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We study a mass transport model, where spherical particles diffusing on a ring can stochastically
exchange volume v, with the constraint of a fixed total volume V=�i=1

N vi, N being the total number
of particles. The particles, referred to as p-spheres, have a linear size that behaves as vi

1/p and our
model thus represents a gas of polydisperse hard rods with variable diameters vi

1/p. We show that our
model admits a factorized steady state distribution which provides the size distribution that
minimizes the free energy of a polydisperse hard-rod system, under the constraints of fixed N and
V. Complementary approaches �explicit construction of the steady state distribution on the one hand;
density functional theory on the other hand� completely and consistently specify the behavior of the
system. A real space condensation transition is shown to take place for p�1; beyond a critical
density a macroscopic aggregate is formed and coexists with a critical fluid phase. Our work
establishes the bridge between stochastic mass transport approaches and the optimal polydispersity
of hard sphere fluids studied in previous articles. © 2010 American Institute of Physics.
�doi:10.1063/1.3263913�

I. INTRODUCTION

Condensation phenomena in stochastic models of mass
transport are a subject of much current interest, for reviews
see Refs. 1 and 2. Typically, in these models, a globally
conserved quantity, which for the purposes of this introduc-
tion we refer to as mass, is transferred stochastically between
sites of a lattice according to some prescribed dynamical
rules. One is interested in the properties of the stationary
state generated by the stochastic dynamics, for example the
single-site mass distribution which is the probability distri-
bution of the amount of mass at a lattice site. Such models
provide both microscopic and effective descriptions of the
dynamics of various complex systems, for example traffic
flow,3,4 granular clustering,5 phase ordering,6 network
rewiring,7,8 force propagation,9 aggregation and
fragmentation,10,11 and energy transport.12 In this paper we
study another realization of stochastic mass transport in a
new context: the sampling of polydispersity in simulations of
hard-rod systems.

Condensation occurs in stochastic mass transport mod-
els, when above a critical value of the global density a finite
fraction of the mass condenses onto a single site.3,10,13,14 In
some ways the phenomenon is similar in character to Bose–
Einstein condensation, but in contrast with Bose–Einstein
condensation, it occurs in real space i.e., at a lattice site. The
signature of condensation is seen in the steady-state single-

site mass distribution. Below the critical density the distribu-
tion typically decays exponentially for large mass, indicating
a fluid phase. At the critical density the decay of the single-
site mass distribution is slower, typically it decays as a power
law or sometimes a stretched exponential distribution, indi-
cating a critical fluid.15,16 Above the critical density a bump
in the single-site mass distribution emerges and corresponds
to a single site containing the excess mass above the critical
value. Thus the condensed phase consists of a condensate
coexisting with the critical fluid.

In the present work we consider the stochastic dynamics
of mass transfer in a rather different context, that of sampling
polydispersity in a hard-rod fluid. Polydispersity arises natu-
rally in a wide variety of natural and synthetic materials. In
some cases, polydispersity is an intrinsic property of the sys-
tem; the elementary constituents are characterized by a vary-
ing physical property �size or charge, for example� which
does not change as a result of the particles’ interactions. A
different type of polydispersity arises as a result of the inter-
actions among constituent elements in situations where they
self-assemble to form aggregates of varying size, for ex-
ample. In this second situation, the final size distribution
emerges as a result of the interaction among the constituent
elements and it will be controlled by the dynamical con-
straints and basic symmetries underlying the kinetic
processes.17,18 Previously, in Ref. 19 a stochastic algorithm
has been used which allowed hard spheres to diffuse and to
exchange volume, subject to the hard-core constraint. It
turned out that above a certain volume fraction small num-
bers of large particles would emerge in the distribution gen-
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erated by the dynamics. Within approximate theories of the
Percus–Yevick family, this was understood as a continuous
phase transition.17

In this paper, we will show that the transition observed
in polydisperse hard spheres can in fact be understood as a
condensation transition arising from constraints in the con-
figuration space. To make the problem analytically solvable,
we somewhat simplify matters by constraining the spheres to
move on a one-dimensional �1D� ring �so that the particles
effectively behave as hard rods�. Basically there are two con-
served quantities in play: the total volume of the spheres and
the linear size �length� of the lattice. However, a new feature
which appears, compared to previous studies of condensation
in systems with two conserved quantities,20 is a configura-
tional constraint which effectively couples the two conserved
quantities. The configurational constraint results from the
hard sphere condition and requires that x, the separation of a
sphere from its neighbor, must be greater than the diameter
of the sphere defined as �=v1/p where v is the volume of the
sphere �xi��i in the notation of Fig. 1�. We retain p as a
parameter of our particles which we refer to generally as
p-spheres; for disks p=2 and for spheres p=3. The dynamics
comprise diffusion, which is a stochastic exchange of inter-
particle distances, and in addition there is a stochastic ex-
change of volume. When the volume fraction is large the
dynamics become constrained. For p�1, beyond a critical
volume fraction, condensation occurs. That is, in the station-
ary state one large sphere emerges containing the excess vol-
ume leaving the rest of the system in the critical fluid phase.
When p�1 there is no condensation but a vestige of the
transition remains wherein above some density threshold, the
volume distribution develops a bump around a finite charac-
teristic volume, unlike the low density behavior where the
most probable volume is 0.

We develop two complementary approaches to under-
stand the condensation phenomenon: one microscopic and
one thermodynamic. In the former approach we define a mi-
croscopic dynamical model for which we can solve the equi-
librium state exactly. We then use the usual machinery of
statistical mechanics to solve the model. In the latter ap-
proach we write down a free energy functional, then use
scaling arguments to deduce various thermodynamic rela-
tions, and arrive at the same form for the equilibrium distri-
butions as with the microscopic approach.

A. Summary of results

As a guide to the reader, we first summarize how the
paper is organized and identify the main results obtained

from our calculations. In Sec. II we define our model and
determine simple microscopic dynamical rules which lead to
an equilibrium distribution of the factorized form �4�. In par-
ticular we identify rules which lead to an equilibrium with
equal probabilities for all allowed configurations �10� and in
Sec. III we consider the thermodynamics of this equilibrium
state. The calculations are carried out within the grand ca-
nonical ensemble for the system which we define in Sec.
III A and within which the marginal distributions for volume
and separation of a particle p�v� and p�x� are determined
�Eqs. �18� and �19��. These distributions are expressed in
terms of the two Lagrange multipliers corresponding to the
constraints of mean density � and volume fraction � �Eq.
�23��. In Sec. III B we introduce a single combination of
these two Lagrange multipliers which allows us to fix � and
consider the reduced volume fraction ��, defined in Eq. �35�,
as a function of a single variable Eq. �36�. We define the
entropy �39� in Sec. III C and show that the entropy has a
maximum as a function of ��. We then analyze the two cases
p�1 and p�1 separately in Secs. III D and III E, showing
that for p�1 the entropy increases to a maximal value then
decreases again as �� is increased, where for p�1, the en-
tropy sticks to its maximal value when �� is increased past
its critical value given by Eq. �49�. The latter scenario is
explained as a condensation transition in Sec. III E. In Sec.
III F we show how the limit of p→� recovers the results of
the Tonks gas.

In Sec. IV we analyze the nature of the condensate by
working within the microcanonical ensemble. By invoking
results for the large deviations of sums of random variables,
we show that in the condensed phase the marginal distribu-
tion for the volume of a particle p�v� has two pieces �Eqs.
�88� and �89��. The first piece represents a critical fluid dis-
tribution and the second represents a Gaussian peak corre-
sponding to the condensate.

Having shown that our model, initially defined through a
set of dynamical rules, admits a steady state that is in fact the
equilibrium state of a hard-rod system, we are then in Sec. V
in position to approach the problem by a complementary free
energy functional. We show that beginning from the form
�90� for the free energy as a functional of the particle size
distribution, simple considerations imply that the distribution
of the particle diameters should follow Eq. �100�. We then
revisit the condensation transition in Sec. V C and show the
results of Sec. III E may be recovered. In Sec. VI we present
numerical results, based on Monte Carlo simulations of the
microscopic model, confirming our analytical predictions. In
particular, Fig. 7 confirms the emergence of a condensate at
the critical volume fraction, and Figs. 8 and 9 confirm the
predictions �88� and �89� of Sec. IV for the particle volume
distribution. We conclude with an overview in Sec. VII.

II. MODEL

In this work we introduce a simple 1D model of a fluid
of hard p-spheres with stochastic dynamics comprising dif-
fusion and volume exchange. We show that appropriate
choices of the dynamical rates allow one to obtain the steady

i i + 1 i + 2

�i ≡ v
1/p
i

gi

xi xi+1

FIG. 1. View of three p-spheres on a line, with definition of the left to left
interparticle distance xi and gap gi.
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state exactly as a factorized form, in particular, the steady
state may be such that any allowed microscopic configura-
tion appears with equal probability.

The model consists of p-spheres diffusing on a 1D ring
and exchanging volume with hard-core interactions �see Fig.
1�. The distance between the left hand side of p-sphere �par-
ticle� i and p-sphere i+1 is given by xi and the diameter of
p-sphere i is given by �i=vi

1/p, where vi is the volume of
p-sphere i. The volume of the p-sphere with unit diameter
has been set to 1 but one could easily generalize to the vol-
ume of the unit diameter p-sphere being a.

The model is equivalent to N sites i=1, . . . ,N each with
site variables xi ,vi and with periodic boundary conditions
xN+1=x1, vN+1=v1. In the microcanonical ensemble we have
fixed total volume,

�
i

vi = V , �1�

and fixed total length L,

�
i

xi = L . �2�

The hard-core interaction between p-spheres implies that for
each separation xi we have the constraint

xi � vi
1/p. �3�

The model then can be interpreted as a system of N polydis-
perse hard rods on a ring where each rod has a variable
diameter �i=vi

1/p and satisfies the hard-rod constraint,
namely, the gap between successive rods gi�0 for each i.
This is a generalization of the classical monodisperse hard-
rod system, the Tonks gas,21 where each rod has the same
diameter � independent of i. Note that our polydisperse
model reduces to the monodisperse case in the large p limit
since �i=vi

1/p→1 �independent of i� in the p→� limit.

A. Dynamics

We consider diffusion and volume dynamics imple-
mented by microscopic transition rates on the variables
�xi ,vi�. The diffusion dynamics implies dynamics for the
separations �xi�. We assume symmetric nearest neighbor hop-
ping of particles with rate u�� ,xi� which implies the follow-
ing exchange dynamics for �xi�: in time interval dt a length �
is transferred from xi to xi+1 with probability u�� ,xi�dt /2 and
from xi to xi−1 with probability u�� ,xi�dt /2. The transition is
accepted if the constraints �3� are obeyed by the updated
variables xi.

Similarly, we define the nearest neighbor symmetric vol-
ume exchange dynamics with rate w�	 ,vi�: in time interval
dt a volume 	 is transferred from vi to vi+1 with probability
w�	 ,vi�dt /2 and from vi to vi−1 with probability
w�	 ,vi�dt /2.

B. Factorized steady state

In order to obtain a solvable case that may allow us to
study possible condensation scenarios, we seek a factorized
steady state22 where the probabilities of a microscopic con-
figuration �xi ,vi� are of the simple form

P�x1,v1, ¯ xN,vN� = A�	
i=1

N

g�xi,vi�
�xi − vi
1/p�


���L − �
i

xi���V − �
i

vi� , �4�

where g�xi ,vi� are single-particle weights and A is a normal-
izing constant. That is, the probability of a configuration fac-
torizes into a product of one factor g�xi ,vi� for each particle.
The 
-functions impose the constraint �3� at each site and the
�-functions impose the global constraints of length conserva-
tion and volume conservation. We now assume that the
single site weight g itself factorizes

g�xi,vi� = a�xi�b�vi� . �5�

A sufficient condition for the stationary state to be of the
form �4�, with g of the from Eq. �5�, is that the x and v
dynamics independently respect detailed balance with re-
spect to a�x� and b�v�. Note that the constraint �3� will not
enter into this requirement of detailed balance since we de-
mand detailed balance between any two of the configurations
allowed by the constraint. Therefore, we require
∀� ,x ,x� ,	 ,v ,v�,

u��,x�a�x�a�x�� = u��,x� + ��a�x − ��a�x� + �� , �6�

w�	,v�b�v�b�v�� = w�	,v� + 	�b�v − 	�b�v� + 	� , �7�

which imply that u�� ,x�a�x� /a�x−�� is independent of x
and w�	 ,v�b�v� /b�v−	� is independent of v, leading to

u��,x� = c���
a�x − ��

a�x�
, �8�

w�	,v� = d�	�
b�v − 	�

b�v�
, �9�

where c��� and d�	� are arbitrary positive functions. There-
fore rates of the form �8� and �9� lead to an equilibrium state
of the factorized form �4� with single particle weights �5�.
Moreover, appropriate choice of the rates �8� and �9� allow
any single-site weight �5� to be generated.

In the following, for simplicity we restrict ourselves to
g�xi ,vi�=1. This requires u�� ,x�=c��� and w�	 ,v�=d�	�,
in order that a�x�=b�v�=1. In this case the jump size � of a
p-sphere does not depend on the separation xi and 	, the
amount of volume transferred from one p-sphere, does not
depend on the volume vi of the p-sphere �up to the constraint
that the remaining volume is non-negative�. The condition
g�xi ,vi�=1 implies that all allowed microscopic configura-
tions have the same steady state probability. Thus the ther-
modynamics of the system are driven entirely by the con-
straints in the configuration space coming from the hard
sphere condition, i.e., any phase transition will be entropy
driven. One can easily generalize our calculation for arbi-
trary b�v�. It turns out that the condensation transition occurs
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for other choices of b�v� as well, as long as the function b�v�
decays exponentially or slower for large v. However, we
stick to the choice b�v�=1 in this paper for simplicity.

III. THERMODYNAMICS IN GRAND CANONICAL
ENSEMBLE

A. Ensembles

The natural ensemble generated by the dynamics dis-
cussed in the previous section is the microcanonical en-
semble wherein only microscopic configurations with the
correct total length and total volume are allowed and all al-
lowed configurations have the same statistical weight in the
steady state given by

P��xi,vi�� =
1

ZN�L,V��	
i=1

N


�xi − vi
1/p�
��L − �

i

xi�
���V − �

i
vi� , �10�

where L and V are given and the normalizing constant
ZN�L ,V� is just the microcanonical partition function for N
particles on a ring given by the integral over the allowed
microscopic configurations

ZN�L,V� = 	
i=1

N 
 dxidvi
�xi − vi
1/p���L − �

i

xi�
���V − �

i
vi� , �11�

i.e., ZN�L ,V� is a volume in configuration space. We define
the two basic control parameters: the density of particles �
=N /L and the volume per particle �=V /N. Our goal in this
section is to compute, in the large N limit but for given fixed
�� ,��, the single-site distribution p�x ,v� obtained from the
joint distribution �10� by integrating out all the �xi ,vi� vari-
ables except at one site where they are held fixed with values
�x ,v�. Next, from this single-site distribution p�x ,v� we will
derive the marginals p�x�=�0

�p�x ,v�dv and p�v�
=�0

�p�x ,v�dx for given �� ,��. We will show that the margin-
als p�x� and p�v� exhibit a rich variety of behavior in differ-
ent regions of the �� ,�� plane, including a condensation
transition for p�1.

To make progress, we shall first follow the usual route of
replacing the hard constraints on the allowed total length and
total volume in the microcanonical ensemble by the soft con-
straints of the grand canonical ensemble where the total
length and volume are allowed to fluctuate. Thus, for this
system we define the grand canonical partition function as
the double Laplace transform of the microcanonical partition
function ZN�L ,V�,

ZN�
,s� = 

0

�

dL

0

�

dV ZN�L,V�e−L
−Vs. �12�

Then inserting Eq. �11� into Eq. �12� yields

ZN�
,s� = 	
i=1

N 
 dxidvi
�xi − vi
1/p�e−
�ixi−s�ivi, �13�

=	
i=1

N 

0

�

dvi	
i=1

N �

vi

1/p

�

dxie
−
xi−svi
 , �14�

=�G�
,s��N, �15�

where the single-particle partition function G�
 ,s� is defined
as

G�
,s� =
1






0

�

dve−sv−
v1/p
. �16�

Thus in the grand canonical ensemble the joint distribution
�10� factorizes P��xi ,vi��=	ip�xi ,vi� with the single-particle
joint distribution p�x ,v� given by

p�x,v� = �G�
,s��−1e−
x−sv
�x − v1/p�
�v� , �17�

where we made explicit the fact that v�0. One can integrate
out x or v to obtain respectively, the single-particle volume
and length marginal distributions

p�v� = �G�
,s��−1 1



e−
v1/p−sv
�v� , �18�

p�x� = �G�
,s��−11

s
e−
x�1 − e−sxp

�
�x� . �19�

The constraint 
�x−v1/p� in Eq. �17� makes the x and v vari-
ables manifestly coupled. Note however that p�x ,v� can be
“diagonalized” or decoupled if one uses the gap variables
gi=xi−vi

1/p �see Fig. 1� instead of the xi variables. Then
p�x ,v�= p̃�g ,v� becomes

p̃�g,v� = �G�
,s��−1�e−
g
�g���e−sv−
v1/p

�v�� . �20�

The consequence of this decoupling will be discussed later.
It remains then to estimate the two Lagrange multipliers

�
 ,s� by enforcing the conservation of total length and total

volume on an average. The mean lattice length L̄ and mean

volume V̄ in the grand canonical ensemble are given by

L̄ = −
� ln ZN�
,s�

�

; V̄ = −

� ln ZN�
,s�
�s

. �21�

In this ensemble, our original control parameters �� ,�� are
thus replaced by the averages

� =
N

L̄
; � =

V̄

N
. �22�

Using the definitions �21� and the expression of ZN Eq. �15�
gives

1

�
= −

� ln G�
,s�
�


; � = −
� ln G�
,s�

�s
. �23�

Thus, for given values of the control parameters �� ,��, we
have to solve the two conditions �23� to get the correspond-
ing values �
 ,s� and then use them in Eqs. �18� and �19� to
obtain the marginals within the grand canonical framework.
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For the discussion in Sec. V on the alternative free en-
ergy functional route, it turns out to be convenient to intro-
duce another dimensionless observable denoting the line
coverage,

� =
Lp

L̄
, �24�

where Lp=N�vi
1/p� is the average total length occupied by the

p-spheres. In other words, � is the ratio of �vi
1/p�, the average

length of a p-sphere, to 1 /�, the average available length.
The first average is also easy to compute within the grand
canonical ensemble using Eq. �16�,

�vi
1/p� =

�0
�v1/pe−sv−
v1/p

dv

G�
,s�

= −
�

�

ln�
G�
,s�� . �25�

The right hand side can be expressed in terms of the density
�23� and we get


 =
�

1 − �
. �26�

The quantity on the right hand side of Eq. �26� is nothing but
the pressure of a polydisperse hard-rod fluid.23 As expected,
we find that the Lagrange multiplier 
 associated to the con-
servation of total length L coincides with the pressure �see
Sec. V B�

Substituting 
 from Eq. �26� in Eq. �20�, we find that the
marginal gap distribution p̃�g�=�0

�p̃�g ,v�dv for this polydis-
perse hard-rod fluid is given by

p̃�g� =
�

1 − �
exp�−

�g

1 − �


�g� . �27�

We note that in the case of monodisperse hard rods �the
Tonks gas, where all rods have the same length� the equilib-
rium gap distribution has exactly the same form as Eq.
�27�.21 Here we see that expression �27� is more general and
holds even for the gap distribution of a polydisperse hard-rod
fluid.

B. Reduced volume fraction �� and scaling variable u

To facilitate further analysis it is useful to consider a
scaling combination of the two Lagrange multipliers s, 
,

u =
s


p . �28�

If we make a change of variable v=
−py the single-particle
partition function G�
 ,s� in Eq. �16� can be written in the
scaling form

G�
,s� =
1


p+1H� s


p� , �29�

where

H�u� � 

0

�

dye−uy−y1/p
. �30�

Similarly, the constitutive equations for the density and
volume fraction �23� may be cast in a scaling form in terms
of the variable u,

1

�
=

1



F�� s


p� , �31�

� =
1


pF�� s


p� , �32�

where the two scaling functions F��u� and F��u� are given
by

F��u� = 1 +
�0

�dyy1/pe−uy−y1/p

�0
�dye−uy−y1/p , �33�

F��u� =
�0

�dyye−uy−y1/p

�0
�dye−uy−y1/p = −

d ln H�u�
du

. �34�

As a result, we can eliminate 
 between Eqs. �31� and �32�
by introducing the scaled volume per particle, ��, defined by

�� = �1/p� , �35�

which depends only on a single scaled variable u=s /
p;

���u� =
�F��u��1/p

F��u�
. �36�

We call �� the reduced volume fraction. Such a reduction to
a single scaling variable �instead of two independent vari-
ables �� ,��� can be traced back to the fact that in the grand
canonical ensemble the joint distribution p�x ,v�, when ex-
pressed in terms of the gap gi variables, essentially decouples
as in Eq. �20�. In due course we will investigate the behavior
of the function ���u� for different values of p.

C. Entropy

As already stated the condensation transition in our
model is completely entropy driven, therefore we should first
define the entropy. In terms of the original microcanonical
partition function �11�, the entropy per particle is

S �
ln ZN�L,V�

N
. �37�

Since the configuration space volume ZN�L ,V� Eq. �11� may
be less than 1, S, as defined above, has no reason to be a
positive definite variable. The entropy could of course be
made positive by dividing ZN by a suitable small constant in
the same way that the partition function for an ideal gas
contains a factor h−3N.

In the grand canonical ensemble, the entropy per particle
may be expressed as the Legendre transform

S �
1

N
�ln ZN�
,s� − 


� lnZN�
,s�
�


− s
� lnZN�
,s�

�s

 ,

�38�
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=ln G�
,s� +



�
+ s� , �39�

where in the second line we impose the constraints �23�. A
consequence of Eq. �39� is that

� �S

��
�

�

= s; − �2� �S

��
�

�

= 
 . �40�

In particular, we note that the derivative of S with respect to
� vanishes at s=0.

We now consider the entropy as a function of the scaling
variable u=s /
p, introduced in Eq. �28�. For fixed density �,
one can express the entropy S as a single function of u.
Substituting Eqs. �31�, �32�, and �29� in Eq. �39� allows us to
write

S = − �p + 1�ln � − �p + 1�ln F��u� + ln H�u� + F��u�

+ uF��u� . �41�

For fixed density �, as � and hence ��=�1/p� varies, u var-
ies according to Eq. �36� and consequently the entropy S
varies.

In Appendix A, we show from expression �41� that the
entropy achieves a maximum when u=0. With this knowl-
edge we will investigate in the next two subsections how the
entropy S, for a fixed density �, behaves as a function of ��

for p�1 and for p�1. The results are shown in Fig. 2. We
will see that a condensation transition occurs only for p�1
where, when �� is increased above a critical value, u sticks
to the value u=0 and the entropy sticks to its maximal value.
A vestige of the condensation transition can also be seen for
p�1 in the fact that the entropy decreases when �� exceeds
the critical value �and u passes through zero� which reflects
that the configuration space becomes severely constrained.

D. The case p�1

Recall that, according to our model, for p�1 the volume
of the p-sphere increases sublinearly with its diameter and
for p=1 the volume is equal to the diameter. Let us start by
making the following observation. By definition, the inverse
density is 1 /�=L /N= ��ixi� /N. Due to the constraint xi

�vi
1/p, it follows that 1 /�� ��ivi

1/p� /N. For p�1, one can
use Jensen’s inequality to write

1

�
�

�ivi
1/p

N
� ��ivi

N

1/p

= �1/p. �42�

Thus, for p�1, one must necessarily have ��=�1/p��1. In
other words, for a given �, one is physically allowed to in-
crease � only up to �−p, i.e., ���−p.

Now, let us fix the density � and imagine increasing �
from 0 to its maximally allowed value �−p. In other words,
the reduced volume fraction ��=�1/p� increases from 0 to its
maximally allowed value 1. For a given ��, we then have to
solve Eq. �36� for u=s /
p.

The case p�1. Consider first the case when p�1
strictly. The case p=1 will be discussed subsequently. For
p�1, we notice that the integrals in Eqs. �33� and �34� are
convergent for any u� �−� ,��. Their leading asymptotic be-
haviors can be easily deduced. Specifically, one finds that, as
u→�,

F��u� → 1, �43�

F��u� →
1

u
. �44�

On the other hand, as u→−�, to leading order,

F��u� → �u�1/�1−p�, �45�

F��u� → �u�p/�1−p�. �46�

As a consequence, the function ���u� in Eq. �36� has the
following asymptotic behavior:

���u� → 1 as u → − � , �47�

→u−1/p as u → � . �48�

In addition, one can check that ���u� is a monotonically
decreasing function of u, achieving its maximally allowed
value 1 as u→−� �see Fig. 3�. Thus, for any given ��, we
can always find a solution u to the equation ��=���u�,
where ���u� is given in Eq. �36�. Knowing this solution u,
one finds subsequently 
�0 from Eq. �31� and s from the
relation s=u
p. This means that the grand canonical frame-
work works over the full allowed range 0����1 and the
two marginals p�v� and p�x� have always the form in Eqs.
�18� and �19� with 
 and s determined as above. This shows
that there is no condensation for p�1.

However, a vestige of the condensation transition still
remains even for p�1. To see this, imagine again that we
increase the value of the control parameter ��=�1/p� from 0
to 1. As �� is increased, the solution u to the Eq. �36� de-
creases monotonically from � to −� �see Fig. 3�. Note that
when the solution u hits 0, the corresponding value of ���0�

0 0,25 0,5 0,75 1

φ∗

-0,5

0

0,5

S’
p=1/2 p=1

p=3/2

FIG. 2. Entropy plot of S��S+ �p+1�log �, where S is the grand canonical
entropy, as a function of reduced density ��, for different values of param-
eter p. The three corresponding critical densities are �c

�=2 / �3���0.212 for
p=1 /2, ��=1 /2 for p=1, and �c

�=4�2 /��1/3 /5�0.688 for p=3 /2. In the
first two cases no transition occurs. For p�1, the plateau seen for ����c

� is
a signature of the condensate formation. Note that for p�1, the maximum
allowed value of �� is 1, whereas one can have ���1 for p�1.
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can be computed by putting u=0 in Eq. �36� and carrying out
the elementary integrals that give F��0�= �p+1� and F��0�
=��2p� /��p�. Thus

���0� =
1

1 + p
���2p�

��p� 
1/p
. �49�

Now, let us investigate the entropy S in Eq. �39� as a
function of the control parameter ��. As �� is increased
monotonically from 0 �and consequently u decreases mono-
tonically from +��, one can check that the entropy S, ex-
pressed as a function of u as in Eq. �41�, increases monotoni-
cally as long as u�0, i.e., ������0� given in Eq. �49�. For
������0� �or u�0�, the entropy decreases with increasing
��. Thus, the entropy S has a maximum value at ��=���0�,
see Fig. 2. This is also evident from Eq. �40� where the
derivative of the entropy as a function of � �for fixed ��
vanishes at s=0 and hence at u=0. Thus the value of � at
which the entropy becomes a maximum �for a fixed �� can be
appropriately denoted by �max��� and is given by

�max��� = ����0�
�


p

=
1

�p

1

�1 + p�p

��2p�
��p�

. �50�

The corresponding maximum value of the entropy is ob-
tained by putting u=0 in Eq. �41�. Using F��0�= �p+1� and
H�0�=��p+1� we get

Smax = p + 1 + ln ��p + 1� − �p + 1�ln��p + 1��� . �51�

Physically this means that for ���max��� or equivalently in
terms of the reduced volume fraction, for ������0�, the
configuration space becomes constrained resulting in the re-
duction in entropy.

Can one see a reflection of this vestige of a condensation
transition directly in the volume distribution p�v� in Eq.
�18�? Indeed one does observe a change in behavior of p�v�
as the control parameter �� increases through �max���. As ��

increases from 0, the solution u of ���u�=u is positive as
long as ����max��� �see Fig. 3�. Consequently s=u
p is

also positive and hence the distribution p�v��exp�−
v1/p

−sv� is a monotonically decreasing function of v with its
maximum at v=0. However, when ����max���, the solution
u and hence s become negative. As a result,
p�v��exp�−
v1/p+ �s�v� now develops a maximum at a non-
zero characteristic volume v�= �p�s� /
�p/�1−p�.

The case p=1. The general conclusion reached above for
p�1 remains valid even for the marginal case p=1, though
the details are slightly different. Indeed, for p=1, we can
obtain explicit solutions for the marginal distributions. To see
this, let us first explicitly express 
 and s in terms of � and �.
The integrals in Eqs. �33� and �34� can be easily performed
explicitly for p=1 giving

F��u� =
u + 2

u + 1
; F��u� =

1

u + 1
. �52�

Thus, unlike the p�1 case where the allowed range of u was
u� �−� ,��, for p=1, u has the allowed range u� �−1,��.
Equation �36� then gives

���u� =
1

u + 2
. �53�

Thus ���u� is again a monotonically decreasing function of u
in u� �−1,�� and for any given �� one can always find a
solution u=1 /��−2. Hence, as in the case p�1, there is no
condensation for p=1 as well.

Note that at u=0, ���0�=1 /2, and hence �max���
=1 / �2��. Also, Eqs. �31� and �32� yield explicitly

� =
1

s + 

, �54�

1

�
− � =

1



, �55�

determining 
=� / �1−��� and s= �1−2��� / �1−��� in
terms of � and �. This also gives, using Eq. �24�, �=��
=��. The grand canonical joint distribution for the separation
and volume of a particle �17� is

p�x,v� = 
�s + 
�e−x
−vs
�x − v� . �56�

The marginal distributions �18� and �19� become

p�v� =
e−v/�

�
, �57�

p�x� =
�

1 − 2��
�e−�x/�1−��� − e−x/�� . �58�

Thus, although there is no phase transition for p=1,
there is a change in the leading behavior of p�x� as the vol-
ume per particle � is increased past �max���=1 / �2��. For
��1 / �2�� the large x behavior is p�x��e−x�/�1−���� / �1
−2���; for �=1 / �2�� the large x behavior is p�x�
=xe−x/� /�2 �note that this expression, for �=1 / �2��, holds
for all values of left-to-left distances x�. For ��1 / �2�� the
large x behavior is p�x��e−x/�� / �2��−1�. Thus for �
�1 / �2��, the exponential decay of p�x� is the same as that of
p�v�.

The entropy per particle �39� reads

−10 −5 0 5 10
u

0

0.2

0.4

0.6

0.8

1

φ∗ (u
)

p=1/2

FIG. 3. The function ���u� vs u for p=1 /2.
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S = ln�1 − ��� − ln � + ln � + 2. �59�

Note that, as mentioned below Eq. �39�, the entropy S is not
restricted to be only positive. This is evident in the p=1 case
from Eq. �59� where S can be negative for certain values of
the parameters � and �. One can verify easily that the en-
tropy S in Eq. �59� has a maximum at �=�max���=1 / �2��
with value Smax=2+ln�2�−2 ln�2�� from Eq. �51�, see also
Fig. 2. As � increases past 1 / �2�� the entropy decreases,
implying a constrained configuration space. Thus the sce-
nario for p=1 case is similar to p�1 discussed earlier, as
seen clearly in Fig. 2 for the two representative cases p
=1 /2 and p=1.

E. The case p>1

For p�1, the integrals on the right hand side of Eqs.
�33� and �34� are convergent only for u�0. Thus the lowest
allowed value of u is 0. When u→0, the function ���u� in
Eq. �36� approaches ���0� which is still given exactly by Eq.
�49�. Thus this is the maximum value of �� allowed by the
grand canonical ensemble. If �� exceeds ���0�, u=s /
p can-
not decrease below 0. It then sticks to its value u=0 and all
the extra volume condenses into a single site. Thus ���0� is
the critical value beyond which the grand canonical en-
semble breaks down signaling the onset of a condensation
transition.

At this critical point, the volume fraction �
= ����0� /��p will again be denoted by �max��� and has the
same expression as in the p�1 case, namely,

�max��� =
1

�p

1

�1 + p�p

��2p�
��p�

. �60�

Also, letting u=0 in Eq. �31� gives the critical value 
c= �p
+1��. Consequently, the two marginals in Eqs. �18� and �19�
at the critical point become

p�v� → �G�0,
��−1 1



e−
v1/p

=
1

��1 + p�
���1 + p��pe−��1+p�v1/p

, �61�

p�x� → �G�0,
��−1e−
xxp

=
1

��1 + p�
���1 + p��1+pxpe−��1+p�x. �62�

Thus at condensation p�v� changes from �dominant� expo-
nential decay �18� to a slower stretched exponential decay
�61� and p�x� changes from an exponential decay �19� to the
exponential decay multiplied by xp �62�. We interpret these
results as describing the critical fluid; in the condensed phase
we expect a condensate to coexist with the critical fluid. For
later purposes, we also note that at the critical point the di-
mensionless line coverage

� → �c =
p

�1 + p�
, �63�

which follows by substituting 
c= �p+1�� in Eq. �26�.

How does the entropy S behave as � increases from 0 to
�max��� for fixed �? As � increases monotonically, u de-
creases monotonically until u hits 0. Consequently, the en-
tropy S in Eq. �41� increases monotonically up to u=0,
achieving a maximum value at u=0 �or equivalently at �
=�max���� given by the same expression as in the case p
�1 in Eq. �51�, namely,

Smax = p + 1 + ln ��p + 1� − �p + 1�ln���p + 1��� . �64�

What happens to the entropy when � exceeds the critical
value �max���, i.e., when a condensate sets in? To see this,
we note that �max��� in Eq. �60� can be neatly expressed in
terms of the pth moment �xp� of the critical marginal p�x� in
Eq. �62�. This moment can be easily computed and compar-
ing to the expression of �max��� in Eq. �60� one easily veri-
fies that

�max��� = 1
2 �xp� . �65�

The physical meaning of Eq. �65� is that condensation occurs
when the volume per particle is equal to half the mean avail-
able volume per particle in the grand canonical distribution.
In the case p�1 this is the value of � above which the
entropy decreases. For p�1, the intuitive explanation is that
at this point, rather than the entropy decreasing as was the
case for p=1, the entropy can be held constant by one par-
ticle containing the excess volume and leaving the rest of the
system at the critical volume fraction, see Fig. 2.

Let us then summarize the p�1 case. The existence of
the grand canonical solution means that the system is in a
fluid state. Thus, for fixed �, �max��� in Eq. �60� is precisely
the critical line in the �� ,�� phase diagram, as shown in Fig.
4 for p=2. When the volume fraction � exceeds this critical
value �max���, the grand canonical description breaks down
and a condensate forms in the system. The entropy S in-
creases monotonically with increasing � until � hits the
critical value �max��� where it achieves its maximum value
Smax given in Eq. �64�. When � is increased to a value �
��max���, the entropy remains at the maximal value through
one particle containing the excess volume and forming a
condensate.

F. The large p limit

The limit p→� is worth mentioning also as it makes
links with some other well studied problems. As mentioned
in the beginning of Sec. II, in the p→� limit, our polydis-
perse hard-rod system reduces to the classical monodisperse
Tonks gas of hard rods where each rod has the same size 1.
In this case, our result for the gap distribution in Eq. �27�
�valid for general p� reduces to that of the classical Tonks
gas.

On the other hand �again for p→��, the volume of each
rod becomes a “passive” property �a color v� �0,�� �. From
Eq. �18�, this property is exponentially distributed �p�v�
�exp�−sv��. Such a Poissonian distribution may have been
anticipated and is readily obtained within the free energy
functional formalism presented in Sec. V. We note that this
exactly coincides with the exponential distribution of wealth
and income obtained in the model presented in Ref. 24.
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We also note that in the large p limit, the condensation
transition disappears. Thus the system is always in a fluid
state and the volume statistics obey “ideal gas” behavior. In
the hard-core language of Sec. V, we will indeed see that the
critical line fraction tends to unity for large p, so that the
parameter range ���max actually corresponds to an un-
physical region where “hard rods” necessarily overlap.
Hence, the model of Ref. 24 shows no condensation transi-
tion �more complex interactions between the “agents” would
be required�.

IV. MICROCANONICAL ANALYSIS OF THE
CONDENSED PHASE FOR p>1

For p�1 the grand canonical ensemble can only support
a volume per particle ���max���, therefore in order to fully
analyze the condensed phase, where �=V /N��max���, one
needs to work within the microcanonical ensemble.

To compute the microcanonical partition function one
inverts the Laplace transforms in Eq. �15�,

ZN�L,V� = 

c1−i�

c1+� ds

2�i



c2−i�

c2+� d


2�i
esV+
LZN�
,s� , �66�

where c1 and c2 are chosen so that the integration contours
are to the right of any singularities. Using the expression �15�
one finds

ZN�L,V� = 

c1−i�

c1+� ds

2�i



c2−i�

c2+� d


2�i
eN��
,s�, �67�

where

��
,s� =



�
+ s� − ln 
 + ln�


0

�

dve−sv−
v1/p
 . �68�

The integral �67� may be evaluated by the saddle-point
method. The saddle-point equations coming from the condi-
tions �� /�
=0 and �� /�s=0 read

1

�
=

1



+

�0
�dvv1/pe−sv−
v1/p

�0
�dve−sv−
v1/p , �69�

� =
�0

�dvve−sv−
v1/p

�0
�dve−sv−
v1/p , �70�

which are, of course, precisely the grand canonical Eqs. �31�
and �32�. Thus when the saddle point exists �i.e., in the fluid
phase� the results of the grand canonical and microcanonical
ensembles coincide. However, in the condensed phase �
��max���, one can no longer solve the saddle-point equa-
tions for s�0. Therefore ZN�L ,V� must be evaluated by an
alternative approach.

It will be useful to consider the Laplace transform of
ZN�L ,V� with respect to the length L �rather than the double
Laplace transform of ZN�L ,V� which generates the grand ca-
nonical partition function�.

Z̃N�
,V� = 

0

�

dL e−
LZN�L,V� , �71�

=	
i=1

N 

0

�

dvi

vi

1/p

�

dxie
−
xi���

i
vi − V� , �72�

=��0
�dwe−
w1/p




N�	

i=1

N 

0

�

dvi f�vi�

����

i
vi − V� , �73�

where we defined

f�vi� =
e−
vi

1/p

�0
�dwe−
w1/p . �74�

This definition ensures that the integral of f�vi� is normalized
to unity therefore f�vi� may be considered as the probability
distribution for a positive random variable vi. Then the quan-
tity

�N�
� = �	
i=1

N 

0

�

dvi f�vi�
���
i

vi − V� , �75�

manifest in Eq. �73�, is the probability that a sum of N inde-
pendent positive random variables each distributed according
to f is equal to V. Assuming that f has finite first and second
moments �1 and �2, as it does in the case �74�, where

�n = 

0

�

dvvnf�v� , �76�

one can invoke some limiting results on the sum of a large
number N of such random variables. We first define

Vc = N�1, �77�

then the following results for sums of random variables de-
rived in a different context16 will be useful,

for V − Vc � O�N2/3� ,

�78�

�N�
,V� �
1

�2�N	2
e−�V − Vc�2/2N	2

,

for V � Vc and V − Vc � O�N� ,

�79�
�N�
,V� � Nf�V − Vc� ,

where 	2=�2−�1
2. The first result is a central limit theorem

which expresses the fact that the sum is Gaussian distributed
about the mean Vc. The second is a large deviation result
whose interpretation is that for the sum of random variables
to be equal to a value V, much greater than the mean Vc, one
of the random variables should be equal to V−Vc to leading
order and the other N−1 should be of O��1�. In Eq. �79� the
factor f�V−Vc� comes from the probability of the large ran-
dom variable and the factor N comes from the number of
ways of choosing the large contribution from the N random
variables.

Let us note that �1 is precisely the critical volume frac-
tion �max��� defined in the previous section. This follows by
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computing the first moment of f�v� in Eq. �74� and compar-
ing it to the expression of �max��� in Eq. �60�. Thus

Vc = N�1 = N�max��� , �80�

justifying the subscript c �critical� for the volume V.
We may now obtain forms for ZN�L ,V� near to criticality

and in the condensed phase by inverting the Laplace trans-
form

ZN�L,V� = 

c1−i�

c1+i� d


2�i
eL
��0

�dwe−
w1/p




N

�N�
,V� . �81�

Here the 
 integral may be evaluated without problem using
the saddle-point method with the saddle located �to leading
order for large L, large N but keeping the ratio �=N /L fixed�
at 
�= �p+1��. For �N�
� ,V� one can use the results in Eqs.
�78� and �79�. This gives

ZN�L,V� � � N

2��p + 1��
1/2

eL
�� p��p�
�
��p+1
N−1

for V − Vc � O�N� , �82�

ZN�L,V�

� � 
�
2

2��p + 1�N
�1/2

eL
�� p��p�
�
��p+1
Ne−�V − Vc�2/2N	2

�2�N	2

for V − Vc � O�N2/3� . �83�

Therefore for ���max��� the entropy per particle, given in
the microcanonical ensemble by

S =
1

N
ln ZN�L,V� , �84�

remains fixed at

S = p + 1 + ln ��p + 1� − �p + 1�ln��p + 1��� . �85�

Note that this is precisely the maximal value Smax in Eq. �64�
computed in the fluid state. To summarize, for p�1, the
entropy S increases monotonically with increasing �,
achieves its maximal value Smax at �=�max���, and then re-
mains fixed at this value for all ���max���.

We may also consider the marginal distribution p�v� in
the condensed phase. As a signature of condensation this
distribution should contain a bump at v=V−Vc. In the mi-
crocanonical ensemble we have

p�x,v� =
ZN−1�L − x,V − v�

ZN�L,V�

�x − v1/p� . �86�

Integrating out x yields

p�v� = ZN�L,V�−1

v1/p

L

dx ZN−1�L − x,V − v� . �87�

One can then substitute the asymptotic behavior of the func-
tion ZN�L ,V� obtained in Eqs. �82� and �83� to estimate p�v�
in Eq. �87�. Omitting details, we find that

for v � V − Vc, p�v� �

�

p

��1 + p�
e−
�v1/p

, �88�

for v = V − Vc + O�N2/3� ,

�89�

p�v� �
1

N

1
�2�N	2

e−�v − �V − Vc��2/2N	2

The latter piece Eq. �89� of p�v� represents the condensate; it
has a total weight 1 /N signifying a single condensate site
and shows a Gaussian distribution of the bump around the
excess volume V−Vc.

V. THE FREE ENERGY FUNCTIONAL ROUTE

Having established that our problem, defined in terms of
dynamical rules, admits a factorized steady state probability
with detailed balance, we can envisage the steady state as the
equilibrium state of a hard-rod model, where the distribution
of rod lengths ��v1/p is not known a priori. This size dis-
tribution should be that which minimizes the free energy of
the system �or equivalently maximizes the total entropy,
since we only deal here with excluded volume interactions�.
Our goal in the remainder is therefore to provide a different,
perhaps more physical, but fully equivalent, perspective, and
obtain the optimal polydispersity minimizing the free energy
functional of a hard-rod system, with the same global con-
straints as in Sec. II: fixed density �=N /L and fixed
p-moment of the length distribution ��v�= ��p��, where p is a
parameter of the model and is fixed as in previous sections.
In doing so, we are only interested here in the size distribu-
tion �variable v�, and not in the joint distribution of size and
gap x. In this respect, the approach of Secs. III and IV pro-
vides more detailed information.

The problem we face is the 1D analog of the optimal
packing of polydisperse hard sphere fluids addressed in Refs.
17, 19, and 25, which exhibits an unexpected condensation
transition. The free energy functional approach put forward
here is akin to that used in Ref. 19, with nevertheless the
interesting feature that in the present 1D geometry, exact
results can be obtained. On the other hand, approximations
of Percus–Yevick type or more involved treatments were
necessary in Refs 17, 19, and 25. Indeed, the problem boils
down to finding the size dependence of the chemical poten-
tial of a given species in a polydisperse mixture, which is not
known exactly for hard disks or hard spheres.

A. Free energy functional for polydisperse hard rods

We work in the canonical ensemble where a distribution
of N hard rods at temperature T occupies an available length
L. Their total length is denoted Lp and defines the line cov-
erage �or packing fraction� �=Lp /L=����, where �=N /L is
the density and ��� is the mean size. To establish the connec-
tion with the p-spheres discussed earlier, we can view each
rod of size � as a �hyper�sphere constrained to move on a
line, and having “volume” v=�p.

Writing the ideal entropy of a multicomponent and dis-
crete system is straightforward,26 but the limit of a continu-
ous distribution requires some care �see the discussion be-
low�. For hard rods, the free energy functional may be
written as a sum of ideal and excess contributions,27
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�F�W� = N
 d�W����ln��2�W���j����� − 1�

+ �Fex�W� . �90�

where � is an irrelevant length scale, � is the inverse tem-
perature, and W is the length probability distribution function
�such that �d��W���= ����. The excess free energy for a ho-
mogeneous system of hard rods is known exactly, �Fex�W�
=−ln�1−��,26 and can be generalized to inhomogeneous
situations.27 In Eq. �90�, the function j����, yet to be speci-
fied, ensures that different choices for the labeling of the
particles will lead to the same optimal length distribution
W���. One could indeed choose v=�p �or say any other
power� as a working variable, with an associated “labeling”
function jv�v� and a probability distribution function Wv,
such that W���= p�p−1Wv��p�. Enforcing the consistency of
both descriptions imposes j����=�p−1jv��p� �up to an irrel-
evant prefactor�, where the factor �p−1 is the Jacobian of the
transformation �→�p. The natural labeling for the particles,
i.e., that which gives a constant function j, follows from the
way polydispersity is sampled �see, e.g., Refs. 19 and 25�,
and reflects the dynamics of the system. In the following
Monte Carlo simulations, we will attempt to change the size
of two particles �1 and �2 selected at random by adding a
small increment to �1

p and conversely subtracting the same
quantity from �2

p, in accordance with the rule specified in
Sec. II and more precisely with the requirement that b�v�
=1. This corresponds to a flat function jv, and hence to j�

=�p−1. However, given an arbitrary b�v� �not constant� in the
microscopic rate in Eq. �9�, it is far from evident how to
choose an appropriate labeling function jv�v� in the macro-
scopic description in Eq. �90�, which would precisely corre-
spond to this microscopic rate.

Minimization of F, with the two constraints of normal-
ization �d�W���=1 and fixed p-moment �d��pW���, which
can be included by two Lagrange multipliers, leads to the
functional form of the optimal size distribution W�, which
should then coincide with the probability distribution func-
tion of v1/p, where the statistics of v is given by Eq. �18�.
Since the explicit expression of F is known, see above, this
provides a first angle of attack to our problem. However,
interesting information follows from more microscopic con-
siderations and scaling arguments, as becomes clear below.
Note that the constraint that the line coverage should not
exceed unity is not explicitly considered, but is implicitly
encoded in the excess contribution to the free energy func-
tional �90�.

B. Optimal polydispersity distribution

We take advantage of the fact that any infinitesimal
change in W� has a vanishing free energy cost �F, provided
the two aforementioned constraints are satisfied. We proceed
in two steps: �a� a given rod of arbitrary length �0 is ex-
panded, �0→�0+��0, and �b� all particles are rescaled ��
→��� in order to fulfill the constraint of a conserved pth
moment. In the first step, this moment changes by an amount

1

N
���0 + ��0�p − �0

p� �
1

N
p�0

p−1��0, �91�

while in the second stage, it changes by ��p−1���p�� p��
−1���p�. Enforcing the conservation of ��p� then imposes

� � 1 −
�0

p−1��0

N��p�
. �92�

In stages �a�+ �b�, the distribution function changes by
an amount

�W =
1

N
���� − �0 − ��0� − ��� − �0�� + �1 − ��

d��W�
d�

.

�93�

It proves convenient to express the variation of the ideal part
of the free energy in terms of the probability distribution
function Wv of v. This yields, with v0=�0

p,

�Fid = kBT�Wv��v0�
Wv�v0�

+
1

�v���v0. �94�

The excess contribution variation, which is most conve-
niently expressed in terms of � rather than v, is in addition
exactly the reversible work required to perform the changes
under consideration. In step �a�, we note that this work is the
same as if a confining “wall” would be displaced a distance
��0 thereby compressing the system. We therefore have

�Fa = P��0, �95�

where P is the pressure of the system. This relation is spe-
cific to the 1D case, and at the root of important simplifica-
tions as compared to higher dimensions.23 On the other hand,
it is a general result that in any space dimension, the work
performed during step �b� is �see, e.g., Appendix B of Ref.
19�

�Fb = −
Pex

�
�Lp �96�

where Pex= P−�kT is the excess pressure and �Lp is the total
volume change of the particle upon the rescaling �→��,
�Lp= ��−1�Lp= ��−1�N���. Making use of Eq. �92�, we fi-
nally have

�Fex

��0
= P −

Pex

�

�0
p−1���
��p�

. �97�

Combining this with Eq. �94� supplemented by the require-
ment that �F=0 for W=W� �or equivalently Wv=Wv

�� gives

Wv
���v0�

Wv
��v0�

+
1

�v�
+

P

p
v0

1/p−1 −
Pex

�

���
p��p�

= 0. �98�

After integration with respect to v0, we arrive at

Wv
��v� � exp�− �Pv1/p + ��Pex���

p�
− 1� v

��p�� . �99�

This is, expectedly, the very same form as obtained in Sec.
III, see Eq. �18�. In addition, Eq. �99� above makes explicit
the connection between the chemical potentials 
 and s ap-
pearing in Eq. �18� and intensive thermodynamic quantities,

014102-11 Condensation in polydisperse hard rods J. Chem. Phys. 132, 014102 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



for example, 
=�P, see Eq. �26�. Equivalently, in terms of
the � variable, we obtain

W���� = A�p−1 exp�− �P� + ��Pex���
p�

− 1� �p

��p�� ,

�100�

where A is a normalization factor. As alluded to earlier, it is
noteworthy here that the pressure is exactly related to the
density � through21,23,26

�P =
�

1 − �
, where � = ���� . �101�

One can note that the low density behavior of W� allows for
some consistency test of our prediction. When the density
vanishes, one has P→0 and �Pex /�→0, so that

W���� � �p−1 exp�−
�p

��p�
� , �102�

hence an exponential distribution of v=�p �the conserved
quantity�. Such an expression also immediately follows from
direct minimization of the functional �90�, restricted to its
ideal contribution �Fex=0�. We recover here the expression
obtained in Sec. III in the large p limit. As mentioned earlier,
we also recover the results reported in an econophysics
context24 for a simple model where agents act as our ideal
particles, exchanging random amounts of a quantity v
�money� in binary encounters.

With a weight function such as Eq. �102�, one immedi-
ately finds

�0
��pW����d�

�0
�W����d�

= ��p� , �103�

as it should �the quantity ��p� appearing on the left hand side
of Eq. �102� is therefore indeed the moment of order p of the
distribution�. This shows the consistency of our distribution
function in the low density limit. The corresponding mean
size follows, assuming again the low density form �102�,

�0
��W����d�

�0
�W����d�

= ��1 + 1/p���p�1/p, �104�

With the standard “functional route” alluded to earlier �i.e.,
direct minimization of Eq. �90�� which does not provide ex-
plicitly Lagrange multipliers, the requirement �103� together
with normalization would determine those multipliers for
any density. In the remainder, the star superscript will be
omitted to refer to the optimal distribution W�, without am-
biguity.

C. The condensation transition

We revisit here the condensation transition brought to
the fore in Sec. III, in the more liquid-state language of hard
rods. Since the excess pressure following from Eq. �101�
fulfills the identity Pex /�= P, as can be readily checked, the
distribution �100� can be rewritten more explicitly as

W��� = A�p−1 exp�−
��

1 − �
+ � � − �c

�c�1 − ��� �p

��p�
 , �105�

with �c= p / �1+ p�. For p�1, this distribution is normaliz-
able for all line coverages � �given that ��1�. This is no
longer the case for p�1, provided that ���c, where �c will
be referred to as the critical line coverage. For p�1 and �
��c, the divergent behavior of distribution �105� at large �
is indicative of the formation of a macroscopic aggregate
with size L0. The scenario is identical to that inferred from
the observations of Ref. 19 and worked out in Ref. 17. The
system relaxes by transferring “volume” to the aggregate,
which effectively acts as a piston and coexists with a poly-
disperse mixture M confined in a region of size L−L0. In
this region, the size distribution obeys Eq. �105�, where � is
no longer the total line coverage fraction, but should be re-
placed by the line coverage �M in the region free of aggre-
gate. The different line coverages in the problem are con-
nected through

�M =
� − �0

1 − �0
, �106�

where �0=L0 /L is the line coverage of the aggregate. We
show in Appendix B that

�0 = � 0 for � � �c,

� − �c

1 − �c
for � � �c. � �107�

The line coverage �0 may be considered as an order param-
eter for the transition. The key ingredient to arrive at Eq.
�107� is that the fluid outside the condensate �assuming the
latter species forms� is critical, in the available length L
−L0. It therefore has line coverage �M=�c and size distri-
bution

W��� � �p−1 exp�−
��

1 − �c

 . �108�

We note finally that the case p→� is specific in that we then
have �c→1 �while �c

�→4 /e�. Since the hard-core constraint
imposes ��1, we see here why the large p limit reduces in
fact to the ideal gas case, where �p is exponentially distrib-
uted and no transition occurs.

VI. COMPARISON WITH SIMULATION RESULTS

In order to verify analytical predictions it is useful to
compare with numerical results. For example, numerical
studies of condensation have in the past revealed important
information about when the asymptotic behavior predicted
analytically actually emerges in a finite system.

A. Control parameter and critical point

To analyze in more detail the scenario at work and put
our predictions to the test, we perform Monte Carlo simula-
tions. We first have to introduce a relevant control parameter
�we emphasize that except when p=1, the line coverage or
packing fraction � Eq. �24� is not a conserved quantity, but is

014102-12 Evans et al. J. Chem. Phys. 132, 014102 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



self-consistently determined�. Since both the density and ��p�
are conserved variables, we will use the dimensionless re-
duced volume fraction

�� = ���p�1/p, �109�

introduced in Eq. �35�. A simple convexity argument shows
that for p�1, ����, while the reverse holds for p�1. Hav-
ing chosen ��p�1/p as our relevant length scale, we also intro-
duce a reduced pressure,

P� � �P��p�1/p =
��

1 − �
=

��

1 − ����
, �110�

and a rescaled length,

�̃ = �/��p�1/p, �111�

which, from Eq. �105�, has size distribution

W��̃� = A��̃p−1 exp�−
�

1 − �

�̃

��̃�
+ � � − �c

�c�1 − �����̃�p
 .

�112�

It is in general not possible to relate explicitly the re-
duced density �� to the line coverage �, except at the critical
point �=�c, since then W takes a pure exponential shape �up
to the algebraic prefactor�. From Eq. �105�, we have there

��k� =
�=�c ��p + k�

��P�k��p�
for k � 0, �113�

so that

P� =
�=�c� �2p − 1�!

�p − 1�! �
1/p

= �1 + p���. �114�

Starting from ��=0 when �=0, the reduced density �� in-
creases with � and reaches the value

�c
� =

1

1 + p
� �2p − 1�!

�p − 1�! �
1/p

, �115�

when �=�c. This corresponds exactly to the threshold ob-
tained in Sec. IV, see Eq. �60�. For p�1, �c signals the onset
of the formation of the condensate. For p�1, ���c only
signals a region where the subdominant term in �p in the
exponential �105� changes sign. The size distribution may
therefore change from the unimodal shape found at low line
coverage to a bimodal form when � exceeds some threshold,
itself larger than �c. On the other hand, the onset of bimo-
dality for the distribution Wv of v=�p is �c.

When no condensate forms �i.e., p�1 or ���c if p
�1�, we compute numerically the probability distribution

function of �̃ as follows. For a given value of the reduced

density ��, the mean value ��̃� appearing on the right hand
side in Eq. �112� is determined self consistently by enforcing
that it should coincide with the first moment of the distribu-
tion having statistical weight, Eq. �112�. Note that ��

=� / ��̃�. Alternatively, we may also impose the second self-

consistency requirement that ��̃p�=1. We systematically

checked that both routes provide the same result for ��̃�,
from which the different quantities of interest may be com-

puted. This illustrates the consistency of the functional form
�112�. With such a procedure, the solution found numerically
is always unique; it will be compared against the results of
Monte Carlo simulations in the next section.

In situations where a condensate is expected ����c and
p�1�, an explicit prediction between the control parameter
�� and the condensate size �or more precisely condensate
line coverage� can be derived from the remark that the fluid
phase outside the condensate is critical. In other words,

�c
� =

N − 1

L − L0
� 1

N
�

i�fluid
�i

p�1/p
. �116�

On the other hand, the global reduced density �including,
thus, the condensate� reads

�� =
N1−1/p

L �L0
p + �

i�fluid
�i

p�1/p
. �117�

The two above equations allow us to compute �0, the con-
densate line coverage, through

��p = Np−1�0
p + ��c

��1 − �0��p. �118�

Hence, for large N, �0→0, and we have

�0
p �

��p − �c
�p

Np−1 . �119�

B. Monte Carlo simulations

To test our predictions, we implemented Monte Carlo
simulations, closely following the algorithm used in Ref. 19.
N hard rods with different sizes are confined on a line of
length L; a first type of move amounts to randomly selecting
a particle and randomly translating it. A second kind of move
allows the system to relax its size distribution and sample
polydispersity. Two particles are selected at random in the
system; the size �1 of particle 1 is expanded at the expense of
the size of particle 2, so that �1

p+�2
p is constant, �1

p→�1
p

+	 ;�2
p→�2

p−	, where the increment 	 is drawn from a dis-

0 0.5 1
ρ

0

20

40

φ

CONDENSED

FLUID

CRITICAL LINE

FIG. 4. Phase diagram in the �� ,�� plane for p=2. The critical line
�max���=2 /3�2 �for p=2� separates the fluid and the condensed phase.
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tribution w such that the typical value is small compared to
��p�. Both types of moves are accepted provided they do not
lead to any overlap between the rods and for the second kind,
provided the shrunk rod does not have a negative length.
These rules correspond to the model defined in Sec. II, in
particular, to the case where the volume exchange rate
w�	 ,v� of Sec. II does not depend on v.

Typical results are shown in Figs. 5 and 6, which are
both for cases without condensation. In all figures, the data
gathered from the Monte Carlo simulations are shown with
the symbols, while the predictions are shown by the continu-
ous curves. The agreement theory/simulations is very good
�see in particular the distribution function in the upper inset

of Fig. 5�. From Eq. �104�, we have that in the low density

limit, ��̃�=2 for p=1 /2 �see the lower inset of Fig. 5�, and

��̃�=�� /2�0.886 for p=2 �which can indeed be seen in the
inset of Fig. 6�.

We now turn to the cases where a condensate should
form. It may then be difficult, from a practical point of view,
to distinguish such a big particle from others belonging to
the tail of the size distribution. Another difficulty comes
from the fact that the condensate line fraction �0 may be
small for large N. Attention must be paid to the size of the
condensate that is expected. Equation �119� indicates that the
condensate line coverage scales with N like N−1+1/p; how-
ever, the typical rod size in the fluid phase concomitantly
exhibits a faster decay in 1 /N, so that there is always a clear
separation condensate/fluid. In our simulations, we followed
for p�1 the biggest particle �size L0� in the simulation box

0 2 4 6 8 10

φ∗
0

0,1

0,2

0,3

0,4

0,5

η 0

p=3/2

p=5/2

FIG. 7. Packing fraction �line coverage� of the condensate as a function of
reduced volume fractions ��, for p=3 /2 �lower sets� and p=5 /2 �upper
sets�. The symbols have been obtained by computing the mean size of the
largest particle observed in Monte Carlo simulations, and the curve shows
Eq. �118�. For the present parameters �N=1000�, the approximation pro-
vided by Eq. �119� proves quite accurate �dashed line, hardly distinguishable
from the continuous curve for p=5 /2�.
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FIG. 8. Linear-log plot of the aggregate size distribution for p=3 /2 and two
reduced volume fractions ���=0.9 and 2�. The data are obtained following
over time the different sizes taken by the �unique� condensate. Here, P
denotes the probability distribution function of y=�p / ��0
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FIG. 5. Equation of state as a function of line coverage � in the case where
the exponent defining the conserved moment is p=1 /2. The symbols are for
the Monte Carlo results and the curve is for Eq. �110�. A characteristic
length distribution is shown in the upper inset for ��0.72 �corresponding to
��=0.6�. The distribution �112� is compared to its Monte Carlo counterpart.

The lower inset shows the first moment ��̃� as a function of line coverage.

Here, �c=1 /3 for which �c
�=2 / �3���0.212 and ��̃�c=� /2. Monte Carlo

data with N=1000 particles are shown with the circles.
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FIG. 6. Equation of state as a function of line coverage � when p=2, in
which case the critical line coverage �c=2 /3 corresponds to �c

�=�2 /3
�0.816. The exact pressure is shown by the continuous line, while the

dotted curve is for the crude approximation where ��̃� is assumed density
independent and equal to its critical value �2 /3, which leads to P�

=�3 /2� / �1−��. Circles: Monte Carlo results with N=1000. The inset

shows the density dependence of ��̃�.
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�line�. As can be seen in Fig. 7, the corresponding line frac-
tion �0=L0 /L closely follows our prediction �118�. We there-
fore conclude that Fig. 7 proves the existence of the conden-
sate for ����c

�.
To confirm the results of Sec. IV where the condensate

volume distribution is calculated, see Eq. �89�, we measured
the fluctuations in the condensate volume. We find that that
the distribution p�v� turns out to be Gaussian, as predicted in
Sec. IV �see Fig. 8�. Another prediction is that the fluid phase
outside the condensate should have a size distribution of the
form �108�, irrespective of the reduced volume fraction pro-
vided ����c

�. This expectation is fully consistent with the
Monte Carlo results, see Fig. 9 for p=3 /2. For convenience,

we considered in the main graph the distribution of �̃p, since
it is predicted to be a pure exponential. We performed a
similar analysis at p=5 /2, for various volume fractions be-
yond the critical one, and the same conclusion holds with
again a critical fluid phase, and a size distribution �excluding
the condensate� that does not depend on the imposed volume
fraction �. The fluid phase can only accommodate a well
defined finite fraction of the total volume �or length�, so that
when �� increases above �c

�, the extra volume is transferred
to the aggregate �see Fig. 7�.

VII. CONCLUSION

We considered a simple stochastic model of mass trans-
port where a real-space condensation takes place upon in-
creasing the volume fraction. The system studied consists of
p-spheres, constrained to move on a ring, with hard-core
constraints; the left to left particle distance xi between
p-spheres i and i+1 should exceed the diameter �i of
p-sphere i �see Fig. 1�. The latter quantity is itself related to
the volume of the sphere through �i=vi

1/p, where p has been
retained as a parameter. The total volume of the particles,
�ivi, is fixed, so that the present model involves two con-
served quantities ��ixi, the total length available, and the

total volume V=�ivi�. The dynamics comprises diffusion
�which can be seen as a stochastic exchange of the quantity x
between neighboring particles� and a stochastic exchange of
volume. When p�1 and beyond a critical density that has
been worked out explicitly, a particle of macroscopically
large “mass” �large volume� appears, carrying a finite frac-
tion of the system total volume V, surrounded by a critical
fluid phase, with a size distribution independent of the total
density.

Under mild conditions pertaining to the sampling of the
conserved quantities, we have shown that the system admits
a factorized steady state probability density, with detailed
balance between allowed configurations �essentially those
with no overlaps between the p-spheres�. This allows us to
use an alternative description of the system in terms of find-
ing the equilibrium distribution of an ensemble of hard rods,
that do not have a quenched size distribution, but can ex-
change length provided the global constraint �i�i

p remains
fixed. Formulated as such, the problem appears as the 1D
analog of the optimal polydispersity studies of hard disks and
hard sphere fluids17–19,25 �for instance, the problem studied in
Ref. 19 corresponds to the three-dimensional hard sphere
situation with p=1�. The phase transition reported in Refs.
17–19 and 25 can therefore be seen as a condensation arising
from constraints in the configuration space.

We characterized the scenario at work for this transition
and obtained analytically the probability distributions of vol-
umes, gap distance g, and left to left particle distance x.
Restricting to the volume distribution, we have shown that a
density functional approach supplemented with scaling con-
siderations allows one to recover the results derived from the
stochastic processes viewpoint �working out the conse-
quences of the factorization property of the steady state�. In
this respect, the problem is to find the polydispersity of a
hard-rod system that will minimize its free energy, given that
the total number of rods is fixed as that the p moment of the
diameter distribution is fixed as well. The consistent predic-
tions of both approaches have finally been successfully
tested against Monte Carlo simulations. It is remarkable that
this optimality problem leads to a phase transition in a 1D
system, where the condensate size can be considered as an
order parameter �note that the constraints imposed introduce
a global coupling between all particles�. It should also be
emphasized that whereas the higher dimensional systems in
two or three dimensions could exhibit a transition for p=1
�with the convention that the conserved quantity for hard
spheres in d dimensions is ��dp��, such a value for p-spheres
on a line turns out to be critical with however no transition
observed; a macroscopic aggregate can only form provided
p�1.

An important question that remains is that of the dy-
namic pathways to condensation, that is, how does a single
condensate emerge from some given initial condition for the
p-sphere volumes. As the condensation is driven by con-
straints in configuration space, the dynamics too might be
strongly affected by constraints, possibly producing, for ex-
ample, entropic barriers. This issue remains to be explored.
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FIG. 9. Linear-log plot of the probability distribution function Wv of particle

“volumes” v= �̃p as a function of �̃, for p=3 /2 and several reduced volume
fractions beyond the condensation transition �circles for ��=2, squares for
��=5, and diamonds for ��=8�. Here �c

�=4�2 /��1/3 /5�0.688. The con-
tinuous curve shows the prediction of Eq. �108�. The inset shows the prob-

ability distribution of the variable �̃ instead of �̃p, again as a function of �̃
=v1/p.
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APPENDIX A: PROOF THAT S„u… IS MAXIMIZED AT
u=0

In this appendix we show that the grand canonical en-
tropy S�u� defined in Eq. �41� as

S�u� = − �p + 1�ln � − �p + 1�ln F��u� + ln H�u� + F��u�

+ uF��u� �A1�

is maximized when the scaling variable u takes the value
zero.

Expanding about u=0 to second order in u=0 and using
the definitions of H�u�, F��u�, and F��u� given in Sec. III B,
we obtain

S�u� = �1 + p − �1 + p�ln�1 + p� + ln���1 + p��� + a1u

+ a2u2 + O�u3� , �A2�

where

a1 = 0, �A3�

a2 = ��1 + p + p2��2�2p� − �1 + p���p���3p��/

�2�1 + p��2�p�� . �A4�

The first equation shows that u=0 is a stationary point. The
function

c�p� = �1 + p + p2��2�2p� − �1 + p���p���3p� �A5�

is maximized at p=0.614 413 where its value
c�p�=−0.566 304 is negative. Hence c�p� is negative for all
p�0, which implies a2�0 for all p�0 proving indeed that
at u=0, S�u� is a maximum.

APPENDIX B: DERIVATION OF THE AGGREGATE
SIZE

To find out what does determine �0 �and thus �M� for a
given value of �, we reconsider the free energy functional
�90�, supplemented with two Lagrange terms to fulfill the
constraints17,19,25

R�W� = �F�W� + NL0
 W���d�

+ NLp�
 �pW�l�d� + L0
p� . �B1�

We have to minimize this expression with respect to W and
V0. Stationarity with respect to W leads to an expression of
the form �105�,

log��1−pW���� +
��Fex

N�W���
+ L0 + Lp�p = 0, �B2�

while the derivative with respect to V0 reads

�R
�L0

=
��F
�L0

+ pNLpL0
p−1. �B3�

The free energy of the system is a function of L−L0, since a
constituted aggregate does not contribute to F apart from the
confinement it induces on the remaining particles which have
free energy FM; F�N ,L0 ,L�=FM�N ,L−L0�. Hence, Eq. �B3�
also reads

�R
�L0

= P + NpLpL0
p−1. �B4�

From Eqs. �105� and �B2�, we have Lp� ��c−�M�. On the
other hand, a physically acceptable mixture M, should have
a normalizable size distribution, which imposes �M��c.
Hence, Lp�0 so that the derivative �B3� cannot vanish and
is always positive �a situation already encountered in Ref.
17�. The minimization with respect to L0 therefore leads one
to choose for L0 the minimum possible value compatible
with �M��c. The optimal value of L0 is thus 0 for ���c,
and such that �M=�c whenever ���c. In other words

�0 = � 0 for � � �c,

� − �c

1 − �c
for � � �c. � �B5�
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