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In this paper we propose a framework allowing one to compute the effective interactions between
two anisotropic macromolecules, thereby generalizing the Derjaguin, Landau, Verwey, and
Overbeek theoryE. J. W. Verwey and J. T. G. Overbe€kheory of the Stability of Lyophobic
Colloids (Elsevier, Amsterdam, 194Bto nonspherical finite size colloids. We show in particular
that the effective interaction potential remains anisotropic at all distances and provide an expression
for the anisotropy factor. We then apply this framework to the case of finite rod-like
polyelectrolytes. The calculation of the interaction energy requires the numerical computation of the
surface charge profiles, which result here from a constant surface potential on the rod-like colloids.
However, a simplified analytical description is proposed, leading to an excellent agreement with the
full numerical solution. Conclusions on the phase properties of rod-like colloids are proposed in this
context. © 2004 American Institute of Physic§DOI: 10.1063/1.164261]7

I. INTRODUCTION TMV or fd virus, V,Os ribbons, Boehmite rods, ej¢’

L disk-like shapes(e.g., for clays, as laponite, bentonite,
The DLVO theory, named after Derjaguin, Landau, Ver etc).8~! Since the seminal work of Langmuir on bentonite

wey, and Overbeekjs one of the most influential and still : . :
. - . . clay particles published in 1938 these systems have been
very important descriptions of charged colloidal suspensions

It was developed more than 50 years ago to rationalize thiehetOk}JeCt. oftc?nsm:erz:]ble a;[tenn.(:.n,mm psrtlcu!artln the tcon-
stability of lyophobic colloidal suspensions. One specific ext of onientational phase transitionsuch as 1sotropic 1o

prediction of the DLVO theory is the far-field pair potential ?ematlc I—::l, '?K)dd Frorr;tge(t)heorbedtlc? S'ﬁe’ th;fﬁ E[r?hn&—
between two spherical colloids of like radiiwhich, within a lons were first addressed by Unsagerho showed that the

linearization approximation, takes a Yukawa form: nematic phase was stabilized at high density by purely en-
tropic effects. The extension to charged rods has been recon-

2 exp(— kpr) sidered more recently by Stroobaetsal,'® showing that the

r ' 1) electrostatic interaction between the polyelectrolytes lead to

a twisting effect which enhances the concentration at the I-N

whereZ is the valence of the objeat,the elementary charge, transition. The picture of Onsager correctly reproduces the
andxp denotes the inverse Debye screening length. The latexperimental results for highly disymmetric particles, such
ter is defined in terms of the micro-ions bulk densitjes}  as TMV or fd viruses:* However in many anisotropic sys-
(with valencieq(z,}) askf=4m{gS p,2;. Atthe levelof a  tems, a gelation occurs before any I-N transifi§d. Ac-
dielectric continuum apprOXimation for the solvent with per- Cording to the DLVO theory, ge|a‘[ion is usua”y assumed to
mittivity €, the Bjerrum length{g is defined asfg  result from the presence of van der Waals attraction between
=e”/(4mekgT), where kgT is the thermal energyfs  the macromolecules, which overcome at high salinity the
=7 A for water at room temperature. Note that the Debyedouble layer repulsion. However, the origin of gelation in
screening factork , does characterize the decay rate of themany rod- and platelet-like systems remains quite
interaction potential in the far field region, therefore provid- 5pscuré 916 The “gel” denomination is also misleading in
ing an experimental measurement of the screening factafsme cases since the texture of the “gelled” system may be
from interaction force measuremerigee, e.g., Ref.)2 closer to a glassy like phase, in which the orientational and

However, in the colloid world, the spherical shape is notyangjational degrees of freedom are fro3&H The origin of
the rule and many macromolecules are intrinsically veryg,ch a glass-like transition is still under debate.

z%e?

exd kpa]
Ugr)= yp

1+ KDa

anistropic: rod-like or ribbon-like shapg®NA molecules, In this paper, we shall stay at a more “microscopic”
level and consider the effects of anisotropy on the interaction

3Electronic mail: Ibocquet@Ipmen.univ-lyon1.fr between two macromolecules, much in the spirit of the
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P ( 7,) ~ 2¢ cosh(kpa) exp(—kpr) valid.for di_stances betw_ee_n lthe ok_)jects Igrg_er than their typi-
dre r cal size(this precludes infinite objedtsThis is anyway the
case for many macromoleculésaponite clays, Boehmite
rods, eto.
The purpose of the present paper is twofold.
q _ (1) We shall first describe in a general way the far field
® (I’(T') = ’gg'ﬂ(f‘m—rl interaction between two anisotrop?c macromé/lecules. This
will lead to a generalized DLVO interaction between two
x nonspherical molecules, with a formal expression of the an-
’ isotropic interaction factor.
q (2) We shall then apply these results to the case of finite
cylinders. A by-product of this part of the work is the charge
FIG. 1. lllustration of the anisotropic effect. In theand z directions, the  carried by the finite cylinder and a description of the edge
Lanr—figilgt:r(])éeentials differ from a factor costfa) which does not vanish at  offacts on the cylinders. An approximate analytical model is
Y ’ proposed yielding results in good agreement with humerical
calculations. Note that we chose the finite cylinder geometry,
not only for its relevance for polyelectrolytes, but also be-
DLVO approach. One specific question we raise is the fol-cause we expect edge effects to be particularly marked. This
lowing. We consider two anisotropic particles, separated by geometry is therefore a “benchmark” for the study of aniso-
“large” distance (i.e., a distance larger than their typical tropic electrostatic interactions.
dimensiona). Can the electrostatic interaction between these  As in the original calculation of Verwey and Overbekek,
two individual objects be modeled by the previous DLVO the macromolecules are specified by a constant electrostatic
result, i.e., is the anisotropy lost for large distances? This ipotential on their surfaces and the electrostatic potential in
of course the case in the absence of ¥aMoes this result the electrolyte solution is described at the level of the linear-
generalize with an electrolyte? ized mean-field Poisson—Boltzmann equation. However we
Before delving into the details, let us first consider awill show extensively in a subsequent pajehat this as-
much simpler problem, namely that of two identical chargessumption is justified for colloids bearing a large constant
g, with positionsz=+a/2 along thez axis (a fixed) and charge on their surfacéS.For small surface charges, the
embedded in an electrolytd): what is the electrostatic po- sketch of resolution presented thereafter can also be easily
tential ¢ created by these two charges at large distances? adapted.
Naively, one would expect that the anisotropy is lost for ~ This paper is organized as follows: We begin by present-
large distancesi.e., distances larger than the siaeof the ing the general method we have developed to construct the
object, or larger than the Debye lengthc¢d) and the poten- solution of the problem. Then we deduce the general formula

— dme

tial should reduce to its Yukawa form for the interaction between two anisotropic colloids at large
2q expl — ko) d?stances. Th_is yieI(_JIs a formal expression of the above-
O(r)y=— ——. discussed anisotropic factors. We then apply this general
4me r method to the specific case of finite cylinders. We first obtain

But this is actuallynot the case! This can be understood by the charge distributions on the cylinder, exhibiting the so-
computing—within a linear Debye—tdlel-type theory—the called edge effects. The influence of electrolyte concentra-
potential at large distances in tk@ndz directions: along the tion and finite-size effects are discussed. An approximate

axis x, one gets as expected analytical model is eventually proposed to describe these ef-
2 fects, yielding results in quantitative agreement with the nu-
®(r)= 29 exp(—«pr) merical solution.
4d1e r

to lowest order ira/r; but on thez axis, one gets at the same

order Il. GENERAL CONSIDERATIONS AND DESCRIPTION
2q cosh kpa) exp(— kpr) OF THE PROBLEM
o(r)= 47e r ' A. Method of resolution: The auxiliary surface charge
There is consequently a residual anistropy factbere We consider a single charged macromolecule embeded
coshpa)] between the two directions, which does not dis-in an infinite electrolyte solution. The solution is character-
appear at large distancesrom the chargesFig. 1). ized by a Debye screening lengtty, = 1/kp and as empha-

The same result is expected to hold for anisotropic macsized earlier, we assume that the electrostatic potential at the
romolecules, with a residual and potentially strong anisotsurface of the macromoleculd,, is held constant.The
ropy at large distances. The corresponding generalization aflectrical double layer around the macromolecule is de-
the DLVO theory is thus required. We emphasize immedi-scribed at the level of the linearized Poisson—Boltzmann
ately that the proposed description is mostly relevant in theheory. This relies on a mean-field description of the micro-
case of moderately disymmetric objects, i.e., not too largéon clouds, together with a small potential assumption. An
aspect ratio, since the interaction energy we shall compute isxtensive discussion of all these assumptions can be found in

Downloaded 10 Mar 2004 to 193.55.10.104. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 120, No. 8, 22 February 2004 Interaction between charged anisotropic macromolecules 3971

for reC A®(r)=«3d(r),
for reC  AD(r)=x3d(r), (5)
for re ®(r)=d,.

The corresponding surface charge on the moleculejs

defined here in terms of the solutidpy,,(r) of the previous
system of equations:

(f?q)fuu(r)) _(07q’fuu(r)) } ©
3 st

o(=€|—3n an

Of course, the solution of E(5), ®y,(r), reduces to
the solution of EQ.(2), ®empyfr), outside the macromol-
ecule. This matching originates in the unicity theorem for the
operator— A + «2 with Neumann or Dirichlet boundary con-
ditions (see Ref. 18 for a similar result concerning the bare
FIG. 2. Geometry of the problem. A macromolecdlewith a surface po- | aplace operaton).

tential®=d,, i§ immersed in an infinite electrolyte. The permittivity of the Now, the solution of Eq(5), @4, (r) can be defined in
macromolecule is assumed to be much lower than that of the sohagst), fth f harde
so that the electrostatic potential is assumed to be constant in the intericgprmS 0 € surtace charge

of C.

<I>fuu<r)=f jE?r(r')G(r,r')dsz @)

Refs. 1 and 20. We anticipate, however, that the assumptiqhere G(r,r') is the screened electrostatic Green function,
of a constant potential at the macromolecule boundary natLt_;(r r')y=exp(rplr —r'|)/(4melr—r’]). The unknown
rally emerges as aaffective conditiorto describe correctly auxiliary chargep, is found by inverting the boundary con-

the far field obtained within the full nonlinear Poisson— gition on the macromolecule. This can be explicitly written
Boltzmann theory, for colloids with a large bare charge, pro-4q- for any point on the molecule

vided kpa is not too smalf®°

In this context, outside the macromolecule, the electro-
static potential obeys the linearized Poisson—Boltzmann
(LPB) equation,

¢0=f L?&(r’)G(r,r’)dS’. (8)

The overall result of these general considerations is a

AD(r)= kb D(r), (20 formal solution of the LPB equation, E¢), for any point
together with the boundary condition on the molecule sur°utside the macromolecule:
face, ~

D(r)=,. 3) CI>(r)=ef La(r )G(r,r")dS 9
Note that we assume that the macromolecule interior igyith the auxiliary chargé defined in Eq(8).
empty of charges, so tha(r)=®, for any pointr inside To get back to the “real” charge on the macromolecule,
the macroiorthis amounts to writing\d(r)=0]. one has to compute the surface charge density as a function

The surface charge density, is then obtained from the of the auxiliary quantityz. Using the definition
derivative of the electrostatic potential at the molecule sur-

face: IP(r)
o(r)=—¢
I N Jye
r)=— —_— y 4 . . .
o(n) 6( 0n)2+ @ on any pointr on the colloid surfac&, one obtains:
wheren is the (outen unitary vector perpendicular & and -, AG(r',r] ,
the notation ¢d®/an)y + stands fom-V® (Fig. 2. o(r)= f f Eo(r N~ —n E+dS : (10

The standard Green function formalism is too cumber-
some to be applied in its simplest version to solve the previ- In practice, the calculation aF which requires the in-
ous equations—EQq$2) and(3). This is due to the existence version of the boundary condition, E@), can be performed
of a nonvanishing excluded region for the microidimside  analytically for simple geometries only, spheres or infinite
the macromolecu)e where the LPB equation, EqR), does rods (see the followin} For a more complex case, such
not apply. In other words, the relevant Green’s function foras finite cylinders as considered in this paper, a numerical
the problem depends on particular shape and size, whictalculation has to be performed to compute the inverse ma-
seriously limit its practical interest. To circumvent this diffi- trix of G(r,r") on the(discretized macroion. We shall show,
culty, we have therefore introduced an auxilary system, irhowever, that a simple model can be proposed which yields
which the LPB equation applies everywhere in the volumeresults in quantitative agreement with the numerical
This is defined as calculation.
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In the case of a given surface charge), this method of 171) w
resolution can also be used to calculate the electrostatic po- P
tential ®(r) outside the colloid by computing the auxiliary
chargeo(r') at any pointr’ of X using Eq.(10) and then T
applying Eq.(9). Once again, the auxiliary chargeis the \g d= 7'/2 = _17 &Z/
most relevant parameter to deal with the electrostatic poten- Y1 2
tial created by a colloid immersed in an ionic fluid. il
B. The spherical case as an illustrative example FIG. 3. Calculation of the electrostatic interaction between two disymmetric

] ] _macromolecules. An arbitrary cent€;, a unit vectory;, and a rotation
Before going further, we come back to the simple spheri-angle ¢; are defined for each molecule. We denoter a§0,0,| the dis-

cal problem, where all previous different quantities, such agance between the two molecules, while the unit veetds defined asi
the bare and auxiliary surface charge, can be explicitly com= ©192//010,|. We eventually introduce the bisector plahand the
. . " . intersection point O betweell andO,0,.
puted either by solving the LPB equation straightforwardly,
or by using the above-sketched auxiliary charge method.
We consider an empty sphe¥eof radiusa, at a constant
surface potentiefb,. On the one hand, the solution of the We consider two colloids;; (i=1,2) separated by a dis-

LPB equation is the usual Yukawa potential: tancer much larger than the typical siZ&of the colloids. As
—kp(r—a) we already noticed in Sec. I, it is important to note that the
O(ry=bja——. (12) restriction r=D makes sense for moderately disymmetric
r macromolecules only. We assume at this level that the charge
The surface charge is defined as profilesoi(r), and equivalentlys;(r), are known. The posi-
tion of each colloid; is characterized by fixing @omewhat
o= — e@(rza) arbitrary) origin O; for the molecule(this may coincide for
dr example with the colloid center if it is symmetrigaDn the
and is therefore given by other hand, we assume that the orientation of the anisotropic
1 colloid is described by a unit vector pointing into a direc-
_ o tion ; and an anglep; corresponding to a rotation af
o=exp| 1+ K )(DO' (12 aroundu; . We finally define the colloid—colloid direction

using the unit vectou=0,0,/|0,0,| and introduce the
bisector plane]l, of [O,0,] and O the intersection ofl1
with (0405,). It will prove useful to introduce of system of
coordinate§ O,x,y,z}, with the x axis corresponding to the
axis (0,0,) (see Fig. 3 The distance betwee® and a
point P is denoted ap.

N We shall estimate the interaction for¢acting on one
o= exp[1+coth(kpa)]Py. (13 macromolecule due to the othdsy integrating the electro-

Itis then straightforward to show that performing the integralstatic stress tensofT, defined a¥

in Eq. (10) allows one to recover the above-obtained surface

charge density, Eq12). -
This simple example illustrates the difference between T=

the bare and auxiliary problems which we have introduced in

the previous section and two ways to calculate the realvherel is the identity tensoi the electrostatic field, ane

chargeo as a function ofb,. The first method could only be the hydrostatic pressure.

used because we knew the formal solution of LPB for a  The force acting on the macromolec@gcan be written

sphere at fixed potential but this is an exception rather thaaccordingly as

the rule. On the contrary, the auxiliary charge method, even

On the other hand, the above-described auxiliary prob
lem consists in a spher& filled with the electrolyte.
Using the screened electrostatic Green funct®(r,r’)
=exp(—«xp|r—r'|)/(4melr—r’]), one may invert the inte-
gral equation, Eq.8), to obtain the(uniform) auxiliary
charge:

2

eE“\ -
P+ T)I—eE@E, (14)

if it seems less straightforward in this case, is a systematic _ _f f =
: . Fo= TdS (15
way to compute the solution of LPB for given boundary I
conditions.
We now turn to the calculation of the interaction energyNote that the integral runs over the bisector surfbiceand

between two macromolecules. not the colloid surface. This is a consequence of the fact that
the divergence of the eletrostatic stress ten3owanishes
outside the macroions.

IIl. EAR-FIELD INTERACTION BETWEEN We emphasize that the following calculations are con-

ANISOTROPIC HIGHLY CHARGED COLLOIDS ducted in the far field limit where the distanceés larger than

the Debye lengthlf = KBl. This will allow us to expand the
Before focusing on a specific geometry, we first use thevarious quantities in powers @f/r. No specific assumption
previous results to describe the interaction between two aris done however on the ratio between the typical size of the
isotropic charged macromolecules. macromoleculea, and{p .
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Hydrostatic equilibrium and (linearized Poisson—
Boltzmann equations, respectively, grad p+pE=0 and
AD=xZ®d, allow us to writeP= P+ ex3®?/2. Note that
the linearization of the PB equation is fully justified in the
present case since in the far field limitt ;1) the dimen-
sionless electrostatic potentiakP/kgT is expected to be
small. One therefore obtains

=

T=

e . B,
P+ lekdd2— EEZ) | -e(ERE-E)I. (16

We denoteE, the component ok in the directione,
a=x, Y,z Then, forPeIl:E,, E,= O(p/r)E,. Therefore,
E?=EZ[1+O(p?r?)] andE,Ez—E2S,5=E;+ O(p/r?).

This allows one to rewrite the forde, acting on colloid
2 as

Fzz[ f fng[Kgqﬂ(p)—Ei(m]]ds (7

Both the potentiafb and the electric field, in Eq. (17) can

be estimated from the solution for the potential created by a

Interaction between charged anisotropic macromolecules 3973
& on the mediator planél is written as the sum of the
contributions due to each colloidy=®;+d,:

~ ~ e kpf
¢(P):(Zlfl(ul)+zzf2(u2))m- (23
Note that the superposition assumption for the potential is
justified in the far field limit, where one may neglect mutual
polarization effects. The same holds for the electric field:
E.=E;+E,, leading to

—Kpf

Ey=kp(Z1f1(Uy) — Zof 5(Up)) u. (24)

darer

Introducing these expressions into Etj7) yields the follow-
ing expression for the forck,:

_ 2K202122f1(ul)f2(uz)
(47)%€

2

e*ZKD \/derpz

[

Xfo d?+p @9

2mwpdp 5

single colloid, as obtained in the previous paragraph, as we

now show. First Eq(9) can be written

d)(r)zf LTr(r’)

For distances much larger than the typical size of the
macromolecule’; , one might expand the previous equation
for smallr’ to obtain the leading large contribution:

exp(— kpl)
darer

exp(— kplr—r'l)
4arelr—r’|

ds'. (18

®(r)= f Jga(r’)exq—KDur-r’)dS’,

(19
with u, =r/r. We introduce at this point the total auxialiary
chargeZi=f2i o(r')dS and the angular distributiofy(P)
defined as

fi(P)=1/ZJ JE?T(r')exq—KDu,-r’)dS’. (20)

In the far field regionr>K,§l, it is legitimate to expand the
integrand in powers ob/r and keep only the leading order:
usinge—sz\/d2+p2: e—KDr(1+4p2/r2+O(p4/r4)), one may com-
pute the integral to get

Elzzfl(ul)fz(uz)e_KDr

Fo= 4rer

KDU, (26)

which is always repulsivé! This force derives form the po-

tential energy(again at leading order irpr):

21’22f 1(ug) fo(up)e o
Aer '

Upsr)= (27)
This expression for the interaction energy between the
two macromolecules is one of the main results of this paper.
This generalizes the DLVO calculation for anisotropic mol-
ecules. Note that, in view of the various expansions per-
formed, this expression is valid in the far-field limit, i.e., for

Using these definitions, one gets eventually the electrostatititerparticle distances larger than both the Debye length

potential at pointP as

zifi(P)eikDr

Ay e

(21)

At the orderO(p/r), it is straightforward to check that one
might replaceu, by u in the anisotropic factorf; of the
previous equationf; only depends on the angular coordi-
nates(characterized by; and ¢;). Note that the dependence
on ¢; disappears for axisymmetric colloids. From now on,
we will only consider such objects so that may write
=f;(u;) for simplification. The potential created by colldid
therefore reads

Z,fi(uj)e ~o’

PP = e

(22)
In ther>;<,51 limit, the corresponding electric field reduces
to E;= £ xp®;(P)u, with a plus(respectively, minussign
for i=1 (respectivelyj =2). The total electrostatic potential

and the typical size of the colloid (say, to fix the ideas,
>4y, 4a).

As anticipated in Sec. I, the interaction does not reduce
at any distance to the isotropic DLVO result, obtained for
spheres. The anisotropy of the interaction is described by the
angular distributionf;(u;) and f,(u,) defined in Eq.(20).

The latter is defined in terms of tiauxiliary) charge distri-
bution on the macromolecules(r), or equivalently as a
function of the bare surface charg€) using Eq.(10).

We conclude this part by showing that the previous ex-
pression for the interaction energy indeed reduces to the
standard DLVO expression for sphei@s it shouldl. In this
case, the bare and auxiliary surface charges on one sphere
have-been computed in the previous section, in Eif3.and
(13). On the other hand, the angular factofor each sphere
i can be easily computed and reducesfte sinhkpa/kpa.

The latter is of course independent of any angular variable.
Gathering these results, one retrieves the DLVO expression,

Eq. (1):
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U _ eKDa ZzlzzeiKDr 28 /—’_\
12711+ kpa Amer 28 K
3T I%,

A final note concerns the case of colloids with vanishing
internal volumes. In the latter case, the bare and auxiliary
charge coincideg= o, and our calculation leads back to the

expression found in a different context by Trizeical :*’ z,T \FZ‘\L__/’/
‘ L
Ugo= f1(up)fa(uy). (29)

4arer

IV. CHARGE DISTRIBUTION ON A FINITE ROD-LIKE
POLYELECTROLYTE

We now use the previous results to predict the far field v

interaction between two finite rod-like polyelectrolytes. In A | cald omed by d oo
; ; : ; FIG. 4. The numerical calculations are performed by decomposing the cyl-
contrast to the spherical case, briefly considered in Sec. ”llhdel’C into small cylindersC; of radiusR and heightt, and in ringsR, of

the surface charge cannot be obtained analytically in thi$adii ro and of width¢. Each of these elementary surfaces carry a uniform
situation. Therefore, we shall first obtain numerically the sursurface charge density, . The numerical calculations were performed with
face charge on the cylinder, by solving E8). We will then  ¢<0.0%.
propose a simple analytical model yielding an approximate
surface charge in good agreement with the “exact” numeri-
cal results. .
We emphasize at this point that the finite cylinder geom-B' Reduced Green function
etry should be merely considered here as a generic situation As mentioned earlier, the previous inversion requires
where end effects are important. The present descriptioknowledge of the potential created by an elementary ring or
could be easily extended to other related geometries, likeylinder, which we now compute. To this end, we make use
sphero-cylinders, ellipsoids, etc., though no fundamental difof the explicit expression of the electrostatic potential cre-
ference is however expected. ated by a disk of radiuR at heighz’ carrying a uniform
surface charge densithere equal to unityand immersed in
an electrolyte with Debye lengtfy, . This expression can be
We now consider a cylindegf with radiusR and length  found in Ref. 22 and reads:
L, at a contant potentiab,. The resolution first starts with
the computation of the auxiliary surface charge by inverting o o _ R [ J1(kR)Jo(kT)
Eg. (8). This calculation involves the Green function aisd R.1.2) = 2¢ Jo \/kZT(,%
G(r,r"), G(r,r')=exp(rwplr—r'|)/(4melr—r1']), ex-
pressing the potential at poimt created by a unit point X exp( — K2+ k3|z—2'|)dk (32)
charge inr. However due to the cylindrical symmetry of the ) o
problem, one might reduce the dimensionality of the problemVith Jo andJ, the Bessel functions of order 0 and 1. This is
by integrating the Green function on a riigr small cylin-  namely the potential created by disk with radiusR at a

den whose center matches the axis of symmetry of the cylPOINt M, with cylindrical coordinategr,z} (the origin being
inder, as illustrated in Fig. 4. This specific problem is con-Placed at the center of the djsiiote also that the dimension

sidered in the following. Once the corresponding reduced’ Guisk IS given byR/e, sinceGy is the potential created

Green function is known, the numerical task simplifies into aPY & unit surface charge. _
Now the potentiatl G.(R,r,z) created, at a poiri¥l, by

standard inversion problem. First, the cylindéis decom- it . Y ) ‘ /
an infinitesimalcylinder with heightdz’, radiusR, and unit

posed into the superposition of small cylindéos the lateral .
surface or rings (on the head surfacksdenoted ag; and surface charge can be deduced directly as

A. Sketch of the numerical method

Ry, With dimension¢ and surface charge density (see Gl R.T,2)
Fig. 4). dGey(R,r,z)=dz’ 'sﬁR — (32)
Then Eq.(8) is discretized according to
This leads to
VJEE,@(rJ):E B'iGi(ri,rj)=¢)0, (30) RdZ' wao(kr)Jo(kR)
i dGey(R,r,2)= f s
2¢ Jo k +kp
whereG;(r;,r;) is the electrostatic potential created on the wext — Vk2+ k2| z— 2" dk 33
cylinderC; or ring R; by the cylinderC; or ring R;, carrying K ol hdk (33
a unit surface charge density. where the identity ¢/dx)[xJ;(X)]=xJy(X) has been used.
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As a result, the electrostatic potential created by a cylin- 3
der of radiusR, height ¢, and unit surface charge, with a
center located in (@;), is given by

N
153
T

ocyl(z)/ocyl(O)
[\]
log,, [ccyl(z)/dcyl(O)-l ]

A S o
T 17

, _ R (z+¢r2 , Ock\]o(kr)\]o(kR)
Col R g | o TG
xexp — Vk?+ k3|z—2"|)dk. (34

Along the same lines, the potenti@}(ro,r,z) created
by the ring of radiugy and of thicknes¢ can be expressed _ _
in terms of G 4(r,r,z) according to FIG. 5. Plot of the reduced surface charge on the lateral side of the cylinder,

d@isi(T0:,2) 9 In[0,(2/R)/ 07¢;(0)— 1]. The aspect ratio of the cylinder lYR=20 and
the screening factor ispR=1.0. Note thatz is in units of the cylinder
radiusR. The solid line is the result of the full numerical calculations, while

1
L=aY
v

Il
L%
T

Giing(ro,r:2)=Gyisro+€/121,2) = Ggis ro— €121, 2),

(35) the dashed line is the result of the “four parameter” model described in the
Appendix. The dotted line is thdreduced auxiliary surface charge
whereGy(R,r,2) is given above in Eq(31). oe(2/R)/ 0 (0). Note that the edge effect spans over a smaller distance
Note that in order to avoid numerical problems, the pre_]tg: ?;aa}lusxmary surface charge, compared to the “real” charge. See the text
vious integrals must be reformulated specifically for the case

z=7'.

C. Calculation of the surface charge 1. Surface charge profiles
Inversion of Eq.(30) yields the auxiliary surface charge

o. The “real” surface chargeg, can be deduced frormr

using Eqg.(10). In a discretized form, this reads

We now present the results for the surface charges on the
lateral and the head of the cylinder, that we shall denote,
respectively, asr(z) and opead2). We first focus on the

Viel,a(r)=—2 7

IG gisk
0z

i

shape of the profiles.
aG;i(ry,ry) (36) Typical results for these profiles are shown in Figs. 5
an; ' and 6.

Qualitatively, the main striking feature of these profiles
whereG; takes either the cylinder or the ring form, obtainedis the diverging surface charge close to the edges of the
in Egs.(34) and(35). This equation involves various deriva- cylinder. This is of course the well-known edge effect, which
tives of the Green function at the cylinder surface, namely, is expected for charged objects with uniform potential. In the

absence of electrolyte«g =0), the divergence of the surface
(&ch,) (&ch|) (aGdisk) charge in the vicinity of an edge is a classical re§tifor an
ar ' 9z |’ ar ' infinite conducting diedre with an edge anglethe surface
=R =R charge densityr is found to diverge in the vicinity of the
It will turn out to be useful to write all the results in €99€ ap™#~*, wherep is the distance to the eddgIn the
terms of dimensionless variables. All the lengilssich as Present geometry, corrgspond|[1(i:;/333=3w/2, the surface
{s, K,gl, or L) are expressed in units of the radius of thecharge IS expected to d|vergg As™. For a_charge(_j object
cylinder R, e.g.,L3M=]/R. In the same way, the electro- embedded in an electrolyte, |.&D¢Q, the situation is more
static potential® and surface charge densitiesbecome, complex. However the dlverg'ence is expected to remain, as
respectively,®m=ed/kgT and c?M=47¢gRole where 2N be understood from a simple argument. As mentioned
we recall thatfg is the Bjerrum length defined byg
=e?/(4mekgT) (for water at room temperaturég=7 A).
We also introduce dimensionless Green functionsGa&™
=eG/R (see the previous remark on the dimensionX)f
From now on, the index “adim” will be omitted to simplify
notations.

log, [0, (00, (O)1]

Ghead(r):’ Cpead(?)

D. Numerical results

The previous equations are easily implemented numeri-
cally, provided the various expressions of the Green func- i
tions are written in terms of well-converging integrals as
mentioned eatrlier. _ )

. . ] FIG. 6. Same as Fig. 5, but for the surface charge profile on the head of the

To fix ideas the potential on the macromolecule is as-

cylinder I oyead Z/R)/ ohead0)—1]. We have also plotted the predicted
sumed to b&/,=100mV, so thatb=4 (see however Refs. galing for the divergence in the absence of sa,R=0,

20 and 19 for further justifications of this chojce Thead Z/R) head 0) = (1— (r/R)?) ~¥ (open circles
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in Sec. Il B, the surface charge on a sphere with radiaad T T T T T
constant potentia®, reads

0'=6KD(1+ é)cpo EE-

ge

avera;
cyl

[see Eq(12)]. Now using this relationship for a nonspherical ©

object, one finds that the surface chakgealiverges at the

points where the radius of curvatuaevanishes.

Figures 5 and 6 show that the auxiliary surface charge

also exhibits an edge effect. However the latter is more lo- 0 10

calized close to the edge, compared to the “real” surface

chargeo. As for o, the divergence ofr can be understood FIG. 7. Dependence of the averaged surface charge on the cytrfifg?

using the results for the Sph6fé,= exp[ 1+ coth(kpa) Py, asa fu_nction of th_e aspect ratigR. The s_olid line is the result of the full

which indeed diverges as the radius of curvaieanishes. numerical calcula_tlon, \_Nhlle the dashgd line corresponds to the four param-
- . eter model described in the Appendix. From bottom to top, the screening

However, the transition from a smailregion to a larg&  tactors arexyR=0.2, koR=0.5, andkpR=1.0. Thel == asymptotic val-

region is much more marked for the auxiliary surface chargees are in agreement with the analytic result, @g).

than for the bare charge. Indeed from the previous expres-

sions foro and o, one getso(a)=o(a==*)+O(1/kpa),

while o(a) =o(a==)+ O(exfd — kpa]). The largea limit is _ _

therefore approached much more quickly for the auxiliaryiVely denoted aZy€ and Zne,# (€ being the elementary

charge than for the bare charge, which is in agreement witG12r98- It proves in fact useful to consider the average sur-

verage_
the stronger localization of the divergence of the auxiliary/@ce charges on the lateral sqrfaa%/erag;z,at/ (ZWRIE)
charge close to the edge. and on each head of the cylinderyiq°= Zhead (7R?)

We now report in more detail on the variations of these(nOte that in the following we plot the above-introduaed
density profiles when the size of the cylinderand the —ducedsurface charge densities as =4m(gRo/€). These

screening Iengtfkgl are varied. Generally speaking, the ge_quan_tities: are plotted, respecf[ively, in Figs._ 7 and 8 as a
ometry of the problem is characterized by two dimensionles%uncuon of the length of the cylinddr/R for various screen-

quantities: the aspect ratidR and the amounts of screening '"9S #oR. In the limit of large aspect ratio, both charges
<pR. Some general trends for the surface charge proﬁlegaturate to finite values. Moreover, both charges are found to

emerge when these quantities are varied. First, the later@€ Increasing functions of the screenirgR. This is ex-
surface profiles are found to saturate as the aspectlr&Ro pected, as can be understood from the spherical test case, Eq.
goes to infinity. On the other hand, the head profile is found12): @s & benchmark.

to be barely dependent on the aspect ratio. One expects in

fact that the cylinder length will only play a role when it is

smaller or equal to the Debye lengtky', say kpL<«@, V. ANALYTICAL DESCRIPTION

with « of the order of a few units to fix ideas. Therefore for OF THE SURFACE CHARGE

a given screeningpR, the profile is expected to saturate for
aspect ratio larger thab/R~ a/(xpR). This rule of thumb

15 20 25 30
L/R

In this section, we propose a very simplified description
. , . . of the electrostatic problem, which has the virtue of provid-
is confirmed wherkpR is varied. In the present study, we . . . . .
I . o . ; ing analytic estimates of the surface charges. This estimate
have verified this assertion in the intervapRe[0.1;1] ] L . :
will prove usefullin fineto compute the interaction between

(data .not shown Typically one fmds{.)‘ 5. Finally it is in . two rod-like polyelectrolytes. A more detailed approach, in-
teresting to compare both profiles with the edge effect diver-, . - . .

. : P ; cluding a description of the edge effect, is proposed in the
gence predicted in thep =0 limit, as argued earlier. Only

the charge profile on the head is found to be in semiquanti'—b‘ppendlx'

tative agreement with this scaling, as shown in Fig. 6. Note
that in order to symmetrize the predicted divergence, we

compare the head profile withoneadl)/ohead0)=(1 T
—(r/R)?) Y3, On the other hand this prediction is found to ok 4
fail for the cylinder surface charge. This is expected since in 4 - ]
most of the present calculations, the lengtbf the cylinder T

is larger than the Debye length, so that the=0 profile is g“g“' —~——— N
only a very crude approximation. On the other hand, the st 3F -

radius of the cylinder is always smaller than the Debye
length considered, and for the head, #e=0 profile should
be a fair but not so bad approximation fepR<1.

0 ) ) 6 5 10
2. Total lateral and head charge L/R

A more global quantity of interest is the total charge ongig. 8. same as Fig. 7, but with the charge on the head of the cylinder,
the lateral surfaces and on each head of the cylinder, respeggeiase
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A. Uniform head and lateral surface charges

We consider a “zeroth-order” approximation of the

problem, consisting in a cylinder with uniform charges on
the head and on the lateral sides. More specifically, we as-

sume a uniformauxiliary charge profile. We denoie.,, and

Theagthe auxiliary surface charge on the cylinder and on the

head, and by} andoeaqthe corresponding “real” surface
charges.

At this level of approximation, E(:30) relating theaux-
iliary surface charge to the potentiab, reduces to a 22
problem:

CDO:E'cyIchI(RvRaO)+25’hearphea({RvR:L/2)v
~ ~ (37
Dy= a'cyIchI( R,0L/2) + 0head Ghead R,0,0)

+Ghead R,OL)].

The surface charges on the head and on the lateral side

of the cylinder are then obtained using E#0) as

Oey|— O e — g
cyl cyl ar - head
( aGheac(Rar,l—/Z))
ar Rﬁ
38
~ achI( R!oaz) ~ ( )
Ohead Ocyl| — oz + Ohead
L2+

( (?Ghea({R,r,z))
0z o+

Interaction between charged anisotropic macromolecules 3977

Gathering results, we obtain after inversion of Egj7):

Suniform_ P
o lo(kpR)Ko(kpR)’
(41)
uniform_ 2kpR®g - 1
head ™1 _ g~ woR 2lo(kpR) |

We now denote these profiles as “uniform” to avoid any
confusion with the numerical results. Using E®8), one
gets the “real” surface charge densities:

giniom_ g, kpRK;(kpR)
Ko(kpR)
e (42
uniform__ e DR(DO kpR®g

Thead 31 (kpR)Ko(kpR) = 1— e *oR

x| 1

B ZIO(KDR)

In the limit of large xpR, the surface charges are linear
in kpR. This is expected since in this limit, one retrieves the
planar results for whiclre k®y.

The previous result foag;;ff"m corresponds to the semi-
infinite cylinder limit?2° One may also verify in Fig. 7 that
this result does indeed match the- limit of the averaged
cylinder profile. Note that in contrast, one may verify that the
uniform surface charge on the head2'q™ is only a fair
approximation to the numerically computed averaged surface
charge, even in the—«. This is because for the screening
considered gpR=<1), the head always feels the edge of the

cylinder.

In the previous equations, the derivatives of the Green func-
tions are expressed in terms of integrals of Bessel functionB. Toward a description of the edge effect

[see Eqgs(31) and(34)], which have to be computed numeri-
cally for anyL and. The systems in Eq$37) and(38) can
be easily inverted to obtain the expressionsrgfi and opeaq
as a function of the aspect ratidR and screeningR.

Here we do not report the full expressions. Rather w

consider the asymptotic—oo limit, in which the surface

charges reach finite values. Note that this limit is reached fo

sizesL larger than a few Debye lengths.
In the infiniteL limit, the various Green function may be
computed, yielding

chl( R,R,0)=14(kpR)Ko(xpR),
Ggis R,R,L/2)=0,

Geyi(ROL/2)=Ko(kpR)/2, 39
Gais( R,0,0)=(1—e “oR)/2«pR.
In the same way,
—(913r)Gey(R,r =R*,0)= kpRIg(kpR)IK1(kpR),
e~ *pR
—(9192)Gy(R0z=L/2")= 5
(40)

—(919r)Ggig R,r =R, L/2)=0,
—(9192) Gy R,0z=0")=1,

e

A simple extension of the previous modelization can be
proposed: adding a “ring” on the edge of the cylinder should
allow one to capture the main features of the edge effect.
This can be done in a straightforward way, but the details of
the calculation are somewhat cumbersome. We therefore re-
port the details of this approach in the Appendix. This “four
parameters” model gives results in good agreement with the
numerical solutions. This can be seen in Figs. 7 and 8, where
the results of this model are display€ds dashed lings
against the full numerical results.

However, the interactions between two polyelectrolytes
do not involve the “real” charge, but thauxiliary charge
As we show in the following, the results of the much simpler
“uniform” approach described in the previous paragraph will
prove sufficient to describe the interaction between two rods.

VI. INTERACTION BETWEEN TWO ROD-LIKE
POLYELECTROLYTES

We eventually turn to the description of the interaction
between two rod-like polyelectrolytes. Our starting point is
the potential energy obtained in Sec. Ill, E&7). The two
crucial ingredients in this interaction energy are: the total
auxiliary chargeZ on the cylinder; and the anisotropic term,
f(P), defined in terms of the auxiliary charge profile in Eq.
(20). We recall here this expression:
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40

30

10

0 1 1 1 1 1 1) A
0 5 10 15 20 25 30 0 1.57 3.14
L/R 6

FIG. 9. Total auxiliary charga~7_tm€B/R as a function of the size of the FIG' _10' ?I%t of_lthe alniso:]ropicl_fa(l:_tor _Of thhe ﬁnitf C}Y“quﬂ)/“)f as?
cylinder L/R. The solid line corresponds to the full numerical resolution, unction o :] e tiitang e.”T e solid |r;e 'Stf € resrl.:to the mrt]egratllpréo th'
while the crosses are the result of the uniform model. The dashed line is th(343) over the numerically comptited surface charge on the cylinder. The

result of the four parameter model detailed in the Appendix. The dotted "né:ircles are the result of the uniform modske the text for detaﬂ;whilg the
corresponds to the uniform model with finite (see the text for details dashed line is the result of the four parameter model described in the Ap-

From bottom to top the screening factors argR=0.2, xoR=0.5, and pendix. The aspect ratio ie/R=8 and the screening factors argR
kpR=1.0 =0.2, 0.5 and 1.@from bottom to top for6=0).

adds to the result in Eq44) the contribution of the rings
f(P)=1/EJ f F(r')exp(— kpu,r')dS'. (43) which capture the edge effects. This model is not analytic
) either and as can be seen in Fig. 9, it does not improve much

These ingredients can be therefore easily computed from thtge agreement.

full numerical solution, once the auxiliary surface charge has . We conclude he_re that the very simple analytic expres-
been computed. sion in Eq.(44) provides a useful and trustworthy approxi-

mation for the total auxiliary charge which enters the inter-
A. Total auxiliary charge action energy, Eq(27).

We show in Fig. 9 the size dependence of the total aux-
iliary chargeZ€g /R, for various screeningspR. As can be
seen in Fig. 9, the charge is mainly linearlin

This result is compared with the predictions of the sim- ~ We report in Figs. 10 and 11 the numerical results for the
plified models we have proposed in Sec. V. Within the simpleanisotropic terms (P) for two cylinder sizesL/R=8 and
uniform surface charge model described in Sec. VA, thd./R=20. These functions have been obtained after numeri-
total auxiliary charge reads cal integration of Eq(43) using the numerical result for the
auxiliary surface charge. In these figures, the anisotropic

B. Anisotropic terms

Z=2mRLGG " 2R g - (44 terms are plotted as a function of the tilt angldetween the
Equation(41) reports the expressions of tmeducedauxil-  axiszof the cylinder considered and the unit veatidinking
iary charges(recall that in Sec. V, reduced variables havethe two cylinder centertsee, e.g., Fig. 3
been usedsr* =4mw€zRo/e). This leads eventually to the It is instructive to compare these “exact” anisotropic
following expression of the total auxiliary charge as a func-factors to the predictions of the simplified models for the
tion of the aspect ratib/R and screeningpR: surface charges discussed in Sec. V. Again, let us first con-
centrate on the unifornfauxiliary) charge model, proposed
z@:q) EE 1 n xpR in Sec. VA. In the frame of this simplified description, the
R %1 2 R Io(kpR)Ko(kpR) = 1—e *oR anisotropic factor, in Eq43), can be computed analytically
X1 2 (koR) ] (45)

This prediction is plotted as crosses on the previous figures,
showing a relatively good agreement with the “exact” nu-
merical results. The agreement might be slightly improved
by considering the complete dependence, while staying
within the uniform model. This corresponds to solving the
2X2 system of equations, E@38), with a numerical esti-
mate of the Green functions for finite We have plotted the
results of this approach as dotted lines in Fig. 9. This im-

proves slightly the agreement especially for smlalland 0 1.87 314
xkpR. We also present the results obtained using the “four
parameters” model, described in the appendix. This model FIG. 11. Same as Fig. 10 but for an aspect ratig=20.
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since the auxiliary charges are constant over the head and tioessed this effect in Sec. IVD 1. As a result, the auxiliary
lateral side of the cylinder. This leads the following expres-charge profile is more flat than the “real” charge profile. This

sion for f(6): feature allows one to understand why the uniform model
~ ~ yields results in good agreement with the numerical results

Zoy Zhead for the anisotropic factors

f(M)= 5" foy(6)+ = head 6), (46) P -

whereZ.,=27R LTrcy, is the total charge on the lateral sides v||. CONCLUSION
of the polyelectrolyte, an@pead= 2 mR%0eaqiS the charge on
the heads of the polyelectrolyte. Using Ed1) obtained
within the uniform model one has

In the present paper, we have proposed a framework
allowing one to generalize the DLVO interaction for anis-
tropic macromolecules. The central result is the electrostatic
5 ﬁ: } E(D 1 interaction energy between two anistropic macromolecules

YR 2R Oy(kpR)Ko(kpR)’

2122f 1(ug) fo(up)e o
4er '

~ g kpR®D, (47) Ugr)= (50)

ZhealR = 1 g-woR

1
2l5(kpR)

The main point resulting from Ed50) is that in a medium
with finite salt concentration, the anisotropy is remanent at
all distances. We have quantified this effect and obtained
general formulas for the anisotropic factbfu,¢) (which
only depends om for axisymmetrical objecisin Eq. (20).

- [ kpL cosé We have then applied this framework to finite rod-like cyl-
sm?-(—) inders. The previous calculations provide a simple and effi-
—_—, cient description of the interaction between two such poly-

kplL cosé . . .
(—) electrolytes. In particular, the simple uniform model leads to
2 an analytic expression for the total auxiliary charge and an-
21,(kpRSiNO) KL COSO (48) isotropic 'Ferms which enter the_z interaction energy, that _turn
fhead 0) = }‘( > ) out to be in good agreement with the full numerical solution.
With this approximation, the anisotropic factbfu) for a
This expression fof (), using the previous expressions for finite-size cylinder of lengtt. and radiusR at fixed potential
Zey and Zpeqq is plotted against the numerical results in ®o takes a simple form
Figs. 10 and 11 for two aspects ratios/R=8 and L/R 3 | Eh .
=20, 'respectlvely Th_e agreement is seen to bg surprisingly — f(u)= —=~ oyi(6)+ N ead 0). (51)
good in view of the simplicity of the modelization. z z

In these figures, we also show the prediction of the morg, ihe above expression, the auxiliary cha@e&, zhead,

detail_ed_ “four parameters” model, whit_:h in_cludes a crud_eandz as well as the anisotropy factofs,(6) and fyead 6)
description of the edge effect, as detailed in the Appendlxare given by
This approach adds a contribution from the rings to the pre-

vious anisotropic factors, 3 ﬁ: E Eq) 1
YR 2R Clg(kpR)Ko(kpR)’

and the total chargé is given in Eq.(45). On the other
hand, the expressions for anistropic factors due to the cylin
der and due to the heads read

ny|( 0):|0(KDR S'n 0)

kpRsing

zring
_'z_ fring( ‘9)1 ’2 €B KDRCI)O 1
~ - - . hea = _ A~ kpR - '
where Z,j,q=2x 2R (73+7,4) is the total charge on the R 1-e 2lo(xoR)
rings (see the Appendix for deta)lsThe contribution to the 7% 47
N . . T — Loyl head
anisotropic factor due to the rind,,q, reads explicitly:
and
. kplL cosé
fring(#) =lo(kpRsing)cosh ———|. (49 [ xpL cose)
sinf ————
As can be seen in the figures, this more detailed description f.(6)=1o(«xpRsing) e Lcosal
does not improve much the agreement compared to the much (KD—>
simpler “uniform” approach. 2

Such a good agreement using a very simple descriptiqn 21,(kpRsing) xpL cosé
of the surface charge calls for some comments. The crucial fjq.d0)= r{ 5
point is that the interaction energy involves thaxiliary
charges and not the bare charges. The full numerical resol#s will be shown in Ref. 19, the above expressions with the
tion shows in fact that the edge effect is much more markedelevant choice ofb, almost correspond to the interaction
for the auxiliary charges than for the “bare” charge, in the energy of two highly charged colloids far away from each
sense that the divergence of the surface charge occurs muother,irrespective of their bare charge

closer to the edge for the auxiliary charge. We have dis- A few further comments are in order.

KDrO Sim9
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First, the interaction energy, atfed center to center
distance between the two cylindeis found to be minimum
when the tilt angle(made between each cylinder and the
center to center directignis equal to7/2, i.e., when both
cylinders’ axis are perpendicular to the center to center vec-
tor. Apart from that, the angle between the two axis of the
cylinders is not constrained, at this level of approximation
(the two axis may equally be perpendicular or parall€his
is a consequence of retaining only the leading order
contribution in the potential, and higher order terfis L
exp(—xpr)/r' with i >1] would split the aforementioned de-
generacy, and clearly stabilize the crossed rods compared to
the parallel situation. On the other hand, the interaction is
maximized when the two rods are coaxiaanishing tilt
angle. This result somehow contrasts with the infinite rod
situation®® for which the minimum energy situation corre-
sponds to crossed rodwhich is compatible with what we
found), but with a totally different angular dependence, and
also a different distance dependence.

The anisotropic term in the interaction potential results FIG. 12. Simplified description of the edge effects.
in a coupling between orientational and translational degrees
of freedom. The strength of this anisotropy is moreover
found to increase with salt concentration. These mgredlents
suggest that at high salinity, frustrated phases might form,
independently of van der Waals forces. However a full ex-
ploration of the phase diagram of charged rods using thes
previous results is required before reaching a definite conclu-
sion on thg formation of gels in rod-like systems at large salt 2 aiéi' —d,, (A1)
concentrations, as seen experimentafty. ; J

Work along these lines is in progress.

Within the simplified analysis, and taking into account the
Symmetry of the cylinder, this equation reduces to>a44
ipversion: irrespective of,

where the summationruns overs the different parts of the
ACKNOWLEDGMENT simplified object, e.gi,= 1 stands for the center of the heads
of the cylinder;i =2 stands for the middle part of the cylin-
~ We would like to thank Miguel Aubouy for inspiring - der; whilei=3 andi=4 stand for the rings on the edges.
discussions and an enjoyable collaboration on related topicSe “Green functions'G;; are defined in terms of the Green
functionsGgisk, Gy, @andGing Whose expressions are given,
APPENDIX: A SIMPLE DESCRIPTION respectively, in EC]S(31), (34), and (35) (see~the following
OF THE EDGE EFFECT for the detailed expressions of th&4 matrixG;;). Once the
auxiliary chargeso; are known, one obtains the “bare”
chargeo everywheren the cylinder using Eq10). This can
In this Appendix a more detailed description of the edgebe written formally:
effect is proposed. We extend the model described in Sec.
V A by incorporating a specific charge on the edge of the aG(r |)
rod-like macromolecule. More specifically, we model the  &(r) E oA —— (A2)
auxiliary surface charge as the superposition of a uniform
charge on the head and on the lateral surface of the cylinder,
supplemented by a ring charge on the edge of the macromoWhere the notatlorG(r i) stands for the Green function
ecule, as shown in Fig. 12. computed at point due to charge defined earlier;d/on
From a technical point of view, we separate the ringdenotes the derivative along the normal to the surface at
charge on the edge of the molecule as a ring of raiiw®  pointr.
the head, and a ring of radil® on the lateral side of the Equation(Al) is easily inverted and the corresponding
cylinder (see Fig. 12 The extension of the lateral ring is surface charges are plotted in the previous figures, Figs. 7
denoted ag ., and that on the edgé,..q There are there- and 8. As shown on these plots, the approximate description
fore four parametersn the model: respectively, the uniform yields results in excellent agreement with the full numerical
surface charge on the heagl.,q, On the lateral side'ércyh resolution for any aspect ratio/R and screeningpR.
Bcw edge @nNd Thead edge IN the following results, we have As a consequence, despite its simplicity, the simplified
chosent ¢ ;= {ea= 0.0R. Results are only weakly depen- description of the auxiliary charges contains most of the
dent on this choice. As in Sec. VA, one has to solve(Bf),  physics of the edge effect. Also, as shown by the previous
relating the auxiliary surface charge to the potentls. argument, a better agreement is expected for laggR.

1. General framework
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2. Technical details _
o , _ , Vie{1234, (=2 o;B;(r). (A8)

The cylinder is decomposed into four different pieces: ]
(1) a lateral part of length. and radiusR, The coefficientsB;;(r) are given by
(2) two disks of radiusR, IGART.L.Z
(3) two lateral rings of radiuR, of heights€,, and of 311(2):( —L) ,

centers located if0,* (L/25 €/2)], ar R*
(4) two rings of radiusR— € ead2 and widthst peaq, . (Z):( B 9G g R,F,LI2— z))
respectively, denoted 1, 2, 3, and 4 and carrying the uniform 1 or R+
surface charge densiti@sy|, Thead Tcyledger AN T head edge
To simplify the formulation of the equations, we respectively +( _ 9GasdRI L2+ 2) ,
call Gey(ro,r,€,2) and Gying(ro,€heaaf2) the electrostatic ar R+
potentials by a cylinder of radiug, and of height¢ located B . (A9)
in (r,) and by a ring of radius, and of width¢ .qin (r,2) 813(2)=( ~ IG(R,r, €y, LI2— Eeyl2 Z))
with the origin of the coordinate@®,0) located in the center ar R+
of the cylinder or of the ring.

In order to find the auxiliary charges on the disks, rings, +( _ IGey(RT Loy LI2— Loy/2 Z)) ,
and lateral sides of the cylinder, one has to solve the 4 ar R+
linear problem, obtained from E¢30): ; (Z)_( aGring(R_eheaJZvriL/2_2)>

14 -~
Vie{1234, 3 GA;=D. o R*
' G ing(R— Cnead2 ,L/2+2)

The coefficientsh;; are given in terms of the expressions - ar .
of G, and Gig given in Egs.(34) and (35): R*

A1=Gey(RR.L.0), Bﬂ(r):( _ W) |

A1=2Ggg(RRLI2), -

(A3) B E _ aGdisk( R,r,z)
A13=2G e (R,R, £ oyi LI2— € y2), B =5+ ——, B
A14=2Ging(R— € pead2.R,L/2), IG (R gt o) (A10)
Bodr)=| = — —

A2l: chl( R!OIL!LIZ)I Jz gcyl/2+

A= Ggis R,R,0)+ Ggisi( R,O.L), (Ad) +( _ 9G(RI ey 2)

A23: chI(RyOygcylv€cyI/2)+chl(RaOy€cyl ,L—fcy|/2), 9z (L*(cy|/2)+

A24: Gring(R_ eheaJZ-OvQ + Gring(R_ ehean-OL)r 1ring(r)

Boy(r)= > +

A31=Ggy(R,R,L,LI2—€/2), (A5)

Asp= Gt RR Coyf2) + G RR.L ~ €yf2), ( - DR Cread! ‘Z)) ,

z
L—€/2)"

A33: chl(R7R1€Cy|/210)+GCy|(R1R=L_€cy|)a (AG) - - ( cyl ) .

with 1,4(r) =1 if R—{peassr<R and O otherwise,

Az4= Giing(R— €head2 R, € il 2

34 rlng( heac{ cyl ) ﬁGCw(R,r,L,L—fcw/Z)
+Gring(R_€heaJ21RvL_€cyI/2))a s ar R+'

A41: chl(R|R_€heaJZ,LyL/2)i B _( &Gdisk(R,r,€Cy|/2)>

32— |
As=Gyis R, R— €1,6ad2,0) + Gigd R,R— € pead2.L), ar Rt
A7
Ati=GoylRR— /2,0 2) (A7) . ( G R,r,L—ecw/a)
+Gey(RR—Loyl2 L —Ceyf2), o R*
(A11)

A= Gisd R— € pead2,R— €1ead2,0)
+ Gdisk( R— 1ghea\JZvR_ €heaJZvL)-

Once theo have been calculated, we getusing Eq.
(36), which reads within the simplified description:

337

[ 9Ge(R.T €y2,0)
ar -

. aGCyl(er!ecyl L= €Cyl)
ar -
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( ﬁGring(R_fheanyra€cyI/2))
Bas=| —
R+

or

o[ PR Chead2r L= (oy2)
ar R+

B, = _&chl(R,R_gheaJZ,L,Z))
" oz L/2+'
1 G g RR— Cpead2,L)
Bt - 2 .
Al2
B,.— _achl(R,R_eheaJ2,€Cy|,fcy|/2) ( )
: oz €2t
cyl
+( B G (R, R=ead2 ey ,L—ecyl/z))
0z (L7{Cy|/2)+l
B :E_,. _aG”“g(R_€heaJ21R_€heac{2,L
"2 iz B
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