integrating the electro-

static stress tensor,
⇒
T, defined as18

⇒
T5S P1

eE2

2 D ⇒
I 2eE^ E, ~14!

where
⇒
I is the identity tensor,E the electrostatic field, andP

the hydrostatic pressure.
The force acting on the macromoleculeC2 can be written

accordingly as

F252E E
P

⇒
T dS. ~15!

Note that the integral runs over the bisector surfaceP, and
not the colloid surface. This is a consequence of the fact that
the divergence of the eletrostatic stress tensor

⇒
T vanishes

outside the macroions.
We emphasize that the following calculations are con-

ducted in the far field limit where the distancer is larger than
the Debye length,D5kD

21. This will allow us to expand the
various quantities in powers ofr/r . No specific assumption
is done however on the ratio between the typical size of the
macromolecule,a, and,D .

FIG. 3. Calculation of the electrostatic interaction between two disymmetric
macromolecules. An arbitrary centerOi , a unit vectorui , and a rotation
anglew i are defined for each molecule. We denote asr 5uO1O2u the dis-
tance between the two molecules, while the unit vectoru is defined asu
5O1O2 /uO1O2u. We eventually introduce the bisector planeP and the
intersection point O betweenP andO1O2 .
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Hydrostatic equilibrium and ~linearized! Poisson–
Boltzmann equations, respectively,2grad p1rE50 and
DF5kD

2 F, allow us to writeP5P`1ekD
2 F2/2. Note that

the linearization of the PB equation is fully justified in the
present case since in the far field limit (r @kD

21) the dimen-
sionless electrostatic potentialeF/kBT is expected to be
small. One therefore obtains

⇒
T5S P`1 1

2ekD
2 F22

e

2
E2D ⇒

I 2e~E^ E2E2!
⇒
I . ~16!

We denoteEa the component ofE in the directiona,
a5x, y, z. Then, forPPP:Ey , Ez5O(r/r )Ex . Therefore,
E25Ex

2@11O(r2/r 2)# andEaEb2Ea
2dab5Ex

21O(r2/r 2).
This allows one to rewrite the forceF2 acting on colloid

2 as

F2.H E E
P

e

2
@kD

2 F2~r!2Ex
2~r!#J dS. ~17!

Both the potentialF and the electric fieldEx in Eq. ~17! can
be estimated from the solution for the potential created by a
single colloid, as obtained in the previous paragraph, as we
now show. First Eq.~9! can be written

F~r !5E E
S
s̃~r 8!

exp~2kDur2r 8u!
4peur2r 8u

dS8. ~18!

For distancesr much larger than the typical sizea of the
macromoleculeCi , one might expand the previous equation
for small r 8 to obtain the leading larger contribution:

F~r !5
exp~2kDr !

4per E E
S
s̃~r 8!exp~2kDur "r 8!dS8,

~19!

with ur5r /r . We introduce at this point the total auxialiary
chargeZ̃i5*S i

s̃(r 8)dS8 and the angular distributionf i(P)
defined as

f i~P!51/Z̃iE E
S
s̃~r 8!exp~2kDur "r 8!dS8. ~20!

Using these definitions, one gets eventually the electrostatic
potential at pointP as

F i~P!5
Z̃i f i~P!e2kDr

4per
. ~21!

At the orderO(r/r ), it is straightforward to check that one
might replaceur by u in the anisotropic factorf i of the
previous equation:f i only depends on the angular coordi-
nates~characterized byui andw i). Note that the dependence
on w i disappears for axisymmetric colloids. From now on,
we will only consider such objects so that may writef i

5 f i(ui) for simplification. The potential created by colloidi
therefore reads

F i~P!5
Z̃i f i~ui !e

2kDr

4per
. ~22!

In the r @kD
21 limit, the corresponding electric field reduces

to Ei56kDF i(P)u, with a plus~respectively, minus! sign
for i 51 ~respectively,i 52). The total electrostatic potential

F on the mediator planeP is written as the sum of the
contributions due to each colloid,F5F11F2 :

F~P!5~ Z̃1f 1~u1!1Z̃2f 2~u2!!
e2kDr

4per
. ~23!

Note that the superposition assumption for the potential is
justified in the far field limit, where one may neglect mutual
polarization effects. The same holds for the electric field:
Ex5E11E2 , leading to

Ex5kD~ Z̃1f 1~u1!2Z̃2f 2~u2!!
e2kDr

4per
u. ~24!

Introducing these expressions into Eq.~17! yields the follow-
ing expression for the forceF2 :

F25
2kD

2 Z̃1Z̃2f 1~u1! f 2~u2!

~4p!2e

3E
0

`

2pr dr
e22kD

Ad21r2

d21r2
u. ~25!

In the far field region,r @kD
21, it is legitimate to expand the

integrand in powers ofr/r and keep only the leading order:

usinge22kD
Ad21r2

5e2kDr (114r2/r 21O(r4/r 4)), one may com-
pute the integral to get

F25
Z̃1Z̃2f 1~u1! f 2~u2!e2kDr

4per
kDu, ~26!

which is always repulsive.21 This force derives form the po-
tential energy~again at leading order inkDr ):

U12~r !5
Z̃1Z̃2f 1~u1! f 2~u2!e2kDr

4per
. ~27!

This expression for the interaction energy between the
two macromolecules is one of the main results of this paper.
This generalizes the DLVO calculation for anisotropic mol-
ecules. Note that, in view of the various expansions per-
formed, this expression is valid in the far-field limit, i.e., for
interparticle distancesr larger than both the Debye length
and the typical size of the colloida ~say, to fix the ideas,r
.4,D , 4a).

As anticipated in Sec. I, the interaction does not reduce
at any distance to the isotropic DLVO result, obtained for
spheres. The anisotropy of the interaction is described by the
angular distributionf 1(u1) and f 2(u2) defined in Eq.~20!.
The latter is defined in terms of the~auxiliary! charge distri-
bution on the macromoleculess̃(r ), or equivalently as a
function of the bare surface charges~r ! using Eq.~10!.

We conclude this part by showing that the previous ex-
pression for the interaction energy indeed reduces to the
standard DLVO expression for spheres~as it should!. In this
case, the bare and auxiliary surface charges on one sphere
have-been computed in the previous section, in Eqs.~12! and
~13!. On the other hand, the angular factorf i for each sphere
i can be easily computed and reduces tof i5sinhkDa/kDa.
The latter is of course independent of any angular variable.
Gathering these results, one retrieves the DLVO expression,
Eq. ~1!:

3973J. Chem. Phys., Vol. 120, No. 8, 22 February 2004 Interaction between charged anisotropic macromolecules

Downloaded 10 Mar 2004 to 193.55.10.104. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



U125S ekDa

11kDaD 2 Z1Z2e2kDr

4per
. ~28!

A final note concerns the case of colloids with vanishing
internal volumes. In the latter case, the bare and auxiliary
charge coincide,s̃5s, and our calculation leads back to the
expression found in a different context by Trizacet al.:17

U125
Z1Z2e2kDr

4per
f 1~u1! f 2~u2!. ~29!

IV. CHARGE DISTRIBUTION ON A FINITE ROD-LIKE
POLYELECTROLYTE

We now use the previous results to predict the far field
interaction between two finite rod-like polyelectrolytes. In
contrast to the spherical case, briefly considered in Sec. III,
the surface charge cannot be obtained analytically in this
situation. Therefore, we shall first obtain numerically the sur-
face charge on the cylinder, by solving Eq.~8!. We will then
propose a simple analytical model yielding an approximate
surface charge in good agreement with the ‘‘exact’’ numeri-
cal results.

We emphasize at this point that the finite cylinder geom-
etry should be merely considered here as a generic situation
where end effects are important. The present description
could be easily extended to other related geometries, like
sphero-cylinders, ellipsoids, etc., though no fundamental dif-
ference is however expected.

A. Sketch of the numerical method

We now consider a cylinderC with radiusR and length
L, at a contant potentialF0 . The resolution first starts with
the computation of the auxiliary surface charge by inverting
Eq. ~8!. This calculation involves the Green function
G(r ,r 8), G(r ,r 8)5exp(2kDur2r 8u)/(4peur2r 8u), ex-
pressing the potential at pointr 8 created by a unit point
charge inr . However due to the cylindrical symmetry of the
problem, one might reduce the dimensionality of the problem
by integrating the Green function on a ring~or small cylin-
der! whose center matches the axis of symmetry of the cyl-
inder, as illustrated in Fig. 4. This specific problem is con-
sidered in the following. Once the corresponding reduced
Green function is known, the numerical task simplifies into a
standard inversion problem. First, the cylinderC is decom-
posed into the superposition of small cylinders~on the lateral
surface! or rings ~on the head surfaces!, denoted asCj and
Rk , with dimension, and surface charge densitys̃ i ~see
Fig. 4!.

Then Eq.~8! is discretized according to

; j PS,F~r j !5(
i

s̃ iGi~r i ,r j !5F0 , ~30!

whereGi(r i ,r j ) is the electrostatic potential created on the
cylinderCj or ring Rj by the cylinderCi or ring Ri , carrying
a unit surface charge density.

B. Reduced Green function

As mentioned earlier, the previous inversion requires
knowledge of the potential created by an elementary ring or
cylinder, which we now compute. To this end, we make use
of the explicit expression of the electrostatic potential cre-
ated by a disk of radiusR at heighz8 carrying a uniform
surface charge density~here equal to unity! and immersed in
an electrolyte with Debye length,D . This expression can be
found in Ref. 22 and reads:

Gdisk~R,r ,z!5
R

2e E0

` J1~kR!J0~kr !

Ak21kD
2

3exp~2Ak21kD
2 uz2z8u!dk ~31!

with J0 andJ1 the Bessel functions of order 0 and 1. This is
namely the potential created by adisk with radius R at a
point M, with cylindrical coordinates$r ,z% ~the origin being
placed at the center of the disk!. Note also that the dimension
of Gdisk is given byR/e, sinceGdisk is the potential created
by a unit surface charge.

Now the potentialdGcyl(R,r ,z) created, at a pointM, by
an infinitesimalcylinder with heightdz8, radiusR, and unit
surface charge can be deduced directly as

dGcyl~R,r ,z!5dz8
]Gdisk~R,r ,z!

]R
. ~32!

This leads to

dGcyl~R,r ,z!5
Rdz8

2e E
0

` kJ0~kr !J0~kR!

Ak21kD
2

3exp~2Ak21kD
2 uz2z8u!dk, ~33!

where the identity (d/dx)@xJ1(x)#5xJ0(x) has been used.

FIG. 4. The numerical calculations are performed by decomposing the cyl-
inderC into small cylindersCj of radiusR and height,, and in ringsRk of
radii r 0 and of width,. Each of these elementary surfaces carry a uniform
surface charge densitys̃ i . The numerical calculations were performed with
,<0.05,D .
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As a result, the electrostatic potential created by a cylin-
der of radiusR, height ,, and unit surface charge, with a
center located in (0,z8), is given by

Gcyl~R,z8,r ,z!5
R

2e Ez82,/2

z81,/2
dz9E

0

` kJ0~kr !J0~kR!

Ak21kD
2

3exp~2Ak21kD
2 uz2z9u!dk. ~34!

Along the same lines, the potentialGring(r 0 ,r ,z) created
by the ring of radiusr 0 and of thickness, can be expressed
in terms ofGdisk(r 0 ,r ,z) according to

Gring~r 0 ,r ,z!5Gdisk~r 01,/2,r ,z!2Gdisk~r 02,/2,r ,z!,
~35!

whereGdisk(R,r ,z) is given above in Eq.~31!.
Note that in order to avoid numerical problems, the pre-

vious integrals must be reformulated specifically for the case
z5z8.

C. Calculation of the surface charge

Inversion of Eq.~30! yields the auxiliary surface charge
s̃. The ‘‘real’’ surface charge,s, can be deduced froms̃
using Eq.~10!. In a discretized form, this reads

; j PS,s~r j !52(
i

s̃ i

]Gi~r i ,r j !

]nj
, ~36!

whereGi takes either the cylinder or the ring form, obtained
in Eqs.~34! and~35!. This equation involves various deriva-
tives of the Green function at the cylinder surface, namely,

S ]Gcyl

]r D
r 5R1

, S ]Gcyl

]z D , S ]Gdisk

]r D
r 5R1

, S ]Gdisk

]z D .

It will turn out to be useful to write all the results in
terms of dimensionless variables. All the lengths~such as
,B , kD

21, or L! are expressed in units of the radius of the
cylinder R, e.g.,Ladim5L/R. In the same way, the electro-
static potentialF and surface charge densitiess become,
respectively,Fadim5eF/kBT and sadim54p,BRs/e where
we recall that ,B is the Bjerrum length defined by,B

5e2/(4pekBT) ~for water at room temperature,,B57 Å).
We also introduce dimensionless Green functions, asGadim

5eG/R ~see the previous remark on the dimension ofG!.
From now on, the index ‘‘adim’’ will be omitted to simplify
notations.

D. Numerical results

The previous equations are easily implemented numeri-
cally, provided the various expressions of the Green func-
tions are written in terms of well-converging integrals as
mentioned earlier.

To fix ideas the potential on the macromolecule is as-
sumed to beV0.100 mV, so thatF054 ~see however Refs.
20 and 19 for further justifications of this choice!.

1. Surface charge profiles

We now present the results for the surface charges on the
lateral and the head of the cylinder, that we shall denote,
respectively, asscyl(z) and shead(z). We first focus on the
shape of the profiles.

Typical results for these profiles are shown in Figs. 5
and 6.

Qualitatively, the main striking feature of these profiles
is the diverging surface charge close to the edges of the
cylinder. This is of course the well-known edge effect, which
is expected for charged objects with uniform potential. In the
absence of electrolyte (kD50), the divergence of the surface
charge in the vicinity of an edge is a classical result.18 For an
infinite conducting diedre with an edge angleb, the surface
charge densitys is found to diverge in the vicinity of the
edge asrp/b21, wherer is the distance to the edge.18 In the
present geometry, corresponding tob53p/2, the surface
charge is expected to diverge asr21/3. For a charged object
embedded in an electrolyte, i.e.,kDÞ0, the situation is more
complex. However the divergence is expected to remain, as
can be understood from a simple argument. As mentioned

FIG. 5. Plot of the reduced surface charge on the lateral side of the cylinder,
ln@scyl(z/R)/scyl(0)21#. The aspect ratio of the cylinder isL/R520 and
the screening factor iskDR51.0. Note thatz is in units of the cylinder
radiusR. The solid line is the result of the full numerical calculations, while
the dashed line is the result of the ‘‘four parameter’’ model described in the
Appendix. The dotted line is the~reduced! auxiliary surface charge
s̃cyl(z/R)/s̃cyl(0). Note that the edge effect spans over a smaller distance
for the auxiliary surface charge, compared to the ‘‘real’’ charge. See the text
for details.

FIG. 6. Same as Fig. 5, but for the surface charge profile on the head of the
cylinder ln@shead(z/R)/shead(0)21#. We have also plotted the predicted
scaling for the divergence in the absence of saltkDR50,
shead(z/R)/shead(0)5(12(r /R)2)21/3 ~open circles!.
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in Sec. II B, the surface charge on a sphere with radiusa and
constant potentialF0 reads

s5ekDS 11
1

kDaDF0

@see Eq.~12!#. Now using this relationship for a nonspherical
object, one finds that the surface charges diverges at the
points where the radius of curvaturea vanishes.

Figures 5 and 6 show that the auxiliary surface charges̃
also exhibits an edge effect. However the latter is more lo-
calized close to the edge, compared to the ‘‘real’’ surface
charges. As for s, the divergence ofs̃ can be understood
using the results for the sphere,s̃5ekD@11coth(kDa)#F0,
which indeed diverges as the radius of curvaturea vanishes.
However, the transition from a smalla region to a largea
region is much more marked for the auxiliary surface charge
than for the bare charge. Indeed from the previous expres-
sions for s and s̃, one getss(a)5s(a5`)1O(1/kDa),
while s̃(a)5s̃(a5`)1O(exp@2kDa#). The largea limit is
therefore approached much more quickly for the auxiliary
charge than for the bare charge, which is in agreement with
the stronger localization of the divergence of the auxiliary
charge close to the edge.

We now report in more detail on the variations of these
density profiles when the size of the cylinderL and the
screening lengthkD

21 are varied. Generally speaking, the ge-
ometry of the problem is characterized by two dimensionless
quantities: the aspect ratioL/R and the amounts of screening
kDR. Some general trends for the surface charge profiles
emerge when these quantities are varied. First, the lateral
surface profiles are found to saturate as the aspect ratioL/R
goes to infinity. On the other hand, the head profile is found
to be barely dependent on the aspect ratio. One expects in
fact that the cylinder lengthL will only play a role when it is
smaller or equal to the Debye length,kD

21, say kDL<a,
with a of the order of a few units to fix ideas. Therefore for
a given screeningkDR, the profile is expected to saturate for
aspect ratio larger thanL/R;a/(kDR). This rule of thumb
is confirmed whenkDR is varied. In the present study, we
have verified this assertion in the intervalkDRP@0.1;1#
~data not shown!. Typically one findsa;5. Finally it is in-
teresting to compare both profiles with the edge effect diver-
gence predicted in thekD50 limit, as argued earlier. Only
the charge profile on the head is found to be in semiquanti-
tative agreement with this scaling, as shown in Fig. 6. Note
that in order to symmetrize the predicted divergence, we
compare the head profile withshead(r )/shead(0)5(1
2(r /R)2)21/3. On the other hand this prediction is found to
fail for the cylinder surface charge. This is expected since in
most of the present calculations, the lengthL of the cylinder
is larger than the Debye length, so that thekD50 profile is
only a very crude approximation. On the other hand, the
radius of the cylinder is always smaller than the Debye
length considered, and for the head, thekD50 profile should
be a fair but not so bad approximation forkDR<1.

2. Total lateral and head charge

A more global quantity of interest is the total charge on
the lateral surfaces and on each head of the cylinder, respec-

tively denoted asZlate and Zheade ~e being the elementary
charge!. It proves in fact useful to consider the average sur-
face charges on the lateral surfaces lat

average5Zlat /(2pRL)
and on each head of the cylinder,shead

average5Zhead/(pR2)
~note that in the following we plot the above-introducedre-
ducedsurface charge densities ass* 54p,BRs/e). These
quantities are plotted, respectively, in Figs. 7 and 8 as a
function of the length of the cylinderL/R for various screen-
ings kDR. In the limit of large aspect ratio, both charges
saturate to finite values. Moreover, both charges are found to
be increasing functions of the screeningkDR. This is ex-
pected, as can be understood from the spherical test case, Eq.
~12!, as a benchmark.

V. ANALYTICAL DESCRIPTION
OF THE SURFACE CHARGE

In this section, we propose a very simplified description
of the electrostatic problem, which has the virtue of provid-
ing analytic estimates of the surface charges. This estimate
will prove usefull in fine to compute the interaction between
two rod-like polyelectrolytes. A more detailed approach, in-
cluding a description of the edge effect, is proposed in the
Appendix.

FIG. 7. Dependence of the averaged surface charge on the cylinder,scyl
average,

as a function of the aspect ratioL/R. The solid line is the result of the full
numerical calculation, while the dashed line corresponds to the four param-
eter model described in the Appendix. From bottom to top, the screening
factors arekDR50.2,kDR50.5, andkDR51.0. TheL5` asymptotic val-
ues are in agreement with the analytic result, Eq.~42!.

FIG. 8. Same as Fig. 7, but with the charge on the head of the cylinder,
shead

average.
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A. Uniform head and lateral surface charges

We consider a ‘‘zeroth-order’’ approximation of the
problem, consisting in a cylinder with uniform charges on
the head and on the lateral sides. More specifically, we as-
sume a uniformauxiliary charge profile. We denotes̃cyl and
s̃headthe auxiliary surface charge on the cylinder and on the
head, and byscyl andsheadthe corresponding ‘‘real’’ surface
charges.

At this level of approximation, Eq.~30! relating theaux-
iliary surface charge to the potentialF0 reduces to a 232
problem:

F05s̃cylGcyl~R,R,0!12s̃headGhead~R,R,L/2!,
~37!

F05s̃cylGcyl~R,0,L/2!1s̃head@Ghead~R,0,0!

1Ghead~R,0,L !#.

The surface charges on the head and on the lateral side
of the cylinder are then obtained using Eq.~10! as

scyl5s̃cylS 2
]Gcyl~R,r ,0!

]r D
R1

1s̃head

S 2
]Ghead~R,r ,L/2!

]r D
R1

,

~38!

shead5s̃cylS 2
]Gcyl~R,0,z!

]z D
L/21

1s̃head

S 2
]Ghead~R,r ,z!

]z D
01

.

In the previous equations, the derivatives of the Green func-
tions are expressed in terms of integrals of Bessel functions
@see Eqs.~31! and~34!#, which have to be computed numeri-
cally for anyL andk. The systems in Eqs.~37! and~38! can
be easily inverted to obtain the expressions ofscyl andshead

as a function of the aspect ratioL/R and screeningkDR.
Here we do not report the full expressions. Rather we

consider the asymptoticL→` limit, in which the surface
charges reach finite values. Note that this limit is reached for
sizesL larger than a few Debye lengths.

In the infiniteL limit, the various Green function may be
computed, yielding

Gcyl~R,R,0!5I 0~kDR!K0~kDR!,

Gdisk~R,R,L/2!50,
~39!

Gcyl~R,0,L/2!5K0~kDR!/2,

Gdisk~R,0,0!5~12e2kDR!/2kDR.

In the same way,

2~]/]r !Gcyl~R,r 5R1,0!5kDRI0~kDR!K1~kDR!,

2~]/]z!Gcyl~R,0,z5L/21!5
e2kDR

2
,

~40!
2~]/]r !Gdisk~R,r 5R1,L/2!50,

2~]/]z!Gdisk~R,0,z501!5 1
2.

Gathering results, we obtain after inversion of Eq.~37!:

s̃cyl
uniform5

F0

I 0~kDR!K0~kDR!
,

~41!

s̃head
uniform5

2kDRF0

12e2kDR F12
1

2I 0~kDR!G .
We now denote these profiles as ‘‘uniform’’ to avoid any
confusion with the numerical results. Using Eq.~38!, one
gets the ‘‘real’’ surface charge densities:

scyl
uniform5F0

kDRK1~kDR!

K0~kDR!
,

~42!

shead
uniform5

e2kDRF0

2I 0~kDR!K0~kDR!
1

kDRF0

12e2kDR

3F12
1

2I 0~kDR!G .
In the limit of largekDR, the surface charges are linear

in kDR. This is expected since in this limit, one retrieves the
planar results for whichs}kF0 .

The previous result forscyl
uniform corresponds to the semi-

infinite cylinder limit.20 One may also verify in Fig. 7 that
this result does indeed match theL→` limit of the averaged
cylinder profile. Note that in contrast, one may verify that the
uniform surface charge on the headshead

uniform is only a fair
approximation to the numerically computed averaged surface
charge, even in theL→`. This is because for the screening
considered (kDR<1), the head always feels the edge of the
cylinder.

B. Toward a description of the edge effect

A simple extension of the previous modelization can be
proposed: adding a ‘‘ring’’ on the edge of the cylinder should
allow one to capture the main features of the edge effect.
This can be done in a straightforward way, but the details of
the calculation are somewhat cumbersome. We therefore re-
port the details of this approach in the Appendix. This ‘‘four
parameters’’ model gives results in good agreement with the
numerical solutions. This can be seen in Figs. 7 and 8, where
the results of this model are displayed~as dashed lines!
against the full numerical results.

However, the interactions between two polyelectrolytes
do not involve the ‘‘real’’ charge, but theauxiliary charge.
As we show in the following, the results of the much simpler
‘‘uniform’’ approach described in the previous paragraph will
prove sufficient to describe the interaction between two rods.

VI. INTERACTION BETWEEN TWO ROD-LIKE
POLYELECTROLYTES

We eventually turn to the description of the interaction
between two rod-like polyelectrolytes. Our starting point is
the potential energy obtained in Sec. III, Eq.~27!. The two
crucial ingredients in this interaction energy are: the total
auxiliary chargeZ̃ on the cylinder; and the anisotropic term,
f (P), defined in terms of the auxiliary charge profile in Eq.
~20!. We recall here this expression:
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f ~P!51/Z̃E E
S
s̃~r 8!exp~2kDur "r 8!dS8. ~43!

These ingredients can be therefore easily computed from the
full numerical solution, once the auxiliary surface charge has
been computed.

A. Total auxiliary charge

We show in Fig. 9 the size dependence of the total aux-
iliary chargeZ̃,B /R, for various screeningskDR. As can be
seen in Fig. 9, the charge is mainly linear inL.

This result is compared with the predictions of the sim-
plified models we have proposed in Sec. V. Within the simple
uniform surface charge model described in Sec. V A, the
total auxiliary charge reads

Z̃52pRLs̃cyl
uniform12pR2s̃head

uniform. ~44!

Equation~41! reports the expressions of thereducedauxil-
iary charges~recall that in Sec. V, reduced variables have
been useds* 54p,BRs/e). This leads eventually to the
following expression of the total auxiliary charge as a func-
tion of the aspect ratioL/R and screeningkDR:

Z̃
,B

R
5F0H 1

2

L

R

1

I 0~kDR!K0~kDR!
1

kDR

12e2kDR

3F12
1

2I 0~kDR!G J . ~45!

This prediction is plotted as crosses on the previous figures,
showing a relatively good agreement with the ‘‘exact’’ nu-
merical results. The agreement might be slightly improved
by considering the completeL dependence, while staying
within the uniform model. This corresponds to solving the
232 system of equations, Eq.~38!, with a numerical esti-
mate of the Green functions for finiteL. We have plotted the
results of this approach as dotted lines in Fig. 9. This im-
proves slightly the agreement especially for smallL and
kDR. We also present the results obtained using the ‘‘four
parameters’’ model, described in the appendix. This model

adds to the result in Eq.~44! the contribution of the rings
which capture the edge effects. This model is not analytic
either and as can be seen in Fig. 9, it does not improve much
the agreement.

We conclude here that the very simple analytic expres-
sion in Eq.~44! provides a useful and trustworthy approxi-
mation for the total auxiliary charge which enters the inter-
action energy, Eq.~27!.

B. Anisotropic terms

We report in Figs. 10 and 11 the numerical results for the
anisotropic termsf (P) for two cylinder sizesL/R58 and
L/R520. These functions have been obtained after numeri-
cal integration of Eq.~43! using the numerical result for the
auxiliary surface charge. In these figures, the anisotropic
terms are plotted as a function of the tilt angleu, between the
axisz of the cylinder considered and the unit vectoru linking
the two cylinder centers~see, e.g., Fig. 3!.

It is instructive to compare these ‘‘exact’’ anisotropic
factors to the predictions of the simplified models for the
surface charges discussed in Sec. V. Again, let us first con-
centrate on the uniform~auxiliary! charge model, proposed
in Sec. V A. In the frame of this simplified description, the
anisotropic factor, in Eq.~43!, can be computed analytically

FIG. 9. Total auxiliary chargeZ̃tot,B /R as a function of the size of the
cylinder L/R. The solid line corresponds to the full numerical resolution,
while the crosses are the result of the uniform model. The dashed line is the
result of the four parameter model detailed in the Appendix. The dotted line
corresponds to the uniform model with finiteL ~see the text for details!.
From bottom to top the screening factors arekDR50.2, kDR50.5, and
kDR51.0.

FIG. 10. Plot of the anisotropic factor of the finite cylinder,f (u)/^ f &, as a
function of the tilt angle. The solid line is the result of the integration of Eq.
~43! over the numerically computed surface charge on the cylinder. The
circles are the result of the uniform model~see the text for details! while the
dashed line is the result of the four parameter model described in the Ap-
pendix. The aspect ratio isL/R58 and the screening factors arekDR
50.2, 0.5 and 1.0~from bottom to top foru50!.

FIG. 11. Same as Fig. 10 but for an aspect ratioL/R520.
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since the auxiliary charges are constant over the head and the
lateral side of the cylinder. This leads the following expres-
sion for f (u):

f ~n!5
Z̃cyl

Z̃
f cyl~u!1

Z̃head

Z̃
f head~u!, ~46!

whereZ̃cyl52pRLs̃cyl is the total charge on the lateral sides
of the polyelectrolyte, andZ̃head52pR2s̃headis the charge on
the heads of the polyelectrolyte. Using Eq.~41! obtained
within the uniform model one has

Z̃cyl

,B

R
5

1

2

L

R
F0

1

I 0~kDR!K0~kDR!
,

~47!

Z̃head

,B

R
5

kDRF0

12e2kDR F12
1

2I 0~kDR!G
and the total chargeZ̃ is given in Eq.~45!. On the other
hand, the expressions for anistropic factors due to the cylin-
der and due to the heads read

f cyl~u!5I 0~kDR sinu!

sinhS kDL cosu

2 D
S kDL cosu

2 D ,

~48!

f head~u!5
2I 1~kDR sinu!

kDR sinu
coshS kDL cosu

2 D .

This expression forf (u), using the previous expressions for
Z̃cyl and Z̃head, is plotted against the numerical results in
Figs. 10 and 11 for two aspects ratios (L/R58 and L/R
520, respectively!. The agreement is seen to be surprisingly
good in view of the simplicity of the modelization.

In these figures, we also show the prediction of the more
detailed ‘‘four parameters’’ model, which includes a crude
description of the edge effect, as detailed in the Appendix.
This approach adds a contribution from the rings to the pre-
vious anisotropic factors,

Z̃ring

Z̃
f ring~u!,

where Z̃ring5232pR,(s̃31s̃4) is the total charge on the
rings ~see the Appendix for details!. The contribution to the
anisotropic factor due to the ring,f ring , reads explicitly:

f ring~u!5I 0~kDR sinu!coshS kDL cosu

2 D . ~49!

As can be seen in the figures, this more detailed description
does not improve much the agreement compared to the much
simpler ‘‘uniform’’ approach.

Such a good agreement using a very simple description
of the surface charge calls for some comments. The crucial
point is that the interaction energy involves theauxiliary
charges and not the bare charges. The full numerical resolu-
tion shows in fact that the edge effect is much more marked
for the auxiliary charges than for the ‘‘bare’’ charge, in the
sense that the divergence of the surface charge occurs much
closer to the edge for the auxiliary charge. We have dis-

cussed this effect in Sec. IV D 1. As a result, the auxiliary
charge profile is more flat than the ‘‘real’’ charge profile. This
feature allows one to understand why the uniform model
yields results in good agreement with the numerical results
for the anisotropic factors.

VII. CONCLUSION

In the present paper, we have proposed a framework
allowing one to generalize the DLVO interaction for anis-
tropic macromolecules. The central result is the electrostatic
interaction energy between two anistropic macromolecules

U12~r !5
Z̃1Z̃2f 1~u1! f 2~u2!e2kDr

4per
. ~50!

The main point resulting from Eq.~50! is that in a medium
with finite salt concentration, the anisotropy is remanent at
all distances. We have quantified this effect and obtained
general formulas for the anisotropic factorf (u,w) ~which
only depends onu for axisymmetrical objects! in Eq. ~20!.
We have then applied this framework to finite rod-like cyl-
inders. The previous calculations provide a simple and effi-
cient description of the interaction between two such poly-
electrolytes. In particular, the simple uniform model leads to
an analytic expression for the total auxiliary charge and an-
isotropic terms which enter the interaction energy, that turn
out to be in good agreement with the full numerical solution.
With this approximation, the anisotropic factorf (u) for a
finite-size cylinder of lengthL and radiusR at fixed potential
F0 takes a simple form

f ~u!5
Z̃cyl

Z̃
f cyl~u!1

Z̃head

Z̃
f head~u!. ~51!

In the above expression, the auxiliary chargesZ̃cyl , Z̃head,
and Z̃, as well as the anisotropy factorsf cyl(u) and f head(u)
are given by

Z̃cyl

,B

R
5

1

2

L

R
F0

1

I 0~kDR!K0~kDR!
,

Z̃head

,B

R
5

kDRF0

12e2kDR F12
1

2I 0~kDR!G ,
Z̃5Z̃cyl1Z̃head

and

f cyl~u!5I 0~kDR sinu!

sinhS kDL cosu

2 D
S kDL cosu

2 D ,

f head~u!5
2I 1~kDR sinu!

kDr 0 sinu
coshS kDL cosu

2 D .

As will be shown in Ref. 19, the above expressions with the
relevant choice ofF0 almost correspond to the interaction
energy of two highly charged colloids far away from each
other, irrespective of their bare charge.

A few further comments are in order.
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First, the interaction energy, at afixed center to center
distance between the two cylinders, is found to be minimum
when the tilt angle~made between each cylinder and the
center to center direction! is equal top/2, i.e., when both
cylinders’ axis are perpendicular to the center to center vec-
tor. Apart from that, the angle between the two axis of the
cylinders is not constrained, at this level of approximation
~the two axis may equally be perpendicular or parallel!. This
is a consequence of retaining only the leading order
contribution in the potential, and higher order terms@in
exp(2kDr)/ri with i .1] would split the aforementioned de-
generacy, and clearly stabilize the crossed rods compared to
the parallel situation. On the other hand, the interaction is
maximized when the two rods are coaxial~vanishing tilt
angle!. This result somehow contrasts with the infinite rod
situation,15 for which the minimum energy situation corre-
sponds to crossed rods~which is compatible with what we
found!, but with a totally different angular dependence, and
also a different distance dependence.

The anisotropic term in the interaction potential results
in a coupling between orientational and translational degrees
of freedom. The strength of this anisotropy is moreover
found to increase with salt concentration. These ingredients
suggest that at high salinity, frustrated phases might form,
independently of van der Waals forces. However a full ex-
ploration of the phase diagram of charged rods using these
previous results is required before reaching a definite conclu-
sion on the formation of gels in rod-like systems at large salt
concentrations, as seen experimentally.6,8,9

Work along these lines is in progress.
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APPENDIX: A SIMPLE DESCRIPTION
OF THE EDGE EFFECT

1. General framework

In this Appendix a more detailed description of the edge
effect is proposed. We extend the model described in Sec.
V A by incorporating a specific charge on the edge of the
rod-like macromolecule. More specifically, we model the
auxiliary surface charge as the superposition of a uniform
charge on the head and on the lateral surface of the cylinder,
supplemented by a ring charge on the edge of the macromol-
ecule, as shown in Fig. 12.

From a technical point of view, we separate the ring
charge on the edge of the molecule as a ring of radiusR on
the head, and a ring of radiusR on the lateral side of the
cylinder ~see Fig. 12!. The extension of the lateral ring is
denoted as,cyl , and that on the edge,head. There are there-
fore four parametersin the model: respectively, the uniform
surface charge on the heads̃head, on the lateral sidess̃cyl ,
s̃cyl edge, and s̃head edge. In the following results, we have
chosen,cyl5,head50.05R. Results are only weakly depen-
dent on this choice. As in Sec. V A, one has to solve Eq.~30!,
relating the auxiliary surface charge to the potentialF0 .

Within the simplified analysis, and taking into account the
symmetry of the cylinder, this equation reduces to a 434
inversion: irrespective ofj,

(
i

s̃ i G̃i j 5F0 , ~A1!

where the summationi runs overs the different parts of the
simplified object, e.g.,i 51 stands for the center of the heads
of the cylinder;i 52 stands for the middle part of the cylin-
der; while i 53 and i 54 stand for the rings on the edges.
The ‘‘Green functions’’G̃i j are defined in terms of the Green
functionsGdisk, Gcyl , andGring whose expressions are given,
respectively, in Eqs.~31!, ~34!, and ~35! ~see the following
for the detailed expressions of the 434 matrixG̃i j ). Once the
auxiliary chargess̃ i are known, one obtains the ‘‘bare’’
charges everywhereon the cylinder using Eq.~10!. This can
be written formally:

s~r !5(
i

s̃ i

]G̃~r ,i !

]n
, ~A2!

where the notationG̃(r ,i ) stands for the Green function
computed at pointr due to chargei defined earlier;]/]n
denotes the derivative along the normal to the surface at
point r .

Equation~A1! is easily inverted and the corresponding
surface charges are plotted in the previous figures, Figs. 7
and 8. As shown on these plots, the approximate description
yields results in excellent agreement with the full numerical
resolution for any aspect ratioL/R and screeningkDR.

As a consequence, despite its simplicity, the simplified
description of the auxiliary charges contains most of the
physics of the edge effect. Also, as shown by the previous
argument, a better agreement is expected for largekDR.

FIG. 12. Simplified description of the edge effects.
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2. Technical details

The cylinder is decomposed into four different pieces:

~1! a lateral part of lengthL and radiusR,
~2! two disks of radiusR,
~3! two lateral rings of radiusR, of heights,cyl , and of

centers located in@0,6(L/27,cyl/2)#,
~4! two rings of radiusR2,head/2 and widths,head,

respectively, denoted 1, 2, 3, and 4 and carrying the uniform
surface charge densitiess̃cyl , s̃head, s̃cyl edge, ands̃head edge.
To simplify the formulation of the equations, we respectively
call Gcyl(r 0 ,r ,,,z) and Gring(r 0 ,,head,r ,z) the electrostatic
potentials by a cylinder of radiusr 0 and of height, located
in (r ,z) and by a ring of radiusr 0 and of width,headin (r ,z)
with the origin of the coordinates~0,0! located in the center
of the cylinder or of the ring.

In order to find the auxiliary charges on the disks, rings,
and lateral sides of the cylinder, one has to solve the 434
linear problem, obtained from Eq.~30!:

; j P$1,2,3,4%, (
i

s̃ iAi j 5F0 .

The coefficientsAi j are given in terms of the expressions
of Gcyl andGdisk given in Eqs.~34! and ~35!:

A115Gcyl~R,R,L,0!,

A1252Gdisk~R,R,L/2!,
~A3!

A1352Gcyl~R,R,,cyl ,L/22,cyl/2!,

A1452Gring~R2,head/2,R,L/2!,

A215Gcyl~R,0,L,L/2!,

A225Gdisk~R,R,0!1Gdisk~R,0,L !,
~A4!

A235Gcyl~R,0,,cyl ,,cyl/2!1Gcyl~R,0,,cyl ,L2,cyl/2!,

A245Gring~R2,head/2,0,0!1Gring~R2,head/2,0,L !,

A315Gcyl~R,R,L,L/22,cyl/2!, ~A5!

A325Gdisk~R,R,,cyl/2!1Gdisk~R,R,L2,cyl/2!,

A335Gcyl~R,R,,cyl/2,0!1Gcyl~R,R,L2,cyl!, ~A6!

A345Gring~R2,head/2,R,,cyl/2!

1Gring~R2,head/2,R,L2,cyl/2!),

A415Gcyl~R,R2,head/2,L,L/2!,

A425Gdisk~R,R2,head/2,0!1Gdisk~R,R2,head/2,L !,
~A7!

A435Gcyl~R,R2,cyl/2,,cyl/2!

1Gcyl~R,R2,cyl/2,L2,cyl/2!,

A445Gdisk~R2,head/2,R2,head/2,0!

1Gdisk~R2,head/2,R2,head/2,L !.

Once thes̃ have been calculated, we gets using Eq.
~36!, which reads within the simplified description:

; i P$1,2,3,4%, s i~r !5(
j

s̃ jBi j ~r !. ~A8!

The coefficientsBi j (r ) are given by

B11~z!5S 2
]Gcyl~R,r ,L,z!

]r D
R1

,

B12~z!5S 2
]Gdisk~R,r ,L/22z!

]r D
R1

1S 2
]Gdisk~R,r ,L/21z!

]r D
R1

,

~A9!

B13~z!5S 2
]Gcyl~R,r ,,cyl ,L/22,cyl/22z!

]r D
R1

1S 2
]Gcyl~R,r ,,cyl ,L/22,cyl/21z!

]r D
R1

,

B14~z!5S 2
]Gring~R2,head/2,r ,L/22z!

]r D
R1

1S 2
]Gring~R2,head/2,r ,L/21z!

]r D
R1

,

B21~r !5S 2
]Gcyl~R,r ,L,z!

]z D
L/21

,

B22~r !5
1

2
1S 2

]Gdisk~R,r ,z!

]z D
L1

,

~A10!

B23~r !5S 2
]Gcyl~R,r ,,cyl ,,cyl/2!

]z D
,cyl/2

1

1S 2
]Gcyl~R,r ,,cyl ,z!

]z D
~L2,cyl/2!1

,

B24~r !5
1ring~r !

2
1

S 2
]Gring~R2,head/2,r ,z!

]z D
~L2,cyl/2!1

,

with 1ring(r )51 if R2,head<r<R and 0 otherwise,

B315S 2
]Gcyl~R,r ,L,L2,cyl/2!

]r D
R1

,

B325S 2
]Gdisk~R,r ,,cyl/2!

]r D
R1

1S 2
]Gdisk~R,r ,L2,cyl/2!

]r D
R1

,

~A11!

B335S 2
]Gcyl~R,r ,,cyl/2,0!

]r D
R1

1S 2
]Gcyl~R,r ,,cyl ,L2,cyl!

]r D
R1

,
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B345S 2
]Gring~R2,head/2,r ,,cyl/2!

]r D
R1

1S 2
]Gring~R2,head/2,r ,L2,cyl/2!

]r D
R1

,

B415S 2
]Gcyl~R,R2,head/2,L,z!

]z D
L/21

,

B425
1

2
1S 2

]Gdisk~R,R2,head/2,L !

]z D
L

,

~A12!

B435S 2
]Gcyl~R,R2,head/2,,cyl ,,cyl/2!

]z D
,cyl/2

1

1S 2
]Gcyl~R,R2,head/2,,cyl ,L2,cyl/2!

]z D
~L2,cyl/2!1

,

B445
1

2
1S 2

]Gring~R2,head/2,R2,head/2,L

]z D
L1

.
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9A. Mourchid, E. Lécolier, H. van Damme, and P. Levitz, Langmuir14,
4718 ~1998!.

10T. Nicolai and S. Coccard, Eur. Phys. J. E5, 221 ~2001!.
11D. van der Beer and H. N. W. Lekkerkerker, Europhys. Lett.61, 702

~2003!.
12I. Langmuir, J. Chem. Phys.6, 873 ~1938!.
13T. Odijk, Macromolecules19, 9 ~1986!.
14L. Onsager, Ann. N.Y. Acad. Sci.51, 627 ~1949!.
15A. Stroobants, H. N. W. Lekkerkerker, and T. Odijk, Macromolecules19,

2232 ~1986!.
16D. Bonn, H. Kellay, H. Tanaka, G. Wedgam, and J. Meunier, Langmuir15,

7534 ~1999!.
17E. Trizac, L. Bocquet, R. Agra, J.-J. Weiss, and M. Aubouy, J. Phys.:

Condens. Matter14, 9339~2002!.
18J. D. Jackson,Classical Electrodynamics~Wiley, New York, 1975!.
19D. Chapot, L. Bocquet, and E. Trizac~unpublished!.
20L. Bocquet, E. Trizac, and M. Aubouy, J. Chem. Phys.117, 8138~2002!.
21E. Trizac, Phys. Rev. E62, R1465~2000!.
22R. J. F. Leote de Carvalho, E. Trizac, and J. P. Hansen, Phys. Rev. E61,

1634 ~2000!.

3982 J. Chem. Phys., Vol. 120, No. 8, 22 February 2004 Chapot, Bocquet, and Trizac

Downloaded 10 Mar 2004 to 193.55.10.104. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


