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Because micro-ions accumulate around highly charged colloidal particles in electrolyte solutions,
the relevant parameter to compute their interactions is not the bare charge, but an effective
renormalizedl quantity, whose value is sensitive to the geometry of the colloid, the temperature or
the presence of added-salt. This nonlinear screening effect is a central feature in the field of colloidal
suspensions or polyelectrolyte solutions. We propose a simple method to predict effective charges
of highly charged macro-ions, that is reliable for monovalent electroled counterionsin the
colloidal limit (large size compared to both screening length and Bjerrum lentgking reference

to the non linear Poisson—Boltzmann theory, the method is successfully tested against the geometry
of the macro-ions, the possible confinement in a Wigner—Seitz cell, and the presence of added salt.
Moreover, our results are corroborated by various experimental measures reported in the literature.
This approach provides a useful route to incorporate the nonlinear effects of charge renormalization
within a linear theory for systems where electrostatic interactions play an important rol200®
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I. INTRODUCTION (with valences{z,}) as x?=4mlg3 p,z2. The Bjerrum
length |5 is defined adg=e?/(47ekgT), wheree is the
ermittivity of the solvent considered as a dielectric con-
inuum: lg=7 A for water at room temperature.
However, this approach becomes inadequate to describe
&ighly charged objects for which the electrostatic energy of a

When a solidlike object, say a colloidal partidlgoly-
ion), which carries a large number of ionizable groups at th
surface is immersed in a polarizable medi(nith a dielec-
tric constante, say watey, the ionizable groups dissociate,

leaving counterions in the solutions and opposite charges

the surface. The interactions between the charged coIIoidgr]r,1lcr0'l?n near tge coIIOIdthsulr_face .Iar?ely ef)iﬁeégg’ the i
which determine the phase and structural behavior of th&'eM?al €nergy, because the linearization of the PB equations

suspension, is mediated by the presence of micro-ion‘ssapri_ori _notjustif;ed. In this c_:aseshowe\_/er, th_e electrostatic
clouds. The complete description of the system is thus Zotential in exact® or mean-fiel&® theories still takes the
formidable task in general. However in view of the large P€Pye—Hukel-type form far from the charged bodies, pro-
asymmetry of size and charge between macro-and microfided that the bare chargéis replaced by an effective or
ions, one expects to be able to integrate out the micro-ionienormalized quantityZcy. The micro-ions which suffer a
degrees of freedom, and obtain an effective description inbigh electrostatic coupling with the colloid accordingly ac-
volving macro-ions only. In the pioneering work of Der- cumulate in its immediate vicinity so that the decorated ob-
jaguin, Landau, Verwey, and Overbekkpicro-ions clouds ject, colloidpluscaptive counterions, may be considered as a
are treated at the mean-field Poisson-Boltzmé®B) level, ~ single entity which carries an effective chargg;, much
yielding the foundations of the prominent DLVO theory for lower (in absolute valuethan the structural one. Within the
the stability of lyophobic colloids. An important prediction prominent mean-field PB thedky-often quite successful de-
of the theory is the effective interaction pair potential be-spite of its limitations— andZg coincide for low values of
tween two spherical colloids of radd in a solvent which, the structural charge, b,z eventually reaches a saturation
within a linearization approximation, takes the Yukawa orvalue Zg' independent of Z when the bare charge
Debye—Hukel (DH) form, increases:” Arguably, the differenceZ—Z is identified
72¢2 2 expl — ) with the amount of counterions “captured” or “condenset”

, (1)  onto the macro-ion.
4me r A reminiscent effect has been recognized in the physics
whereZ is the charge of the object in units of the elementaryof polyelectrolytes under the name of Manning—Oosawa
chargee and x denotes the inverse Debye screening lengthcondensation. Here, the object is an infinitely long and thin
The latter is defined in terms of the micro-ions densifiest rod bearing\ charges per unit length. At infinite dilution and

exd xa]
1+«ka

v(r)=
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in the absence of salt, it can be shown at the PB level that thas well and the chemical potential reduces to its ideal con-
polyelectrolyte is electrostatically equivalent to a rod carry-tribution w=KkgT In(pA3), where A is an irrelevant length
ing N equiv Charge per unit length, where the equivalent chargescale. Without loss of generality, the macro-ions are sup-
density saturates to a critical valugq,,=1/1g when A posed to be positively charged.

increase$7* In general however, PB theory can be solved At equilibrium the electrochemical potential of the
analytically in very few geometries only and the difficulty micro-ions is uniform over the system. Introducing the re-
remains to predicZ.; for a given colloidal systerfi®>”213  duced electrostatic potentiab=eV/kgT, the equilibrium

In the absence of a general analytical framework for thecondition for micro-ions thus reads at the mean field level,
computation of the effective charge, this quantity is often

gg?sligleged as an adjustable parameter to fit experimental |n(p*A3)+ p=In(pyA3), )
The aim of the present paper is to propose a method th%here{p*,p*} are the density fields of the charged micro-

allows to compute effective charges comparing favorably . . . : :
: X . . . . speciegcounterions and co-iomswhich we assume for sim-
with PB in the saturation regime, provided the s&ef the b < A

charged macro-ion is much larger than Bjerrum lerigtand plicity monovalent. The constapt, will be specified hereaf-

screening lengtie . In the infinite dilution limit, we define ter. We restrict here to monovalent micro-ioroth

gleng ' . ' : counterions and saltFor higher valences, the reliability of
the effective charges from the large distance behavior of thf,B deteriorategsee Sec. V. The equilibrium condition
elegtrostatic potgn_ti_al created by tieolated mac“ﬁ;ﬁ"”? Eq. (2), is closed by Poiéson;s equation for the electrost:altic
While other definitions have been put forwatd=1° this ’

. A : . . potential,

choice is relevant in view of computing a macro-ion pair

potential at large distances, in the spirit of the DLVO ) .

approact? It moreover avoids the ambiguity of introducing Vigp=—A4mlg(p"—p ). ©)

a cutoff region in space which interior containing the colloid

would exactly enclose a total charge equal to the effectivd he gradient of Eq(2) expresses the condition of mechani-

one. At leading order in curvature-§) ~ %, our method easily cal equilibrium for the fluid of micro-ion& At this level,

provides effective charges at saturation close to their courene has to separate between the no-salt and finite ionic

terparts obtained in PB theory. In the situation of finite col-strength cases.

loid cpncentration where itis no !onger obviou; to extract an(l) No-salt caseOnly the releasechere negativecounteri-

effect|ye chargg from the large Q|§tance behawor of the elec: ons are present in the system. The PB equation for the

trostatic potentlallt_:omputed within a nonlinear th%o_ry, we duced potential thus reads

follow the proposition put forward by Alexandet al” in- 24— 2et

troducing a Wigner—Seitz cell. In this situation, we general- Vig=rer, ) ) . (42

ize our original method into a prescription that we success- Where the screening constak is defined as«
=47lgpg, With pg the constant introduced in EQ).

fully test in various geometries, for different thermodynamic o ; -
conditions(isolated systems or in contact with a salt reser-  1he latter is fixed by the electroneutrality condition,
which imposes

Voir).

The paper is organized as follows: We first recall the o
basic framework of PB theory in Sec. Il. We then examine in Jvdrp (N=-zeN, ®
some details the simple case of a spherical polyion in the \yith N, the number ofidentica) macro-ions, of charge
infinite dilution limit (Sec. IIl). This example allows us to Ze contained in the volum@&. The quantityp, is a
devise a general method to compute the effective charge for | agrange multiplier associated with the electroneutrality
arbitrary colloidal systems. The situation of finite density of  ¢ongition and has no specific physical meaning; it is
colloids is then examined introducing Wigner—Seitz cells.  nogified by a shift of potential, which can be chosen at
The salt-free case is developed in Sec. IV, while the situation  oyr convenience to fixs at a given point in the solution.
of finite ionic force is explicited in Sec. V. We finally con- (2) Finite ionic strength situationin the finite ionic strength
front the results obtained within our prescription with experi-  ¢ase. salt is added to the solution, so that both co-and
mental or simulation data in various geometries in Sec. VI.  counterions are present in the system. In the following
We discuss the general validity of our mean-field treatment \ye shall work in the semigrand ensemble, where the
relying on PB approximation in Sec. VIl and conclusions are {colloids+ micro-iong system is put in contact with a
drawn in Sec. VIII. The preliminary results of this study have  eservoir fixing the chemical potential of the micro-ions

been published elsewheft. Wo- In this casepg in Eq. (2) is the concentration of salt
in the reservoi(where ¢ is conveniently chosen to van-
#HCég'\ésRAL FRAMEWORK: POISSON-BOLTZMANN ish), so thatuo=KkgT In(ppA®). Since we are considering

monovalent micro-ionsp, coincides with the ionic
Poisson—Boltzmann theory provides a mean field de- strength of the reservoir which is generally defined as

scription of the micro-ions clouds in the presence of the lo=n, 'S ,z5p5 for a numbem, of micro-ions species

polyions, acting as an external potential. The key approxima-  With valencesz,, and reservoir densitigs,. This results

tion in the approach is the neglect @hicro-ionic correla- in the PB equation for the reduced potenifal

tions. The size of the micro-ions with densjtyis neglected V2¢=rK?sinh¢, (6)
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where the screening facteris now defined in terms of ary) where ¢pg(r)>1, and a linear region wherepg(r)
the micro-ion concentration in the reservoik’ <1 (the potential vanishes at infinityThe surface delimit-
=87lglo=Kos ing these two regions is a sphere of radids such that
*) ~
In addition to these two situations, we shall also consider(ﬁPB(Frar) frolrﬁ colloid, the complicated nonlinear effects have
the case of infinite dilution where an isolated macro-ion isgjed out to a substa’mtial degree, and the solution also obeys
immersed in an electrolyte of given bulk salt concentrationne Jinearized Poisson—BoltzmanfLPB) equation V24

I which thus plays the role of a reservoir. =24, and therefore takes the Yukawa form,
PB equations(4) or (6), are supplemented by a set of
boundary conditions on the colloids, expressing the relation- Lot R
ship between the local electric field and thare surface PLes(1)= (1+xa) B r (10

charges of the colloidal particles:e. This gives the bound- . . ) . -
ary condition for¢ at the surface of the colloid in the form; The effect|ve.charg€eﬁ IS defined here without ambiguity
from the far field behavior ofpg(r),

Vo) h=—4xlgo, (7) )
(V) o | i o)/ Boe()=1. a
wheren denotes a unit vector normal to the colloid’s surface. r—oo

Except in simple isotropic geometri&the analytical solu-

In practice, and coincide in the linear regionr
tion of PB theory is not known. D Pues dre gionr(

=r*), so thate pg(r*)=1 (i.e., is a quantity of order one
Whena>« 1, the nonlinear effects are confined to the

Il INFINITE DILUTION LIMIT: ASYMPTOTIC immediate vicinity of the macro-ion, with an extensien?.

MATCHING FOR THE EFFECTIVE CHARGE We therefore have*/a=1 and as a consequencg, pg(r

In this section, after recalling a few results on the planar= )= ¢1ps(r*)=1. We thus obtain the effective boundary
case, we explicit our method on the particular example ofondition thaté, pg is a quantityC of order one forr =a;
spheroids. We then generalize it to an arbitrary colloidal obfrom Eg. (10) this means thaZii=Ca(1+ «a)/lg. This
ject and consider the case of charged rods as an applicatiofimple argument provides the nontrivial dependence of the
We work in the infinite dilution limit, and therefore, we re- e€ffective charge at saturation upon physicochemical param-

ject the external boundaries of the system at infinity. eters; it applies in the saturation regime of PB theory where
Z=225'and assumes that the bare chaZge high enough

so that the nonlinear region exists. In order to determine the
In the case of the planar geometry, the nonlinear PBconstantC, we may consider the planar limi— o, where

equation can be analytically solved. The detailed solution ighe analytical solution of PB theory is knowsee above and

given in Appendix A. The important result however is that Appendix A): the surface charge dens#i (4mra?) should

far from the charged plane, the solution of the PB equatior¢oincide with that of a charged plané(7lg), Eq.(9). This

A. Planar case

reduces to that of the LPB equation, imposes thaC=4 and going back to the charge,
Z)=ce "% 8 4a
¢pp(2)=dg ® Zzgrtzl_(lJrKa)_ (12)
The apparentpotential ¢s is equal to¢s=4 in the limit of B
high bare charge of the plane. In deionized solutions, this argument leads to the scaling

In this limit, the fixed charge boundary condition is zSa. 4|, which has been recently tested for various latex
therefore replaced on the plane by an effecfixed surface qlloids?4
potential boundary condition pg(z=0)= ¢s=4. The ef- The physical argument leading to HG2) may be ratio-
fective charge densitgin the saturation—high bare charge— nalized as follows. The situation of large corresponds to a
limit) is then computed using the Gauss theorem at the sufpw curvature limit where the solution of Eq6) may be

face, yielding approximated by the solution of the planar problem in the
P region where curvature effects may be neglected; the latter
o-Z?ft:F. (90  corresponds to a regian<r <a+ da, with sa~a. It is cru-
B

cial to note that * <a+ da since, as mentioned above, the
extension of the region where the nonlinear effects are im-
portant(definingr*) has an extension of ordar %, smaller

Let us now consider a highly charged isolated spherghanda~a in the limit of largexa. As a consequence, in the
(bare charg&e radiusa) immersed in a symmetric 1:1 elec- regionr* <r<a-+ da, the solution of the LPB equation, Eq.
trolyte of bulk ionic strength . Within PB theory, the di- (10), may be matched to the asymptotic expression of the
mensionless electrostatic potential obeys E). Suppose planar solution, given in Eq(8) (usingr~a andz=r —a).
we know the exact solutiospg(r) (in spherical coordinates Expression12) is therefore recovered, showing again that at
with the origin at the center of the sphgreand the bare the linearized level, the apparent potentiabfisg(a) =4 in
chargeZ is large enough so that the reduced electrostatithe saturation limit.
potential at contact¢pg(a), is (much larger than 1. Then, Equation(12) provides by construction the correct large
we can divide the space surrounding the polyion into twokxa behavior ofZ3y, and becomes exa@tompared to PBIn
subregions: a nonlinear regidalose to the particle’s bound- the planar limit. We will show below that it remains fairly

B. Charged spheres
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50 a
t
P Zz?pg{—zIn(Ka)+2In[—ln(xa)]+4|n2}
40 /,/'/ .
s for ka—0. (15

At this point, it is instructive to briefly reconsider the
work of Squires and Brenn& who demonstrated that the
attractive interactions between like-charged colloidal spheres
near a wall could be accounted for by a nonequilibrium hy-
drodynamic effect{see also Ref. 22In their analysis, they
used an ad hoc value of 0.4 for the ratig,sd ospnere Of
surface charge densities of planar and spherical polyions, in
order to capture the one-wall experiment of Larsen and
Grier® This was the only free parameter in their approach.
From Egs.(A6) and(14) for the saturation values, we easily
obtain

Z,l/a

Ka

FIG. 1. Effective charge in the saturation regi@l s /a as a function of
xa for spheres in the infinite dilution limit with added salt. The symbols
(open circle are the “exact” solution estimated from the large distance
behavior of the electrostatic potential solution of the full nonlinear PB equa-
tion. The continuougresp. dashedine is Zg, found with Eq.(12) [resp. Eq.
19)].

Oglass  Ka(l+2ka)
2(1+ka)? -

= (16)
O sphere

In the experiment of Ref. 30, we have=1.2 [larger than

1, so that Eq.(14) is reasonably accurdteand we obtain

Tglasd Tsphers=0.42; it is thus possible to justify the choice

made in Ref. 29 assuming that both the confining wall and

accurate down t&a of order 1. A similar expression may be yhe nair of colloids are charged enough to sit in the saturation
found in Refs. 25, 26, but the generality of the underlying e qime. In this respect, knowledge of their bare charges is
method does not seem to have been recognized. This resu“dﬁnecessary.

supported by the work of Oshimet al?” which proposes an
approximation scheme of the nonlinear PB equations for
spheres in |n_f|n|te d|Iut|on, for Iargeg. Ir! particular these ? Arbitrary colloidal object
authors obtain an analytical approximation for the apparen

potential at the colloid surface, which reads in the saturation  Generalizing this analysis for an arbitrary colloidal ob-

regime, ject (of typical sizea), we propose the following method
to estimate the effective charge in the limit of large values
osh_ 1+ka (13) of ka:
S 1+2ka’

(1) Solve the LPB equation for the geometry under consid-
eration;

Define the saturation valu&:s, such that the linear
reduced potential at contact is a constaht,of order

Supplemented with expressidi0), this leads to the im-
proved effective charge,

@)

8a (1+ka)? i
Zﬁt:— ; (14 unity
lg 1+2ka |ps— bpund =C, 17
In the limit of large ka where ¢s—4, both Eqs.(12) and ;\:zﬁjrsecii.asymptotlc matching with the planar: case

(14) have the same behavior.
In order to test the validity of these results, we have

)

If one is interested in the effective charge for arbitrary
and possibly small bare charges, a crude approximation

numerically solved the full nonlinear PB equation, E)

and computed the effective charge from the electrostatic po-
tential at large distances, i.e., the value required to match
¢.pg to the far field ¢ppg Obtained numerically. For each
value of ka, we make sure to consider large enough bare
charges in order to probe the saturation regim& gf. Fig-

follows from
Zeff:Z, /<

Zeff _ —zsat

ff o

sat
ff 1

7>73%. (18

Our approach has several advantages. First, we do not

ure 1 compares the numerical PB saturation value of th@eed to solve the full nonlinear PB equations to obtain the

effective charge to the prediction of our approach, @),
and to that obtained using the results of Oshienal., Eq.

analytical prediction foiZg;.

effective charge. Second, the proposed method provides an

8l Third, our approach is easily

(14). We see that Eq.14) provides an accurate estimate for adapted to other macro-ion geometries or finite dilutions, un-

sat

oft as a function ofka, for ka=1. Working at the level of

like that of Ref. 27[even if these authors could find an

our approach only, Eq12) still yields a reasonable estimate equivalent of expressio(lL3) for cylinders, see beloy

for Z&{ ka), specially for high values of the parametea.
In the limit of small ka, both expression$l2) and (14)

In the following, we will mainly focus on the high bare

charge limit of the colloids where the effective charge

differ notably from the PB saturation charge which divergesreaches a saturation platedis. In order to simplify nota-

as shown by Ramanath&has

tions, we will denote this saturation valiZe;.
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10

Note that the plot is in log-linear scale, in order to emphasize
the smallka region where our method is net priori ex-
pected to work. Surprisingly, the agreement between the nu-
merical result of the full PB equation and E@3) is satis-
factory down to very low values ofa, ka~ 102, although
the two quantities have a different asymptotic behavior; the
1 exactl gh ¢4 is finite whenka—0 (Ighg= 2/7 from Ref. 31,
see next paragraphwhereas both estimates of E¢81) and
(23) vanish, although extremely slow[as — 1/log(xa)].
Importantly, ka— 0 is the asymptotic regime where the
celebrated Manning limiting lat%3? happens to be exact,
and the condensation criterion holds. In this limit, above the
condensation threshold, the electrostatic potential solution of
the full nonlinear PB equation is indistinguishable from that
of a cylinder carrying a line charge densiy,,= Mg 1t
FIG. 2. Effective line charge densithg)y, VS xa (the reduced Debye— The two quantities\ ¢4, and A, may be coined as “effec-
Huckel constantfor cylinders in the infinite dilution limit with added salt.  tive Charges,” but we maintain our initial definition of the
The symbolgopen diamondsare computed from the large distance behav- offactive charge from the far field potential solution of the
ior of the electrostatic potential solution of the full nonlinear PB equation, . . .
solved numerically. The continuougesp. dashedline is our estimate for nonlinear PB equation. In this respedlyquiv* A sat (as al-
lehear EQ. (21) [resp. the improved estimate, E@3)]. ready discussed in the Appendix of Ref) 1This is because
one expects a remnant non-linear screeninygf,, so that
Nsai<Nequv= g . The limiting situationka—0 has been
D. Rodlike macro-ions solved recently within Poisson—Boltzmann theory, using ex-
o o ] . act results from the theory of integrable systethghe cor-
Now the object is an infinitely long cylinddradiusa,  yesponding solution illustrates our point. This seminal work

bare line charge densitye). The solution of linear PB equa- gjiows to compute explicitly the effective charge, which
tion is (in cylindrical coordinates whereis the distance to | o5(s

the axig

sat

Ka

. 2 (m
i Ko(kr) lim )\eﬁ=w—sm EMB . (29

d(r)=2xl Orea Ky(ka)” (19 xka—0 lg

whereK, andK, are (respectively the zero and first order Accordmgly, when\ exceeds the Manning threshold gl/
the effective charge saturates to a value

modified Bessel functions of the second kind. Hence the ap-

parent potential is 2 0.6366 1
)\sat:_| = |—<7\equiv:|_- (25
onl g Kolxa) 20 e ° °
$s=2Me 5 Ki(ka) @0 s noteworthy that the limit 2/lg) (compatible with the

numerical results reported by Fixman, see, for example, Fig.
1 of Ref. 33 is reached extremely slowly as is decreased,
in practice forka<10 8. For example, forka=10"2, the

_ 2ka Ky(ka) 21 numerical solution of the PB equation yields,=0.8115,
sat o Ko(ka) | @1 hence a value 30% larger than the asymptotic limit.

In the limit of large values of the bare line charge density
\, Oshimaet al. obtained an approximate expression for thelV. EFFECTIVE CHARGE AT FINITE CONCENTRATION:
apparent potential in the saturation regitbased on an ap- THE NO-SALT CASE
proximation scheme for the PB equation, see Appendix Aof  The sjtuation of finite density of colloids does not allow

Setting ps=C=4 yields our estimate for the effective line
charge density at saturation

Ref. 27, to define an effective charge from the far field of a single
oen K,(xa) body potential, as done in Sec. Ill. Here, we rely on the
= [Ky(xa) +Ky(xa)] (22)  proposition put forward by Alexandest al. to define an ef-

fective chargé.We recall here the main points of this PB cell
As expected, we note thgig®>"—~4 in the limit ka>1. How-  approach. First, the procedure makes use of the concept of
ever, from Eq(22), we deduce an improved estimateaf;,  Wigner—Seitz(\WS) cells; the influence of the other colloids
4ra Ky(xa) K,(ka) is accounted for by c_onfir;(isng the macro—ion into a ceII,_ with
Nsat= s Ko(ra) [Ko(xa)+Ky(xa)]" (23 global electroneutrallti’/?_ The size of the lceII,RWS is
B ™0 0 1 computed from the density of colloids, while its geometry is
In Fig. 2, we displaylgh g, [estimated either with Eq. chosen as to mimic the spatial structure of the colloids in the
(21) or Eqg. (23)] as a function ofxa, together with the solution. Second, the “effective” potential solution of the
“exact” value of Ighg, found by solving the full nonlinear linearized PB equation is such that the linear and nonlinear
PB equation for high bare charges in the saturation regimesolutions match up to the second derivative at the boundaries
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of the WS cell(hence they match up to at least the third value ¢s=3.66 in the limit of very large bare charges; this
derivative because of electroneutrality in “isotropic”™— value is very close to the value we prescribg=4! This is
spherical or cylindrical—cel)s Note that in the original pa- a nontrivial point, since the physical conditions in the present
per of Alexanderet al. the procedure was introduced to ob- case are very different from the isolated plane dasevious
tain the effective charge from theumericalsolution of the  sectior). We conclude that the analytic results available for a
nonlinear PB equation. But in the present work we shall use€onfined one-dimensional electric double-layer support our
the approach to get effective charges at the LPB level toprescription. For a more refined analysis of the electrostatics
gether with our prescription. Such a route has proven suosf counterions between planar charged walls, going beyond
cessful for monovalent micro-ions, see e.g. Refs. 37—-39, anBlB, we refer to the work of Netet al**
it has been shown recently that similar ideas could be em- In the remaining of this section, we further test our pre-
ployed to describe discrete solvent effectagain for  scription against results for spherical and cylindrical macro-
monovalent micro-iorf). ions.

In this section, we generalize the analysis proposed in
Sec. llIC to find a prescription suitable to treat the case of
finite concentration of colloids. We eventually compare ourB. Spheroids
results to those obtained following Ref. 5, for planar, cylin-  Here, the object is a charged spherical collgihre
drical, and spherical geometries. chargeZe radiusa) confined with its counterions in a con-
A. Generalized prescription and planar test case centric WS spheréradiusRys). The packing fraction is de-

fined as »=(a/Ryg)®. PB equation is again linearized

In the infinite dilution case, the reference potential is thegqnd the boundary of the WS cell, yielding EB4) which
bulk one ¢p. The natural generalization of this choice for . recall here

the finite concentration case consists in replacing in(EQ). ) )
dpuk bY ¢s the reduced electrostatic potential at the bound- ~ V°¢=K{pg(¢+1). 27

ary of the WS cell. Hence, we propose As for the planar case, the boundary conditions are

|ps— dbs|=C (26) Vé(Rws) =0 (electroneutrality, ¢, pg(R)=0 (because we
s PRl impose by commodity the potential to vanish at the WS cell,

If added salt was present in the suspengiee Sec. Y we  See Appendix B The solutiong, pg thus reads
should recover Eq17) from Eq.(26) in the infinite dilution

- N eKipe' e Kipg'

limit where Rys goes to infinity. We consequently expect the dLpp(r)=—1+f, +f (28)
valueC=4 to be relevant for the situation of finite density of r r

colloids with added salt. Searching for a unified descriptionyyith

we also test the possible validity of the choi&e 4 in the no

salt situation. It is therefore instructive, as an illustration of ¢ _ KipgRws* 1 ex T K paRus).- (29)

the method and benchmark, to analyze the simple case of a ~ 2K ps

charged plane confined in a WS cell, without added electrothe chargez. of the colloid is obtained from the spatial
Iyte._As recalled in A_ppe_ndlx B, the_ analytical solution of the gerivative of ¢, pg at the colloid surface;

nonlinear PB equation is known in such a geometry when
counterions are the only micro-ions present, which allows us
to check the validity of our assumptions in the limiting case

of finite concentration. Below, we compare these “exact”

results to the predictions of our prescription. —Kipa(Rws—a)costiK pg(Rws—a)]}. (30)

The exact apparent potentiabg is obtained using Eqg. At this level the screening constalt pg is still unknown; it
(B5) at x=0 for the plane:¢ps=coshi pgh)—1. Our pre- s fixed by our prescription which imposes the apparent po-
scription imposesghs=4, yieldingK, pgh=ArcCosh5). The tential of the colloid, such thatp pg(r=a)=C=4 with
effective charge is obtained from Gauss theorem at the sukp, pg(r) given in Eq.(28). The effective chargeZgy, is
face, i.e., Eq(B6) with o replaced by ;. This leads to the eventually computed using E¢B0). On the other han#pg
final result of our prescriptionog,= 6 ArcCosh(5). is defined from the PB counterion density at WS boundary
=5.60 (Whereog = 1/l gh), which should be compared to p~ (WS),
the exact resultrs,=5.060 [see Eq(B12) in Appendix B. > _

First it is striking to note that our prescription predicts the Kpg=47lep (WS). 31
correct functional dependence of the effective charge in  The equation forK pg, ¢ pg(r=2a)=4, is solved nu-
terms of the parameters of the system. Moreover the numerimerically using a simple Newton procedure. Figure 3 dis-
cal prefactor in front ofr., is only within 10% of the “exact”  plays the correspondings,;as a function ofy together with
value obtained in Eq(B12), which is quite a satisfactory the effective chargéagain at saturationfound by solving
agreement. numerically the full nonlinear PB equation, together with

However certainly the most interesting feature whichAlexander’s procedure. We recall that this procedure defines
comes out from the previous results is the fact that the apthe effective charge entering LPB equation such that the so-
parent potential at contachg, obtained within the analytical lution of PB and LPB equations match up to the second
resolution of the PB equation, does saturate to a constawferivative at the WS boundary. We emphasize that once PB

a 1 )
Zet= 1 11— KPpgaRyg) SN K pg(Ryys—a) |
lg Kipsa
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FIG. 3. Effective charge at saturation vs packing fraction for spherical poly-
ions without added salt. The symbdlspen diamondsrepresent the effec-
tive charge found by solving numerically the nonlinear PB theory supple-
mented with Alexander’s proceduf®ef. 5. The continuous line iZgy
within our prescription.

FIG. 4. Same as Fig. 3 for charged rods, except that the nonlinear PB results
are analytical heréRef. 10.

ing to implement in practice a numerical fitting procedure
On the other hand, as in the spherical case, the screening
equation has been solved numerically, no further numericatonstantK, pg at saturation is obtainethpproximately by
fitting procedure is required to mateh pg t0 ¢pg and com-  imposing the potential at the polyion’s surfaek:pg(a)=C
pute the effective charge; the counterion density at the WS=4 in the previous equation fop, pg. Evaluation of Eq.
boundaryp~ (WS) is known and g follows from Eq.(31).  (33) then gives the saturation valugg.
ReplacingK | pg with this value in Eq.(30) then gives the This result is compared with the effective charge de-
“Alexander” Z. (a similar remark holds with added salt, see duced by applying Alexander’s procedure to the analytical
below). We see again that our prescription works reasonablyesults of Fuosst al. and Alfrey et al. in the large bare

well. charge(saturation limit: *° the corresponding “exact” value
for the effective charge is chosen such that the solution of the
C. Cylinders linearized PB equation, E432), matches the solution of the

) o nonlinear PB equatioiFuoss/Alfreyet al. solution at the
~ Here we apply the previous procedure to an infinite cyl-yg poundary up to the second derivative. The resulting ef-
inder (radiusa, bare charge per unit lengite) enclosed in a  tective charge is plotted in Fig. 4 together with the value of
WS cylinder(same axis, radiuBys). We define the packing e effective charge obtained within our prescription. In Fig.
fraction asp=(a/Rys)?. This case is particularly interesting 5, we compare the screening fackorsg obtained within our
since the solution of the PB equation in the no-salt case iﬁrescription to the “exact” valu& pg derived from the ana-

10 H
known from thg work of FuoseF .al. and Alfreyet al. Th.|s. lytical solution of the PB equation and E@1) (again in the
therefore provides another critical test of our prescriptionimit of a large bare charge of the cylinder where the effec-
We note that a similar approach has been followed by

Lowen3®

The calculation follows the same lines as for the previ- 20
ous spherical case. The solution of LPB equat®n in the 18 |
two-dimensional case, with the usual boundary conditions 16 |
and the choicep, pg(Rws) =0 reads al
dLpe(p) = — 1+ K pgRws1(KpgRws) Ko(Kpgp) 12
S
+K1(KpgRws) lo(Kipep)}, (32 e 107
: : 8 & K,y exact
where use was made of the |d(.ant|'§y[lo(x)K1(x) K., prescription
+11(X)Ko(x)]=1. From the spatial derivative @b pg at r 6 r
=a we deduce the effective line charge density, 4 ¢
1, 2
Nel B=5 KipsaRwsl!1(KpsRws) K1 (K pga) 0 Y . ‘ :
0 01 02 03 04 05 06 07 08

—11(K pga) K1 (K pgRws)}- (33 n

If the above expression is evaluated replacigg by the FIG. 5. Comparison of the exact inverse screening leKgthobtained from

exactK pg following from Eq. (31) once the nonlinear prob- 1€ solution of the PB equatiofdiamonds with its counterparkpg ob-
. . L tained within our prescriptioficontinuous ling for highly charged rodlike

lem has been numerically solved, we obtain the original Al-pqyions without added salt. The inset shows the ritigg /Kpg as a func-

exander valuénot necessarily at saturation, and without hav-tion of packing fraction.
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6.0 V. EFFECTIVE CHARGE AT FINITE CONCENTRATION:
3 THE FINITE IONIC STRENGTH CASE
>0 ooo We now turn to the case where salt is added to the col-
40 |20 0 o I loidal suspension. More precisely, as already discussed in
o000 Sec. Il, we consider the semigrand canonical situation where
w 3.0 - the colloidal suspension is put in contact with a reservoir of
< salt, through a semipermeable membraddmlysis experi-
20 | men). The concentration of monovalent salt micro-ions in
the reservoirp, fixes the chemical potential of the micro-
1.0 - ions in the suspension. However, due to the presence of the
charged macro-ions, the salt concentration in the solution,
0.0 : : : : : : : ps, differs from that in the reservojy,: this is the so-called
0 01 02 03 04 05 06 07 08

“salt exclusion” or “Donnan effect.”36:42:43

N As in the previous section the effect of finite concentra-
FIG. 6. Dependence on volume fraction of the reduced linearized contadion is accounted for within the PB cell theofysing a WS
potential, p§= (a), with ¢ the LPB potential matching the analytical so- sphere of radiugR,ys). Here again, we use the prescription
lution of the PB equation, following Alexander’s procedure. Eq. (26) to predict the effective charge of the macro-ions.
For this purpose, it is convenient to choose that the electro-
static potentialp vanishes in the reservoir so that PB equa-

tive charge saturatesThe agreement between both quanti- fion reads
ties is remarkable, even up to extremely high packing frac- V2¢=KfesSinh¢, (37)
tions (80% in Fig. 5. . _ _ _

Another interesting check concerns the apparent poteth?re the screening factoq:eszls defined in terms of the
tial at the surface of the cylinder. Applying again Alexander’sionic strength of the reservoik;.c=8lgly.
procedure to the exact solution of Fuoss/Alfreyal, one Let us now consider the lineariz¢tL PB" ) version of
obtains the LPB potential which matches the exact solutiohis equation. We again linearize around the value of the
up to its third derivative at the WS cell boundary. The valuePotential at the boundary of the WS celly = ¢(Rys), often
of this potential at the surfacé? should be compared with referred to as the “Donnan potential,”
the value we prescribe, i.ejs=4. The result is plotted in V25¢:KEPB(5¢+VO)’ (38)
Fig. 6, showing again a good agreement except at low vol-
ume fraction, as expectddince as discussed in Sec. Ill, our Where we introduced¢= ¢— ¢ and

I;?rr:zif;:ription is not expected to work in the very sme#l KEPB: Krzescosm b1, (39)
Finally, we report an intriguing result: in the limit of res
vanishing density it can be shown analytically thaisRys Yo=tant ¢x]=\/1— Kopg (40)
—v2.1% Using this result together witk, pga— 0, we obtain . _ S _
from Eq. (33) The second order differential equati@8) is solved invok-
ing the two self-consistent boundary conditions,
fim N 2 1,(v2) = 0.6358° 34 909
nlino Sat_IB 2 1( )_ . 8|_B ( ) 5¢:0 and 7:0 for r:Rws, (41)

so thaté¢ is known as a function of distance and depends
parametrically orK, pg. We emphasize thd€, pg is still un-
known at this point. It is computed as in Sec. IV from our
prescription on the reduced potential,

This asymptotic value is displayed in Fig. 4 with an arrow.
We observe that this limit is approachédlthough very
slowly) as n decreases. Surprisingly, the result of E84) is
very close to the exact expressid@5) of Tracy and
Widom ! where the limitka—0 is taken after that of infi- Ops=ps— ps=4. (42
nite dilution. In principle, the limits of infinite dilution and of A. Spheroids

vanishing added salt have no reason to commute. The differ-'

ence between the twag, quantities illustrates this point, With the same notations as above, the appropriate solu-
with the surprise that the results are nevertheless very clog@n of the LPB Eq.(38) is
numerically, eKipe o Kipe'
Orpa(r)=7yo —1+f, ; +f el (43
1
lim  lim A\g~=0.6358—, (35 . , .
o salt » diution 8|_B where the functiond .. are defined in Eq(29). Note that

expression28) is recovered by taking the formal limi¢,s
=0 in the previous equation.

lim  lim )\SﬁFO'6366|£_ (36) Our prescription allows us to computg pg at satura-
o dilution no salt B tion, such thats® (a) =4, without any reference to the solu-

Downloaded 21 Oct 2002 to 129.194.8.73. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



8146 J. Chem. Phys., Vol. 117, No. 17, 1 November 2002 Bocquet, Trizac, and Aubouy

30 6.0 11
551
100 o o ©O
50
0.9
& o 0 01 02 03
o 3 4.5 o n
Nm o
E 4.0 =
N
35 -
3.0 : : ‘
0 0.1 0.2 0.3
10 : J : n
0 0.1 0.2 0.3
n FIG. 8. Dependence on volume fraction of the “exact” reduced linearized

contact potentialdps= ¢(a) — ¢(Rys), with ¢ the LPB potential matched

to the numerical PB solution according to Alexander’s procedure. Our pre-
scription assumes a constant valde,s=4. Inset: ratioK, pg/Kpg VS pack-

ing fraction. The ratio is seen to be very close to unity over the explored
packing fraction window.

FIG. 7. Effective chargéat saturationof spherical colloidgradiusa) as a

function of volume fractionzn for x..a8=2.6. The continuous line is the
effective chargdgat saturation computed using the prescription, while the
symbols are the results of the nonlinear PB cell theory, following Ref. 5.

) ) ) o the solution of the LPB equation matching the full—
tion of_ the norjllnear PB problem. This equatllon is solved, merical—PB equation up to second derivative at the WS
numerically using a Newton procedure. Ori€gsg is known, ¢l poundary. By construction, this potential may be

the effective charge fpllows from the gradient @cﬁs(r) in obtained inserting the numerically obtainedKpg
!Eq.(43) taken atr:g (it may also be computed by integrat- = k,0sCOSH ¢s) into Eq. (43). This apparent potential
ing the corresponding LPB charge density over the volumenouid be compared against our prescriptid=4. The

accessible to the micro-ions, i.asr<Ryyg), corresponding result is shown in Fig. 8. We observe &t
1 indeed saturates to a value close to 4. The inset shows
_ 2 H . « ” f
Zsat= Yoy K—a{(KLPBaRws— 1)sinH K pg(Rws K. ps/Kpg VS 7, whereKpg is the “exact” screening length
B LPE for the LPB equation at saturation, obtained numerically;
—a)]+ K pg(Rws—a)cosh K pg(Rws—a) 1}, K. pg is the same quantity estimated from our prescription.

We observe that although for small packing fractiofsg
(44) : P i
. . o slightly departs from our approximatiaf 4, the estimated
with yo=V1—(kwes/Kips)". Again, our prescriptiondgs K, . is still remarkably close to the exact one.
=¢s— ¢s=4 provides a value foK pg which is an ap- Independently of our prescription, we finally test the rel-
_proxmatlp_n for the exadKpg at saturation, related to micro- gyance of Alexander’s proceddra the following way.Z,
ion densities at the WS boundary through the expecteizs peen obtained above from the matching of a generic LPB
Debye-type form, potential to the numerical PB one B = Rws. It is also
KIZDB:47TI a[pt (WS)+p~ (WS)]. (45) _pos_;sible to implement the matching at a differe_nt location
_ _ ' inside the cell, and we deno®,(r macn the associated ef-
If Eq. (44) is evaluated with the exad{pg, Alexander's fective charge, at saturation. This quantity, normalized by the
prlgmal effective char_ge f(_)ll_ow$hence without having to  «\syal” one Z.{Rws) is displayed in Fig. 9. For the packing
implement any numerical fitting procediir&Ve also empha- fraction of 5% considered, e/ Rws is bounded below by
size that as in the previous sections, the right-hand side Qi/RWSzO.37, andZ,(Rys)=16.7a/lg, see Fig. 7. We ob-

Eq. (44) provides the effectivey a la Alexander(i.e., not  serve thatZy is relatively insensitive ta yaen for 0.6Rws
necessarily at saturatipnonce evaluated with the correct <T matchS<

Kpg (deduced from the numerical solution of the nonlinear
problem).
The results for the effective charge at saturaiggas a  B. Rodlike polyions

function of volume fraction are displayed in Fig. 7 for , . : .
. ! . . Using the same notations as in Sec. 1V, the appropriate
Kkef=2.6. As in the previous sections, we compare this re-

T . solution of the LPB equation in cylindrical geometry reads
sult with its Alexander’s counterpart at saturation. Our pre- q y g y

dictions are seen to be compatible with those obtained in the 8¢ pa(p)= Yo{ K psRwd 11(K peRws) Ko( KL pgp)
PB cell model.

From the numerical solution of the PB equation, it is +Ki(KipaRws)lo(Kpep) ]~ 1} (46)
possible to extract the apparent surface potentihs  With yo=\1— (kes/K pg)*. Again, K pg is obtained as the
= ¢(r=a)— ¢(Rws) (in the latter expressiow is defined as  solution of the equatio¢, pg(p=2a)=4. Once this equa-

RWS .
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The corresponding results farg, as a function of vol-
ume fraction are displayed in Fig. 10 fef.@a=3. As in the
previous sections, we compare this result with its counterpart
obtained from the numerical solution of PB theory together
with Alexander’s procedure for the effective charge in the
saturation limit. The agreement with the numerical results of
the full non linear PB equation is seen to be satisfactory.

VI. CONFRONTATION TO EXPERIMENTAL AND
NUMERICAL RESULTS

In the previous sections, we have tested our results for
the effective charges against the numerical solutions of PB
04 0' 6 0'8 1 theory. However, the effective charge is a difficult quantity to
' /R measure directly in an experimefgee, however, the work

s reported in Ref. 24 confirming the scali@g,p-a/l g for low
FIG. 9. Influence of the point,,chosen to match the analytical LPB and i0nic strength suspensions of spherical latex collpitfs or-
numerical PB solutions on the effective charge in the saturation regime. Theler to assess the experimental relevance of the above ideas,
S|tua_t|on is that of a spherical polyion in a spherical WS cell, at packlngwe now turn to the computation of osmotic properties for
fraction »=0.05 andx,.a=2.6. . . . . .
spherical and rodlike macro-ions, easily accessible both ex-
perimentally and within our approach. In the case of spheri-

tion is solved, the saturation value of the effective charge¢al colloids, we start by considering the phase behavior of
\eir, follows from the spatial derivative of the potential the suspension as a function of added salt.

d¢pg at the rod surface, A. Crystallization of charged spheres

match

The phase diagram of charged spherical colloids has
been widely eprZL%ed experimentally, in particular by Mono-
voukas and Gasf. In this work, the macro-ions were

~11(Kipga) Ky (K peRws)}- 47 charged polystyrene spheres, with radiss660 A. The au-

As in the previous sections, E7) gives analytically thors moreover compared their experimental phase diagram
the relation between the effective chargela Alexander to that computed for particles interacting through a Yukawa
et al. and micro-ions densities at the WS boundary. As suchpotential (1) (the Yukawa phase diagram has indeed been
it applies for any value of the bare chargeand in particu- investigated extensively by numerical simulatithé9.
lar, for \—0, K| pg is such that.4/\—1. A similar remark However such a comparison experiment/theory requires an
applies for Eqs(30), (33), and(44). If we choose forK, pg  ad hoc choice for the effective charg@ey [prefactor of Eq.
the “exact” Kpg value, we recover the “exact” cell model (1)]. The authors found that a reasonable agreement with the
(Alexandey effective charges. However, the quantfypg  numerical results was obtained for a specific choice of the
solution of ¢ pg(p=a)=4 is supposedly the inverse effective chargeZ.,= 880 (although they reported conduc-
screening length at saturation and therefore provides an agimetry experiments indicating a macro-ion charge around
proximation of\ ¢, once inserted into Eq47). 1200.

We focus in the following on the melting line of the
phase diagram obtained in Ref. 14. We use here our predic-
tions for the effective charges at saturation: we do not need
to know the bare charge of the polystyrene spheres, as this
quantity is presumably much larger than the corresponding
saturation plateau of.4, which means, within the PB pic-
ture, thatZ =2, OnceZg,(and the corresponding screen-
ing constantK,pg, see previous sectipris known for a
given density and ionic strength, it is possible to insert it into
the computed generic phase diagram of Yukawa sy$teims
obtain the corresponding stable phase. We extract in particu-
lar the melting line from these numerical results: we prefer to
use these numerical results for the phase diagmastead of
performing a full theoretical analysisince our main focus
0 0.1 0.2 0.3 0.4 0.5 remains to check the relevance of our predictions for the

n effective charges. This requires a “reliable” description for
the melting line, which numerical simulations provide once

1
Nef= TB KEPBa RwsYoll1(K pgRws)K1(K pga)

14

12

FIG. 10. Effective chargés\ g, as a function of packing fraction for cylin- the potential is given
ders with added salt,.&=3). The symbols represent the effective charge Wi hasi h his | I th |
at saturation within the usual PB cell approach, while the continuous line e emphasize that at this level, the only parameter en-

follows from our prescription. tering our description is the diameter of the beads, which is
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[I ] M KCl FIG. 12. Reduced osmotic pressiP& =47 5a%Il o6, /k T vs volume frac-
0

tion for spherical polyions in the salt free case whege(and thusk,ed
vanishes. The symbols are the PB values obtained from the resolution of the
nonlinear problem, and the line follows from our prescription. The inset
shows the same quantities in presence of an electrokjtga& 2.6).

FIG. 11. Liquid—solid transition of charged polystyrene colloids: volume
fraction for melting »,, as a function of salt ionic strengthy. Dots are
experimental points for the melting line extracted from Ref. 14. The solid
line is the theoretical prediction for the melting transition using our prescrip-
tion for effective chargegsee text while the dashed line corresponds to an
ad hoc fixed effective chargg.;=880, as proposed in Ref. 14. throughK, pg, and readily allows an estimation of the os-

motic pressure. Figure 12 shows the accuracy of the esti-
mate, with or without added electrolyte. The comparison of
measured independently. Accordingly, there@sadjustable  our predictionsat saturationto the experimental results re-
parameterin our equations and the resulting phase diagranported by Reust al*® is also satisfactory, see Fig. 13. It was
is strongly constrained. The results for the melting line usingalready pointed out in Ref. 49 that the PB cell theory repro-
our prescription for the effective charge are confronted to thejuced well with the experimental data. The agreement ob-
experimental data in Fig. 11. We also plot the result for theserved in Fig. 13 however illustrates the relevance of the PB
melting line for an ad hoc constant effective chargg,  saturation picture—well captured by our approach—at high
=880, as was proposed in Ref. 14. The observed agreemepblyion/micro-ion electrostatic couplingsee the discussion
supports the pertinence of our prescription #y,; which in Sec. VII).
reproduces the experimental phase diagram. In our case, the
eﬁeqtive .charge doe; vary t_Jet\{veen 500 and 2000 glong tl”@ Osmotic properties of rodlike polyions
melting line, depending on ionic strength and density. This
could explain that the conductimetry measurements per- EXpressior(49) is also valid in cylindrical geometry, and
formed independently by Monovoukas and Gadthough at  We show in Fig. 14 the comparison prescription vs nonlinear
an unspecified ionic strengtlyield another value for the
effective charge of the sphere&+ 1200 as quoted aboye

600
B. Osmotic pressure of a suspension of spherical
colloids
In the PB cell model, the osmotic pressure in the solu- 400 ¢
tion is related to the densities of micro-ions at the WS cell
boundary/36:4748 P
Mosnr=ksTLp " (Rws) +p~ (Rws) —2po], (48)
where we have subtracted the ionic contribution from the 200
reservoir(of salt densitypy=1,). This is because the electric
field vanishes at the WS cell and there is no contribution
from the electrostatic pressure &t Rys. Using Eq.(45),
Eqg. (48) may be recast into 0 o 0.05 o1
ksT _ , ) n
Hosm:ﬁ[KPB(PaIO)_Kres]v (49 ) ) ) )
7B FIG. 13. Osmotic pressurén Pg as a function of volume fraction. The

where ko is the screening constant defined in terms of thesymbols are the expenmeptal measures of Fief. 49 for agueous suspensions
f bromopolystyrene particle$with radius a=51 nm). The continuous

ioniC_ strength in the reserVOir-_ Our prescription iS_ SUppOSEtiurve corresponds to our prescription assuming a salt concentration of
to give an excellent approximate of the nonlinddpg  107° M in the reservoir.
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c, Mol/1
8 FIG. 15. Osmoatic coefficienp of B-DNA solutions as a function of density

of DNA phosphate ions,, for ionic strengths of 10 mM, 2 mM, and 0 mM
(from bottom to top. The dots are the experimental points obtained from
Refs. 50 and 51, while the solid lines correspond to the predictiong for
6 - using our prescription in cylindrical geometry. The dashed line is the pre-
diction of Oosawa—Manning condensation theory.

strengths, showing again a good quantitative agreement. As
in Ref. 7, we report the prediction of classical Oosawa—
7 L Manning condensation theoiigee, e.g., Refs. 19, §2for
which the osmotic coefficient is constap=1pna/(21g)]

at complete variance with the experiments. In view of the

0 o ‘ . results reported in Fig. 14, the disagreement at smathay
0 0.1 0.2 0.3 04 be attributed to thérelative failure of the PB theory, and not
n to a weakness of our prescription that should be judged with

FIG. 14. Same as Fig. 12 for cylindrical polyions. Left: salt-free suspensionsreSpeCt to the nonlinear PB.

(the inset is a zoom in the small packing fraction regidRight: situation
with added salt ka=3).

VII. DISCUSSION: VALIDITY OF THE APPROACH

PB osmotic pressure. We draw a similar conclusion as for Our analysis was carried out at the level of Poisson—
spherical polyions concerning the accuracy of our approxiBoltzmann theory, which is mean-field-like. More refined ap-
mation. proaches such as the salt-free Monte Carlo simulations of
For completeness, we compare in what follows our estiGroof? for the cell model within the primitive mod¥ have
mate for the osmotic pressure to the experimental results oshown a nonmonotonic behavior @ty upon increasing
B-DNA solutions reported in Refs. 50, 51. In this work, the for spheres: after the linear regime whefgy=2Z, Z.4
authors measured the osmotic coefficignt I1.s,/I1., de-  reaches a maximum for a valu&,,. and then decreases.
fined as the ratio between the osmotic presdiligg, to the  When the radius of the charged spheres is much larger than
pressurdl, of releasable counterions having bare density Bjerrum lengthlg, this maximum is surrounded by a large
(IT;=kgTc.) against the concentration of B-DNA, a rigid plateau in excellent agreement with the PB saturation value
cylindrical polyelectrolyte. A related PB cell analysis may be Z,..1>>3 PB theory appears to become exact lfigta— 0.%°
found in Ref. 48 while a more thorough investigation hasGiven that,Z}, . scales like &/15)? and therefore becomes
been performed in Ref. 52. quickly large when the colloid size is increaseéd®B theory
Within the WS model, B-DNA macro-ions are confined is successful in the colloidal limit of large. We recall that
into cylindrical cells, which radiu®s is related to the bare this is precisely the limit where our predictions for the effec-
concentration of DNA counterions a§=(IDNAwR\2NS)*1, tive charge at saturatio#, are reliable(the conditiona
with Ipya=1.7 A the distance between charges along DNA.>« ! shoulda priori be satisfied even if we have shown
Note that as in the previous section dealing with chargedbove that our predictions remain fairly accurate dowrao
spheres, there is no adjustable parameter in our descriptiaf order 1. More generally, the results of Gr3dshows that
since the radius of the DNA and the bare chafgely used the effective chargeZ,s from Monte Carlo simulations
to normalize the osmotic pressure kb)) are known from  within the primitive model for arbitrarg/l z are smaller than
independent measurements. In Fig. 15, the corresponding rédie quantityZ., of the PB theory. This is a general feature
sults for the osmotic coefficient are confronted against théhat neglect of ionic correlatiofes in PB leads to a under-
experimental data of Refs. 50 and 51 for various ionicestimated screening of the macro-ion by the micro-ions, and
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thus to overestimated effective chargsse, e.g., Refs. 52, etry of the solid particle(b) the confinementfinite concen-
56 in cylindrical geometry Our approach thus provides a tration situationg (c) the presence of added salt) exact
useful upper limit for a realisti@q . and approximate solutions of the full nonlinear PB equations,

A related comment in favor of the validity of the PB (e) direct experimental measurements of the effective charge
picture with a saturation plateau fat,; comes from the found in the literature. From these different checks, we con-
work of Cornu and Jancovici. For the two-dimensional clude that our prescription appears to contain the key ingre-
two-component Coulomb gas bounded by a hard wall of surdients involved in charge renormalization.
face charger, these authors performed an exact calculation ~ An important point is that the effective charge is not
at the inverse reduced temperatefé(kT) =2 showing that constant and depends explicitly on the physical conditions of
the effective surface charge of the wall saturates to a plateahe experiment, through ionic strength, density, etc. The ef-
value wheno diverges. fect is quite obvious in the small dilution limit, where we

Generally speaking, in an 1:1 electrolyte, PB theoryfound that the(saturated effective charge is amcreasing
seems to be a reasonable approximatfoti,all the better function of « (for ka>1), which stems from the reduction of
that the size of the macro-ion is larger thgn the notion of  the attraction between the counterions and the colloid. It per-
charge renormalization then encaptures the main effects a&ins for finite concentration and the effective charge in-
the nonlinear PB theory, and is consistent with experimentatreases with the ionic strength in the suspension. Addition of
data in dilute bulk soluticif*®! (see also the experimental salt consequently brings two antagonist effects on the effec-
work cited in Sec. V). For micro-ions of higher valencédi-  tive Coulombic interaction between macro-ions: the range of
or trivalend, strong ionic correlations rule out PB-type ap- the interaction decreases due to screening, while the ampli-
proaches, as shown by recent computer simulations of theide increases due to the effective charge. The competition
primitive model®?~%4As a consequence, the results presentedetween these two effects might be a key point in the under-
here shoulda priori not be used in the interpretation of ex- standing of these systems. It appears therefore interesting to
periments involving multivalent salts or counterions. For areconsider the phase stability of macro-ion suspension in
discussion concerning the effects of multivalent counter-ionslight of these resultgsee also Ref. 68 and more recently Ref.
we refer to the review by Bhuiyan, Vlachy, and OuthwéRe. 69).

Eventually it would be desirable to extend our approach

VIIl. CONCLUSION to the case of finite size colloidal particles, such as rods with
finite length or disk$’ Accordingly, edge effects should
show up at the level of our prescription and result in an

fields of colloidal suspensions. It allows us in practice to . S .
describe the phase behavior (iighly) charged macro-ions effective charge distribution along the macro-ion, due to the
constant potential prescription on the object. Work along

staying at the level of linearized Poisson—Boltzmann equa . L
tions, where the macro-ions are supposed to interact througlﬁese lines is in progress.

Yukawa-type pair potentials. However, no general analytical

descriptio_n of this re_normalization process is available an%CKNOWLEDGMENTS
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colloidal particle. At the level of Poisson—Boltzmann theory,

the effective charge saturates to a finite value in the limit

where the bare charge becomes large. We recall that omi&PPENDIX A ANALYTICAL SOLUTION OF THE PB
sion of the nonlinearities of the PB theory—correctly ac- EQUATION FOR AN ISOLATED PLANE IN AN

counted for by the notion of effective charge—may lead toF-ECTROLYTE

unphysical result¢ésee, e.g., Refs. 36, 6 _ Here, we recall the analytical solution of the PB equation
In the present paper, we have put forward a simpleor an isolated plane of bare surface chasgeimmersed in

method to estimate the effective charge of highly chargedy electrolyte of bulk ionic strength,. In this case, the
colloidal objects either analytically, or through the resolutionspution of Eq.(6) read§’

of a simple equation obtained within the linearized Poisson— o

Boltzmann approximation. This approaémostly suited to bos(2)=2 In1+ ve (A1)
describe the colloidal limitca>1) amounts to considering PB 1—ye

the _hlghly charged coIIo_lds as objects with constant elect_ro\-Nherey: PP 1-x, k?=8mlgly, andx= i\ ac, ith the
static potentia~4kT/e, independently of shape and physi- Gouy—Chapman length defined as

cochemical parametelsize, added 1:1 electrolytg.. This
result relies on the physical picture that the electrostatic en- 1
ergy eV, of the strongly coupled micro-ior&e., micro-ions CC 27lgo
in the vicinity of the highly charged macro-ipdoes balance
their thermal(entropig energykgT, resulting in a constant
effective surface potential for the “dressed” macro-ion. We
have successfully tested this approach agdmsthe geom- Ppp(2)= P ** (A3)

The notion of an effective charge is widely used in the

(A2)

Far from the charged surface, say 2«1, the solution
of PB equation reduces to
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with ¢s=4vy. The potentialpg can be interpreted as the whereKpg(o) is such that

apparentreduced potential extrapolated at contact. In the fol-
lowing we shall simply refer t@s as theapparent potential hKpg hKpg — ml.oh (B2)
As expected, this asymptotic expression for the reduced  v2 V2 Be

potential ¢pg in Eq. (A3) precisely matches the solution

¢_ps Of the linearized PELPB) equation The inverse screening lengkypg is related to the density of
LPB )

counterions at the WS boundapy (h) through the follow-
V2 pe=k’dLps. (A4)  ing expression, reminiscent of the standard definition of the

but with the fixed charge boundary condition on the pIaneDebye length:
replaced by an effectivdixed surface potentiaboundary K3g=4mlgp(h). (B3)

condition ¢, pg(z=0)= ps=4vy. The effective charge den- ) ) ]
sity is then computed using Gauss theorem at the surface, NOW we consider the corresponding LPB equation. More

yielding precisely, we linearize Ed4) aroundx=h (i.e., the edge of
the slaP. Since we have choseppg(h) =0, we imposeap, pg
YK to vanish atx=h. The resulting equation reads
Ueﬁ—?B . (A5) )
V2¢:KLPB(¢+1)1 (B4)

In doing so, we have replaced the initial nonlinear PB equa-

tion with fixed charge boundary condition by the linear LPB Where we have introduceil, pg, an “apparent” local Debye
equation with fixed surface potential. screening factor for the linearized PB equation. As for the

Now at fixed « (i.e., constant ionic strengthwe pro- previous PB equation in the no salt cakgpg is not known

gressively increase the bare surface chargéccordingly a priori but results from the electroneutrality condition. In-
«Aac—0 and the parametergoes to 1. From EqA5), we deed, solving Eq(B4) with the appropriate boundary condi-

obtain that the effective charge and the apparent potepgal 1ONS[V¢(h) =0V $(0)=4mlg(a/2)] yields
have a simple behavior depending on the comparisonr of & Lpa(X)=co$ K pg(x—h)]—1, (B5)
with o, defined as )
W|th KLPB(O-) SUCh tha.t
K .
(Tsat:FB. (AG) hKLpBS|nr{KLth]:2WIBUh. (BG)

Note that comparing Eqgs(B2) and (B6), we see that

Indeed Kipe(o) #Kpg(a). It is however crucial to remember that
0<0gyt Oef=0, the LPB solution should not be used with the bare charge
to describe the correct behavior in the vicinity of
bs=4al0 .z, a0 e Y
0> 0yt Oefi=Osan Next, we implement the procedure proposed by Alex-
ander to find the effective charge in confined situatidfige
Ps=4. (A8) effective charge density is accordingly the valuesoh the

The important point is that in the large bare charge limit, linearized PB equation such théibg(x) and ¢, pg(x) match
>0 the effective charge . saturates to a valuesy in-  UP 10 the second derivative at, the boundary of the WS
dependent of the bare one, In this limit, the apparent po- Cell.” This condition is equivalent to set

tential also saturate to a constant valge=4. K pa(0er) = Kpg(0). (B7)
APPENDIX B: ANALYTICAL SOLUTION OF THE PB Note that in general, whenever the solution of the nonlinear
EQUATION FOR A CONFINED PLANE WITHOUT PB problem is known, the effective chargey; can be di-
ADDED SALT rectly estimated with Eq(B7) (this is of course quite aca-

e . . demic to obtain in this case an effective charge since the full
An infinite plane (bare surface charge densite) is . o ) . .
. . . . . solution for the potential is known; the notion of effective
placed in the middle of a Wigner—Seitz slab of width.2 . . . :
charge is mostly useful in geometries where no analytical

The origin of inateg=0 is ch t the location of X s

€ origin of coordinatex=0 is osen at the focation o solution of the PB equation is knowrNote also that when-
the plane such that the volume available to the counterions Igver Eq.(B7) is verified, the third, fourth, and fifth derivative
—h=x=<h. For symmetry reasons, it is enough to solve the q ' X '

problem forx>0. The electrostatic potentig obeys the PB of thgnléneCia‘;r dir(]:(:zsnoer:/“enn?[i;lf Ollssllgn“sezfc(i”me?ftgcmti?/; charge
Eqg. (4), supplemented with Neumann boundary conditions y 9

¥ (1) =0, corresponding to the elecroneutraty condiion; ;% e 00 RS Ry B TR e o
V¢(0)=—2xlgo imposing the charge on the plane. With- 9 y

out loss of generality, we choose the origin of potential suchOf PB equation, in contrast to our prescripjon

that ¢(h)=0; the analytical solution of the PB equation then Kpg(o)sinf Kpg(o)h]
read§’ Tt = o (B8)
B
(Ix]—h) The apparent potentiabs is also obtained as
dpp(X)=—log co§( — 1| (B1) PP P abs
Kps bs= ¢.pe(0) = costiKpg(o)h] - 1. (B9)
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From Eq.(B2), we define a critical value for the charge ?°L. Belloni, J. Phys.: Condens. Matt&e, R549(2000.

density,
——1 B10
O-C_7T|Bh ( )
and we find the asymptotic behaviors,
hKpg=(20/0¢)"?,
o<0, Oeff=0, (B11
¢s=20lo,
( hl(pBE 77/\/2,
7 sin — 5.060
Oeff= 0gq=——SIN —|o.=5. ,
o> 0, ) eff sat 23 VI c [
& Tl 1=366
=cosh—|—1=3.66.
\ ° ‘/2
(B12)

As in the infinite dilution limit, one obtains that the ef-
fective chargerei coincides with the bare onefor small o,
and saturates to a finite value wher-. However botho

and the saturation value for the effective charge at finite cons

centration differ from therg,, of infinite dilution [Eq. (A6)].
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