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Effective charge saturation in colloidal suspensions
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Because micro-ions accumulate around highly charged colloidal particles in electrolyte solutions,
the relevant parameter to compute their interactions is not the bare charge, but an effective~or
renormalized! quantity, whose value is sensitive to the geometry of the colloid, the temperature or
the presence of added-salt. This nonlinear screening effect is a central feature in the field of colloidal
suspensions or polyelectrolyte solutions. We propose a simple method to predict effective charges
of highly charged macro-ions, that is reliable for monovalent electrolytes~and counterions! in the
colloidal limit ~large size compared to both screening length and Bjerrum length!. Taking reference
to the non linear Poisson–Boltzmann theory, the method is successfully tested against the geometry
of the macro-ions, the possible confinement in a Wigner–Seitz cell, and the presence of added salt.
Moreover, our results are corroborated by various experimental measures reported in the literature.
This approach provides a useful route to incorporate the nonlinear effects of charge renormalization
within a linear theory for systems where electrostatic interactions play an important role. ©2002
American Institute of Physics.@DOI: 10.1063/1.1511507#
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I. INTRODUCTION

When a solidlike object, say a colloidal particle~poly-
ion!, which carries a large number of ionizable groups at
surface is immersed in a polarizable medium~with a dielec-
tric constante, say water!, the ionizable groups dissociat
leaving counterions in the solutions and opposite charge
the surface. The interactions between the charged collo
which determine the phase and structural behavior of
suspension, is mediated by the presence of micro-i
clouds. The complete description of the system is thu
formidable task in general. However in view of the lar
asymmetry of size and charge between macro-and mi
ions, one expects to be able to integrate out the micro-i
degrees of freedom, and obtain an effective description
volving macro-ions only. In the pioneering work of De
jaguin, Landau, Verwey, and Overbeek,1 micro-ions clouds
are treated at the mean-field Poisson-Boltzmann~PB! level,
yielding the foundations of the prominent DLVO theory f
the stability of lyophobic colloids. An important predictio
of the theory is the effective interaction pair potential b
tween two spherical colloids of radiia in a solvent which,
within a linearization approximation, takes the Yukawa
Debye–Hu¨ckel ~DH! form,

v~r !5
Z2e2

4pe S exp@ka#

11ka D 2 exp~2kr !

r
, ~1!

whereZ is the charge of the object in units of the elementa
chargee andk denotes the inverse Debye screening leng
The latter is defined in terms of the micro-ions densities$ra%
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~with valences$za%) as k254p l BSaraza
2. The Bjerrum

length l B is defined asl B5e2/(4pekBT), where e is the
permittivity of the solvent considered as a dielectric co
tinuum: l B57 Å for water at room temperature.

However, this approach becomes inadequate to desc
highly charged objects for which the electrostatic energy o
micro-ion near the colloid surface largely exceedskBT, the
thermal energy, because the linearization of the PB equat
is a priori not justified. In this case however, the electrosta
potential in exact2,3 or mean-field4,5 theories still takes the
Debye–Hu¨ckel-type form far from the charged bodies, pr
vided that the bare chargeZ is replaced by an effective o
renormalized quantityZeff . The micro-ions which suffer a
high electrostatic coupling with the colloid accordingly a
cumulate in its immediate vicinity so that the decorated o
ject, colloidpluscaptive counterions, may be considered a
single entity which carries an effective chargeZeff , much
lower ~in absolute value! than the structural one. Within th
prominent mean-field PB theory6—often quite successful de
spite of its limitations—Z andZeff coincide for low values of
the structural charge, butZeff eventually reaches a saturatio
value Zeff

sat independent of Z when the bare charge
increases.5,7 Arguably, the differenceZ2Zeff is identified
with the amount of counterions ‘‘captured’’ or ‘‘condensed’’8

onto the macro-ion.
A reminiscent effect has been recognized in the phys

of polyelectrolytes under the name of Manning–Oosa
condensation. Here, the object is an infinitely long and t
rod bearingl charges per unit length. At infinite dilution an
8 © 2002 American Institute of Physics
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8139J. Chem. Phys., Vol. 117, No. 17, 1 November 2002 Effective charge saturation in colloidal suspensions
in the absence of salt, it can be shown at the PB level tha
polyelectrolyte is electrostatically equivalent to a rod car
ing lequiv charge per unit length, where the equivalent cha
density saturates to a critical valuelequiv51/l B when l
increases.9–11 In general however, PB theory can be solv
analytically in very few geometries only and the difficul
remains to predictZeff for a given colloidal system.4,5,7,12,13

In the absence of a general analytical framework for
computation of the effective charge, this quantity is oft
considered as an adjustable parameter to fit experime
data.14,15

The aim of the present paper is to propose a method
allows to compute effective charges comparing favora
with PB in the saturation regime, provided the sizea of the
charged macro-ion is much larger than Bjerrum lengthl B and
screening lengthk21. In the infinite dilution limit, we define
the effective charges from the large distance behavior of
electrostatic potential created by the~isolated! macro-ion.16

While other definitions have been put forward4,17–19 this
choice is relevant in view of computing a macro-ion p
potential at large distances, in the spirit of the DLV
approach.20 It moreover avoids the ambiguity of introducin
a cutoff region in space which interior containing the collo
would exactly enclose a total charge equal to the effec
one. At leading order in curvature (ka)21, our method easily
provides effective charges at saturation close to their co
terparts obtained in PB theory. In the situation of finite c
loid concentration where it is no longer obvious to extract
effective charge from the large distance behavior of the e
trostatic potential computed within a nonlinear theory,
follow the proposition put forward by Alexanderet al.5 in-
troducing a Wigner–Seitz cell. In this situation, we gener
ize our original method into a prescription that we succe
fully test in various geometries, for different thermodynam
conditions~isolated systems or in contact with a salt res
voir!.

The paper is organized as follows: We first recall t
basic framework of PB theory in Sec. II. We then examine
some details the simple case of a spherical polyion in
infinite dilution limit ~Sec. III!. This example allows us to
devise a general method to compute the effective charge
arbitrary colloidal systems. The situation of finite density
colloids is then examined introducing Wigner–Seitz ce
The salt-free case is developed in Sec. IV, while the situa
of finite ionic force is explicited in Sec. V. We finally con
front the results obtained within our prescription with expe
mental or simulation data in various geometries in Sec.
We discuss the general validity of our mean-field treatm
relying on PB approximation in Sec. VII and conclusions a
drawn in Sec. VIII. The preliminary results of this study ha
been published elsewhere.21

II. GENERAL FRAMEWORK: POISSON–BOLTZMANN
THEORY

Poisson–Boltzmann theory provides a mean field
scription of the micro-ions clouds in the presence of
polyions, acting as an external potential. The key approxim
tion in the approach is the neglect of~micro-!ionic correla-
tions. The size of the micro-ions with densityr is neglected
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as well and the chemical potential reduces to its ideal c
tribution m5kBT ln(rL3), where L is an irrelevant length
scale. Without loss of generality, the macro-ions are s
posed to be positively charged.

At equilibrium the electrochemicalpotential of the
micro-ions is uniform over the system. Introducing the r
duced electrostatic potentialf5eV/kBT, the equilibrium
condition for micro-ions thus reads at the mean field leve

ln~r6L3!6f5 ln~r0L3!, ~2!

where$r2,r1% are the density fields of the charged micr
species~counterions and co-ions!, which we assume for sim
plicity monovalent. The constantr0 will be specified hereaf-
ter. We restrict here to monovalent micro-ions~both
counterions and salt!. For higher valences, the reliability o
PB deteriorates~see Sec. VII!. The equilibrium condition,
Eq. ~2!, is closed by Poisson’s equation for the electrosta
potential,

¹2f524p l B~r12r2!. ~3!

The gradient of Eq.~2! expresses the condition of mechan
cal equilibrium for the fluid of micro-ions.22 At this level,
one has to separate between the no-salt and finite i
strength cases.

~1! No-salt case: Only the released~here negative! counteri-
ons are present in the system. The PB equation for
reduced potential thus reads

¹2f5k2ef, ~4!

where the screening constantk is defined as k2

54p l Br0 , with r0 the constant introduced in Eq.~2!.
The latter is fixed by the electroneutrality conditio
which imposes

E
V
drr2~r !52ZeNc ~5!

with Nc the number of~identical! macro-ions, of charge
Ze, contained in the volumeV. The quantityr0 is a
Lagrange multiplier associated with the electroneutra
condition and has no specific physical meaning; it
modified by a shift of potential, which can be chosen
our convenience to fixf at a given point in the solution

~2! Finite ionic strength situation: In the finite ionic strength
case, salt is added to the solution, so that both co-
counterions are present in the system. In the follow
we shall work in the semigrand ensemble, where
$colloids1micro-ions% system is put in contact with a
reservoir fixing the chemical potential of the micro-ion
m0 . In this caser0 in Eq. ~2! is the concentration of sal
in the reservoir~wheref is conveniently chosen to van
ish!, so thatm05kBT ln(r0L

3). Since we are considering
monovalent micro-ionsr0 coincides with the ionic
strength of the reservoir which is generally defined
I 05na

21Saza
2ra

0 for a numberna of micro-ions species
with valencesza and reservoir densitiesra

0. This results
in the PB equation for the reduced potentialf;

¹2f5k2 sinhf, ~6!
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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where the screening factork is now defined in terms o
the micro-ion concentration in the reservoirk2

58p l BI 0[k res
2 .

In addition to these two situations, we shall also consi
the case of infinite dilution where an isolated macro-ion
immersed in an electrolyte of given bulk salt concentrat
I 0 which thus plays the role of a reservoir.

PB equations,~4! or ~6!, are supplemented by a set
boundary conditions on the colloids, expressing the relati
ship between the local electric field and thebare surface
charges of the colloidal particles,se. This gives the bound-
ary condition forf at the surface of the colloid in the form

~“f!•n̂524p l Bs, ~7!

wheren̂ denotes a unit vector normal to the colloid’s surfac
Except in simple isotropic geometries,23 the analytical solu-
tion of PB theory is not known.

III. INFINITE DILUTION LIMIT: ASYMPTOTIC
MATCHING FOR THE EFFECTIVE CHARGE

In this section, after recalling a few results on the plan
case, we explicit our method on the particular example
spheroids. We then generalize it to an arbitrary colloidal
ject and consider the case of charged rods as an applica
We work in the infinite dilution limit, and therefore, we re
ject the external boundaries of the system at infinity.

A. Planar case

In the case of the planar geometry, the nonlinear
equation can be analytically solved. The detailed solution
given in Appendix A. The important result however is th
far from the charged plane, the solution of the PB equat
reduces to that of the LPB equation,

fPB~z!.fSe2kz. ~8!

The apparentpotentialfS is equal tofS54 in the limit of
high bare charge of the plane.

In this limit, the fixed charge boundary condition
therefore replaced on the plane by an effectivefixed surface
potential boundary conditionfLPB(z50)5fS54. The ef-
fective charge density~in the saturation—high bare charge—
limit ! is then computed using the Gauss theorem at the
face, yielding

seff
sat5

k

p l B
. ~9!

B. Charged spheres

Let us now consider a highly charged isolated sph
~bare chargeZe, radiusa! immersed in a symmetric 1:1 elec
trolyte of bulk ionic strengthI 0 . Within PB theory, the di-
mensionless electrostatic potential obeys Eq.~6!. Suppose
we know the exact solutionfPB(r ) ~in spherical coordinates
with the origin at the center of the sphere!, and the bare
chargeZ is large enough so that the reduced electrost
potential at contact,fPB(a), is ~much! larger than 1. Then
we can divide the space surrounding the polyion into t
subregions: a nonlinear region~close to the particle’s bound
Downloaded 21 Oct 2002 to 129.194.8.73. Redistribution subject to AI
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ary! where fPB(r ).1, and a linear region wherefPB(r )
,1 ~the potential vanishes at infinity!. The surface delimit-
ing these two regions is a sphere of radiusr * such that
fPB(r * ).1.

Far from colloid, the complicated nonlinear effects ha
died out to a substantial degree, and the solution also ob
the linearized Poisson–Boltzmann~LPB! equation ¹2f
5k2f, and therefore takes the Yukawa form,

fLPB~r !5
Zeff

~11ka!
l B

e2k~r 2a!

r
. ~10!

The effective chargeZeff is defined here without ambiguity
from the far field behavior offPB(r ),

lim
r→`

fLPB~r !/fPB~r !51. ~11!

In practice,fLPB and fPB coincide in the linear region (r
*r * ), so thatfLPB(r * ).1 ~i.e., is a quantity of order one!.

Whena@k21, the nonlinear effects are confined to th
immediate vicinity of the macro-ion, with an extensionk21.
We therefore haver * /a.1 and as a consequence,fLPB(r
5a).fLPB(r * ).1. We thus obtain the effective bounda
condition thatfLPB is a quantityC of order one forr 5a;
from Eq. ~10! this means thatZeff

sat5Ca(11ka)/ l B . This
simple argument provides the nontrivial dependence of
effective charge at saturation upon physicochemical par
eters; it applies in the saturation regime of PB theory wh
Zeff5Zeff

sat and assumes that the bare chargeZ is high enough
so that the nonlinear region exists. In order to determine
constantC, we may consider the planar limita→`, where
the analytical solution of PB theory is known~see above and
Appendix A!: the surface charge densityZeff

sat/(4pa2) should
coincide with that of a charged planek/(p l B), Eq. ~9!. This
imposes thatC54 and going back to the charge,

Zeff
sat5

4a

l B
~11ka!. ~12!

In deionized solutions, this argument leads to the sca
Zeff

sat}a/ l B , which has been recently tested for various lat
colloids.24

The physical argument leading to Eq.~12! may be ratio-
nalized as follows. The situation of largeka corresponds to a
low curvature limit where the solution of Eq.~6! may be
approximated by the solution of the planar problem in t
region where curvature effects may be neglected; the la
corresponds to a regiona,r ,a1da, with da;a. It is cru-
cial to note thatr * ,a1da since, as mentioned above, th
extension of the region where the nonlinear effects are
portant~definingr * ) has an extension of orderk21, smaller
thanda;a in the limit of largeka. As a consequence, in th
regionr * ,r ,a1da, the solution of the LPB equation, Eq
~10!, may be matched to the asymptotic expression of
planar solution, given in Eq.~8! ~using r;a andz.r 2a).
Expression~12! is therefore recovered, showing again that
the linearized level, the apparent potential isfLPB(a)54 in
the saturation limit.

Equation~12! provides by construction the correct larg
ka behavior ofZeff

sat, and becomes exact~compared to PB! in
the planar limit. We will show below that it remains fairl
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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8141J. Chem. Phys., Vol. 117, No. 17, 1 November 2002 Effective charge saturation in colloidal suspensions
accurate down toka of order 1. A similar expression may b
found in Refs. 25, 26, but the generality of the underlyi
method does not seem to have been recognized. This res
supported by the work of Oshimaet al.27 which proposes an
approximation scheme of the nonlinear PB equations
spheres in infinite dilution, for largeka. In particular these
authors obtain an analytical approximation for the appar
potential at the colloid surface, which reads in the satura
regime,

fS
Osh58

11ka

112ka
. ~13!

Supplemented with expression~10!, this leads to the im-
proved effective charge,

Zeff
sat5

8a

l B

~11ka!2

112ka
. ~14!

In the limit of largeka wherefS→4, both Eqs.~12! and
~14! have the same behavior.

In order to test the validity of these results, we ha
numerically solved the full nonlinear PB equation, Eq.~6!
and computed the effective charge from the electrostatic
tential at large distances, i.e., the value required to ma
fLPB to the far field fPB obtained numerically. For eac
value of ka, we make sure to consider large enough b
charges in order to probe the saturation regime ofZeff . Fig-
ure 1 compares the numerical PB saturation value of
effective charge to the prediction of our approach, Eq.~12!,
and to that obtained using the results of Oshimaet al., Eq.
~14!. We see that Eq.~14! provides an accurate estimate f
Zeff

sat as a function ofka, for ka*1. Working at the level of
our approach only, Eq.~12! still yields a reasonable estima
for Zeff

sat(ka), specially for high values of the parameterka.
In the limit of small ka, both expressions~12! and ~14!
differ notably from the PB saturation charge which diverg
as shown by Ramanathan,28 as

FIG. 1. Effective charge in the saturation regimeZeff
satl B /a as a function of

ka for spheres in the infinite dilution limit with added salt. The symbo
~open circle! are the ‘‘exact’’ solution estimated from the large distan
behavior of the electrostatic potential solution of the full nonlinear PB eq
tion. The continuous~resp. dashed! line is Zsat found with Eq.~12! @resp. Eq.
~14!#.
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Zeff
sat;

a

l B
$22 ln~ka!12 ln@2 ln~ka!#14 ln 2%

for ka→0. ~15!

At this point, it is instructive to briefly reconsider th
work of Squires and Brenner29 who demonstrated that th
attractive interactions between like-charged colloidal sphe
near a wall could be accounted for by a nonequilibrium h
drodynamic effect~see also Ref. 22!. In their analysis, they
used an ad hoc value of 0.4 for the ratiosglass/ssphere of
surface charge densities of planar and spherical polyions
order to capture the one-wall experiment of Larsen a
Grier.30 This was the only free parameter in their approa
From Eqs.~A6! and~14! for the saturation values, we easi
obtain

sglass

ssphere
5

ka~112ka!

2~11ka!2 . ~16!

In the experiment of Ref. 30, we haveka.1.2 @larger than
1, so that Eq.~14! is reasonably accurate#, and we obtain
sglass/ssphere.0.42; it is thus possible to justify the choic
made in Ref. 29 assuming that both the confining wall a
the pair of colloids are charged enough to sit in the satura
regime. In this respect, knowledge of their bare charge
unnecessary.

C. Arbitrary colloidal object

Generalizing this analysis for an arbitrary colloidal o
ject ~of typical sizea!, we propose the following method
to estimate the effective charge in the limit of large valu
of ka:

~1! Solve the LPB equation for the geometry under cons
eration;

~2! Define the saturation value,Zeff
sat, such that the linear

reduced potential at contact is a constant,C, of order
unity

ufS2fbulku5C, ~17!

where the asymptotic matching with the planar ca
yields C54;

~3! If one is interested in the effective charge for arbitra
and possibly small bare charges, a crude approxima
follows from

Zeff5Z, Z!Zeff
sat,

~18!Zeff5Zeff
sat, Z@Zeff

sat.

Our approach has several advantages. First, we do
need to solve the full nonlinear PB equations to obtain
effective charge. Second, the proposed method provide
analytical prediction forZeff

sat. Third, our approach is easily
adapted to other macro-ion geometries or finite dilutions,
like that of Ref. 27@even if these authors could find a
equivalent of expression~13! for cylinders, see below#.

In the following, we will mainly focus on the high bar
charge limit of the colloids where the effective char
reaches a saturation plateau,Zeff

sat. In order to simplify nota-
tions, we will denote this saturation valueZsat.

-

P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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D. Rodlike macro-ions

Now the object is an infinitely long cylinder~radiusa,
bare line charge densityle). The solution of linear PB equa
tion is ~in cylindrical coordinates wherer is the distance to
the axis!

f~r !52l l B

1

ka

K0~kr !

K1~ka!
, ~19!

whereK0 and K1 are ~respectively! the zero and first orde
modified Bessel functions of the second kind. Hence the
parent potential is

fS52l l B

1

ka

K0~ka!

K1~ka!
. ~20!

SettingfS5C54 yields our estimate for the effective lin
charge density at saturation

lsat5
2ka

l B

K1~ka!

K0~ka!
. ~21!

In the limit of large values of the bare line charge dens
l, Oshimaet al. obtained an approximate expression for t
apparent potential in the saturation regime~based on an ap
proximation scheme for the PB equation, see Appendix A
Ref. 27!,

fS
Osh58

K1~ka!

@K0~ka!1K1~ka!#
. ~22!

As expected, we note thatfS
Osh→4 in the limit ka@1. How-

ever, from Eq.~22!, we deduce an improved estimate oflsat,

lsat5
4ka

l B

K1~ka!

K0~ka!

K1~ka!

@K0~ka!1K1~ka!#
. ~23!

In Fig. 2, we displayl Blsat @estimated either with Eq
~21! or Eq. ~23!# as a function ofka, together with the
‘‘exact’’ value of l Blsat found by solving the full nonlinear
PB equation for high bare charges in the saturation regi

FIG. 2. Effective line charge density,l Blsat, vs ka ~the reduced Debye–
Hückel constant! for cylinders in the infinite dilution limit with added salt
The symbols~open diamonds! are computed from the large distance beha
ior of the electrostatic potential solution of the full nonlinear PB equati
solved numerically. The continuous~resp. dashed! line is our estimate for
l Blsat, Eq. ~21! @resp. the improved estimate, Eq.~23!#.
Downloaded 21 Oct 2002 to 129.194.8.73. Redistribution subject to AI
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Note that the plot is in log-linear scale, in order to emphas
the smallka region where our method is nota priori ex-
pected to work. Surprisingly, the agreement between the
merical result of the full PB equation and Eq.~23! is satis-
factory down to very low values ofka, ka;1022, although
the two quantities have a different asymptotic behavior;
exactl Blsat is finite whenka→0 (l Blsat52/p from Ref. 31,
see next paragraph!, whereas both estimates of Eqs.~21! and
~23! vanish, although extremely slowly@as21/log(ka)].

Importantly,ka→0 is the asymptotic regime where th
celebrated Manning limiting law11,32 happens to be exact
and the condensation criterion holds. In this limit, above
condensation threshold, the electrostatic potential solutio
the full nonlinear PB equation is indistinguishable from th
of a cylinder carrying a line charge densitylequiv51/l B .11

The two quantitieslequiv andlsat may be coined as ‘‘effec-
tive charges,’’ but we maintain our initial definition of th
effective charge from the far field potential solution of th
nonlinear PB equation. In this respect,lequivÞlsat ~as al-
ready discussed in the Appendix of Ref. 11!. This is because
one expects a remnant non-linear screening oflequiv, so that
lsat,lequiv51/l B . The limiting situationka→0 has been
solved recently within Poisson–Boltzmann theory, using
act results from the theory of integrable systems.31 The cor-
responding solution illustrates our point. This seminal wo
allows to compute explicitly the effective charge, whic
reads

lim
ka→0

leff5
2

p l B
sinS p

2
l l BD . ~24!

Accordingly, whenl exceeds the Manning threshold 1/l B ,
the effective charge saturates to a value

lsat5
2

p l B
>

0.6366

l B
,lequiv5

1

l B
. ~25!

It is noteworthy that the limit 2/(p l B) ~compatible with the
numerical results reported by Fixman, see, for example,
1 of Ref. 32! is reached extremely slowly aska is decreased,
in practice forka,1026. For example, forka51022, the
numerical solution of the PB equation yieldslsat>0.81/l B ,
hence a value 30% larger than the asymptotic limit.

IV. EFFECTIVE CHARGE AT FINITE CONCENTRATION:
THE NO-SALT CASE

The situation of finite density of colloids does not allo
to define an effective charge from the far field of a sing
body potential, as done in Sec. III. Here, we rely on t
proposition put forward by Alexanderet al. to define an ef-
fective charge.5 We recall here the main points of this PB ce
approach. First, the procedure makes use of the concep
Wigner–Seitz~WS! cells; the influence of the other colloid
is accounted for by confining the macro-ion into a cell, w
global electroneutrality.33–36 The size of the cell,RWS is
computed from the density of colloids, while its geometry
chosen as to mimic the spatial structure of the colloids in
solution. Second, the ‘‘effective’’ potential solution of th
linearized PB equation is such that the linear and nonlin
solutions match up to the second derivative at the bounda

,
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of the WS cell ~hence they match up to at least the th
derivative because of electroneutrality in ‘‘isotropic’’—
spherical or cylindrical—cells!. Note that in the original pa-
per of Alexanderet al. the procedure was introduced to o
tain the effective charge from thenumericalsolution of the
nonlinear PB equation. But in the present work we shall
the approach to get effective charges at the LPB level
gether with our prescription. Such a route has proven s
cessful for monovalent micro-ions, see e.g. Refs. 37–39,
it has been shown recently that similar ideas could be
ployed to describe discrete solvent effects~again for
monovalent micro-ions40!.

In this section, we generalize the analysis proposed
Sec. III C to find a prescription suitable to treat the case
finite concentration of colloids. We eventually compare o
results to those obtained following Ref. 5, for planar, cyl
drical, and spherical geometries.

A. Generalized prescription and planar test case

In the infinite dilution case, the reference potential is t
bulk onefbulk . The natural generalization of this choice f
the finite concentration case consists in replacing in Eq.~17!
fbulk by fS the reduced electrostatic potential at the bou
ary of the WS cell. Hence, we propose

ufS2fSu5C. ~26!

If added salt was present in the suspension~see Sec. V!, we
should recover Eq.~17! from Eq. ~26! in the infinite dilution
limit whereRWS goes to infinity. We consequently expect th
valueC54 to be relevant for the situation of finite density
colloids with added salt. Searching for a unified descripti
we also test the possible validity of the choiceC54 in the no
salt situation. It is therefore instructive, as an illustration
the method and benchmark, to analyze the simple case
charged plane confined in a WS cell, without added elec
lyte. As recalled in Appendix B, the analytical solution of th
nonlinear PB equation is known in such a geometry wh
counterions are the only micro-ions present, which allows
to check the validity of our assumptions in the limiting ca
of finite concentration. Below, we compare these ‘‘exa
results to the predictions of our prescription.

The exact apparent potential,fS is obtained using Eq
~B5! at x50 for the plane:fS5cosh(KLPBh)21. Our pre-
scription imposesfS54, yieldingKLPBh5ArcCosh(5). The
effective charge is obtained from Gauss theorem at the
face, i.e., Eq.~B6! with s replaced byseff . This leads to the
final result of our prescriptionssat5A6 ArcCosh(5)sc

>5.6sc ~wheresc51/p l Bh), which should be compared t
the exact resultssat.5.06sc @see Eq.~B12! in Appendix B#.
First it is striking to note that our prescription predicts t
correct functional dependence of the effective charge
terms of the parameters of the system. Moreover the num
cal prefactor in front ofsc is only within 10% of the ‘‘exact’’
value obtained in Eq.~B12!, which is quite a satisfactory
agreement.

However certainly the most interesting feature whi
comes out from the previous results is the fact that the
parent potential at contact,fS , obtained within the analytica
resolution of the PB equation, does saturate to a cons
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value fS.3.66 in the limit of very large bare charges; th
value is very close to the value we prescribe,fS54! This is
a nontrivial point, since the physical conditions in the pres
case are very different from the isolated plane case~previous
section!. We conclude that the analytic results available fo
confined one-dimensional electric double-layer support
prescription. For a more refined analysis of the electrosta
of counterions between planar charged walls, going bey
PB, we refer to the work of Netzet al.41

In the remaining of this section, we further test our pr
scription against results for spherical and cylindrical mac
ions.

B. Spheroids

Here, the object is a charged spherical colloid~bare
chargeZe, radiusa! confined with its counterions in a con
centric WS sphere~radiusRWS). The packing fraction is de-
fined as h5(a/RWS)

3. PB equation is again linearize
around the boundary of the WS cell, yielding Eq.~B4! which
we recall here,

¹2f5KLPB
2 ~f11!. ~27!

As for the planar case, the boundary conditions
¹f(RWS)50 ~electroneutrality!, fLPB(R)50 ~because we
impose by commodity the potential to vanish at the WS c
see Appendix B!. The solutionfLPB thus reads

fLPB~r !5211 f 1

eKLPB
r

r
1 f 2

e2KLPB
r

r
~28!

with

f 65
KLPBRWS61

2KLPB
exp~7KLPBRWS!. ~29!

The chargeZeff of the colloid is obtained from the spatia
derivative offLPB at the colloid surface;

Zeff5
a

l B

1

KLPBa
$~12KLPB

2 aRWS!sinh@KLPB~RWS2a!#

2KLPB~RWS2a!cosh@KLPB~RWS2a!#%. ~30!

At this level the screening constantKLPB is still unknown; it
is fixed by our prescription which imposes the apparent
tential of the colloid, such thatfLPB(r 5a)5C54 with
fLPB(r ) given in Eq. ~28!. The effective charge,Zsat, is
eventually computed using Eq.~30!. On the other handKPB

is defined from the PB counterion density at WS bound
r2(WS),

KPB
2 54p l Br2~WS!. ~31!

The equation forKLPB , fLPB(r 5a)54, is solved nu-
merically using a simple Newton procedure. Figure 3 d
plays the correspondingZsat as a function ofh together with
the effective charge~again at saturation! found by solving
numerically the full nonlinear PB equation, together wit
Alexander’s procedure. We recall that this procedure defi
the effective charge entering LPB equation such that the
lution of PB and LPB equations match up to the seco
derivative at the WS boundary. We emphasize that once
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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equation has been solved numerically, no further numer
fitting procedure is required to matchfLPB to fPB and com-
pute the effective charge; the counterion density at the
boundaryr2(WS) is known andKPB follows from Eq.~31!.
ReplacingKLPB with this value in Eq.~30! then gives the
‘‘Alexander’’ Zeff ~a similar remark holds with added salt, s
below!. We see again that our prescription works reasona
well.

C. Cylinders

Here we apply the previous procedure to an infinite c
inder ~radiusa, bare charge per unit lengthle) enclosed in a
WS cylinder~same axis, radiusRWS). We define the packing
fraction ash5(a/RWS)

2. This case is particularly interestin
since the solution of the PB equation in the no-salt cas
known from the work of Fuosset al. and Alfreyet al.10 This
therefore provides another critical test of our prescripti
We note that a similar approach has been followed
Löwen.38

The calculation follows the same lines as for the pre
ous spherical case. The solution of LPB equation~27! in the
two-dimensional case, with the usual boundary conditio
and the choicefLPB(RWS)50 reads

fLPB~r!5211KLPBRWS$I1~KLPBRWS!K0~KLPBr!

1K1~KLPBRWS!I0~KLPBr!%, ~32!

where use was made of the identityx@ I 0(x)K1(x)
1I 1(x)K0(x)#51. From the spatial derivative offLPB at r
5a we deduce the effective line charge densityleff ,

leffl B5
1

2
KLPB

2 aRWS$I 1~KLPBRWS!K1~KLPBa!

2I1~KLPBa!K1~KLPBRWS!%. ~33!

If the above expression is evaluated replacingKLPB by the
exactKPB following from Eq. ~31! once the nonlinear prob
lem has been numerically solved, we obtain the original
exander value~not necessarily at saturation, and without ha

FIG. 3. Effective charge at saturation vs packing fraction for spherical p
ions without added salt. The symbols~open diamonds! represent the effec-
tive charge found by solving numerically the nonlinear PB theory sup
mented with Alexander’s procedure~Ref. 5!. The continuous line isZsat

within our prescription.
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ing to implement in practice a numerical fitting procedur!.
On the other hand, as in the spherical case, the scree
constantKLPB at saturation is obtained~approximately! by
imposing the potential at the polyion’s surface:fLPB(a)5C
54 in the previous equation forfLPB . Evaluation of Eq.
~33! then gives the saturation valuelsat.

This result is compared with the effective charge d
duced by applying Alexander’s procedure to the analyti
results of Fuosset al. and Alfrey et al. in the large bare
charge~saturation! limit: 10 the corresponding ‘‘exact’’ value
for the effective charge is chosen such that the solution of
linearized PB equation, Eq.~32!, matches the solution of the
nonlinear PB equation~Fuoss/Alfreyet al. solution! at the
WS boundary up to the second derivative. The resulting
fective charge is plotted in Fig. 4 together with the value
the effective charge obtained within our prescription. In F
5, we compare the screening factorKLPB obtained within our
prescription to the ‘‘exact’’ valueKPB derived from the ana-
lytical solution of the PB equation and Eq.~31! ~again in the
limit of a large bare charge of the cylinder where the effe

-

-

FIG. 4. Same as Fig. 3 for charged rods, except that the nonlinear PB re
are analytical here~Ref. 10!.

FIG. 5. Comparison of the exact inverse screening lengthKPB obtained from
the solution of the PB equation~diamonds! with its counterpartKLPB ob-
tained within our prescription~continuous line!, for highly charged rodlike
polyions without added salt. The inset shows the ratioKLPB /KPB as a func-
tion of packing fraction.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tive charge saturates!. The agreement between both quan
ties is remarkable, even up to extremely high packing fr
tions ~80% in Fig. 5!.

Another interesting check concerns the apparent po
tial at the surface of the cylinder. Applying again Alexande
procedure to the exact solution of Fuoss/Alfreyet al., one
obtains the LPB potential which matches the exact solu
up to its third derivative at the WS cell boundary. The val
of this potential at the surfacefS

F should be compared with
the value we prescribe, i.e.,fS54. The result is plotted in
Fig. 6, showing again a good agreement except at low
ume fraction, as expected~since as discussed in Sec. III, o
prescription is not expected to work in the very smallka
limit !.

Finally, we report an intriguing result: in the limit o
vanishing density it can be shown analytically thatKPBRWS

→&.10 Using this result together withKLPBa→0, we obtain
from Eq. ~33!,

lim
h→0

lsat5
1

l B

&

2
I1~& !.0.6358

e

l B
. ~34!

This asymptotic value is displayed in Fig. 4 with an arro
We observe that this limit is approached~although very
slowly! ash decreases. Surprisingly, the result of Eq.~34! is
very close to the exact expression~25! of Tracy and
Widom,31 where the limitka→0 is taken after that of infi-
nite dilution. In principle, the limits of infinite dilution and o
vanishing added salt have no reason to commute. The di
ence between the twolsat quantities illustrates this point
with the surprise that the results are nevertheless very c
numerically,

lim
no salt

lim
` dilution

lsat.0.6358
1

l B
, ~35!

lim
` dilution

lim
no salt

lsat.0.6366
1

l B
. ~36!

FIG. 6. Dependence on volume fraction of the reduced linearized con
potential,fS

F5f(a), with f the LPB potential matching the analytical so
lution of the PB equation, following Alexander’s procedure.
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V. EFFECTIVE CHARGE AT FINITE CONCENTRATION:
THE FINITE IONIC STRENGTH CASE

We now turn to the case where salt is added to the c
loidal suspension. More precisely, as already discusse
Sec. II, we consider the semigrand canonical situation wh
the colloidal suspension is put in contact with a reservoir
salt, through a semipermeable membrane~dialysis experi-
ment!. The concentration of monovalent salt micro-ions
the reservoirr0 fixes the chemical potential of the micro
ions in the suspension. However, due to the presence o
charged macro-ions, the salt concentration in the solut
rs , differs from that in the reservoirr0 : this is the so-called
‘‘salt exclusion’’ or ‘‘Donnan effect.’’36,42,43

As in the previous section the effect of finite concent
tion is accounted for within the PB cell theory~using a WS
sphere of radiusRWS). Here again, we use the prescriptio
Eq. ~26! to predict the effective charge of the macro-ion
For this purpose, it is convenient to choose that the elec
static potentialf vanishes in the reservoir so that PB equ
tion reads

¹2f5k res
2 sinhf, ~37!

where the screening factork res is defined in terms of the
ionic strength of the reservoir,k res

2 58p l BI 0 .
Let us now consider the linearized~‘‘LPB’’ ! version of

this equation. We again linearize around the value of
potential at the boundary of the WS cell,fS5f(RWS), often
referred to as the ‘‘Donnan potential,’’

¹2df5KLPB
2 ~df1g0!, ~38!

where we introduceddf5f2fS and

KLPB
2 5k res

2 cosh@fS#, ~39!

g05tanh@fS#5A12S k res

KLPB
D 4

. ~40!

The second order differential equation~38! is solved invok-
ing the two self-consistent boundary conditions,

df50 and
]df

]r
50 for r 5RWS, ~41!

so thatdf is known as a function of distance and depen
parametrically onKLPB . We emphasize thatKLPB is still un-
known at this point. It is computed as in Sec. IV from o
prescription on the reduced potential,

dfS5fS2fS54. ~42!

A. Spheroids

With the same notations as above, the appropriate s
tion of the LPB Eq.~38! is

dfLPB~r !5g0F211 f 1

eKLPBr

r
1 f 2

e2KLPBr

r G , ~43!

where the functionsf 6 are defined in Eq.~29!. Note that
expression~28! is recovered by taking the formal limitk res

50 in the previous equation.
Our prescription allows us to computeKLPB at satura-

tion, such thatdF(a)54, without any reference to the solu

ct
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tion of the nonlinear PB problem. This equation is solv
numerically using a Newton procedure. OnceKLPB is known,
the effective charge follows from the gradient ofdf(r ) in
Eq. ~43! taken atr 5a ~it may also be computed by integra
ing the corresponding LPB charge density over the volu
accessible to the micro-ions, i.e.,a<r<RWS),

Zsat5g0

a

l B

1

KLPBa
$~KLPB

2 aRWS21!sinh@KLPB~RWS

2a!#1KLPB~RWS2a!cosh@KLPB~RWS2a!#%,

~44!

with g05A12(k res/KLPB)4. Again, our prescriptiondfS

5fS2fS54 provides a value forKLPB which is an ap-
proximation for the exactKPB at saturation, related to micro
ion densities at the WS boundary through the expec
Debye-type form,

KPB
2 54p l B@r1~WS!1r2~WS!#. ~45!

If Eq. ~44! is evaluated with the exactKPB, Alexander’s
original effective charge follows~hence without having to
implement any numerical fitting procedure!. We also empha-
size that as in the previous sections, the right-hand side
Eq. ~44! provides the effectiveZeff à la Alexander~i.e., not
necessarily at saturation!, once evaluated with the correc
KPB ~deduced from the numerical solution of the nonline
problem!.

The results for the effective charge at saturationZsat as a
function of volume fraction are displayed in Fig. 7 fo
k resa52.6. As in the previous sections, we compare this
sult with its Alexander’s counterpart at saturation. Our p
dictions are seen to be compatible with those obtained in
PB cell model.

From the numerical solution of the PB equation, it
possible to extract the apparent surface potential,dfS

5f(r 5a)2f(RWS) ~in the latter expressionf is defined as

FIG. 7. Effective charge~at saturation! of spherical colloids~radiusa! as a
function of volume fractionh for k resa52.6. The continuous line is the
effective charge~at saturation! computed using the prescription, while th
symbols are the results of the nonlinear PB cell theory, following Ref. 5
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the solution of the LPB equation matching the full—
numerical—PB equation up to second derivative at the W
cell boundary!. By construction, this potential may b
obtained inserting the numerically obtainedKPB

[k rescosh1/2(fS) into Eq. ~43!. This apparent potentia
should be compared against our prescriptiondf54. The
corresponding result is shown in Fig. 8. We observe thatdfS

indeed saturates to a value close to 4. The inset sh
KLPB /KPB vs h, whereKPB is the ‘‘exact’’ screening length
for the LPB equation at saturation, obtained numerica
KLPB is the same quantity estimated from our prescriptio
We observe that although for small packing fractionsdfS

slightly departs from our approximationC54, the estimated
KLPB is still remarkably close to the exact one.

Independently of our prescription, we finally test the re
evance of Alexander’s procedure5 in the following way.Zsat

has been obtained above from the matching of a generic L
potential to the numerical PB one atr match5RWS. It is also
possible to implement the matching at a different locat
inside the cell, and we denoteZsat(r match) the associated ef
fective charge, at saturation. This quantity, normalized by
‘‘usual’’ one Zsat(RWS) is displayed in Fig. 9. For the packin
fraction of 5% considered,r match/RWS is bounded below by
a/RWS.0.37, andZsat(RWS).16.7a/ l B , see Fig. 7. We ob-
serve thatZsat is relatively insensitive tor match for 0.6RWS

<r match<RWS.

B. Rodlike polyions

Using the same notations as in Sec. IV, the appropr
solution of the LPB equation in cylindrical geometry read

dfLPB~r!5g0$KLPBRWS@ I1~KLPBRWS!K0~KLPBr!

1K1~KLPBRWS!I0~KLPBr!#21% ~46!

with g05A12(k res/KLPB)4. Again, KLPB is obtained as the
solution of the equationdfLPB(r5a)54. Once this equa-

FIG. 8. Dependence on volume fraction of the ‘‘exact’’ reduced lineariz
contact potential,dfS5f(a)2f(RWS), with f the LPB potential matched
to the numerical PB solution according to Alexander’s procedure. Our
scription assumes a constant value,dfS54. Inset: ratioKLPB /KPB vs pack-
ing fraction. The ratio is seen to be very close to unity over the explo
packing fraction window.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tion is solved, the saturation value of the effective char
leff , follows from the spatial derivative of the potenti
dfLPB at the rod surface,

leff5
1

2l B
KLPB

2 aRWSg0$I1~KLPBRWS!K1~KLPBa!

2I1~KLPBa!K1~KLPBRWS!%. ~47!

As in the previous sections, Eq.~47! gives analytically
the relation between the effective chargeà la Alexander
et al. and micro-ions densities at the WS boundary. As su
it applies for any value of the bare chargel, and in particu-
lar, for l→0, KLPB is such thatleff /l→1. A similar remark
applies for Eqs.~30!, ~33!, and~44!. If we choose forKLPB

the ‘‘exact’’ KPB value, we recover the ‘‘exact’’ cell mode
~Alexander! effective charges. However, the quantityKLPB

solution of dfLPB(r5a)54 is supposedly the invers
screening length at saturation and therefore provides an
proximation oflsat once inserted into Eq.~47!.

FIG. 9. Influence of the pointr matchchosen to match the analytical LPB an
numerical PB solutions on the effective charge in the saturation regime.
situation is that of a spherical polyion in a spherical WS cell, at pack
fraction h50.05 andk resa52.6.

FIG. 10. Effective chargel Blsat as a function of packing fraction for cylin
ders with added salt (k resa53). The symbols represent the effective char
at saturation within the usual PB cell approach, while the continuous
follows from our prescription.
Downloaded 21 Oct 2002 to 129.194.8.73. Redistribution subject to AI
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The corresponding results forlsat as a function of vol-
ume fraction are displayed in Fig. 10 fork resa53. As in the
previous sections, we compare this result with its counterp
obtained from the numerical solution of PB theory togeth
with Alexander’s procedure for the effective charge in t
saturation limit. The agreement with the numerical results
the full non linear PB equation is seen to be satisfactory.

VI. CONFRONTATION TO EXPERIMENTAL AND
NUMERICAL RESULTS

In the previous sections, we have tested our results
the effective charges against the numerical solutions of
theory. However, the effective charge is a difficult quantity
measure directly in an experiment~see, however, the work
reported in Ref. 24 confirming the scalingZsat}a/ l B for low
ionic strength suspensions of spherical latex colloids!. In or-
der to assess the experimental relevance of the above id
we now turn to the computation of osmotic properties
spherical and rodlike macro-ions, easily accessible both
perimentally and within our approach. In the case of sph
cal colloids, we start by considering the phase behavior
the suspension as a function of added salt.

A. Crystallization of charged spheres

The phase diagram of charged spherical colloids
been widely explored experimentally, in particular by Mon
voukas and Gast.14 In this work, the macro-ions were
charged polystyrene spheres, with radiusa.660 Å. The au-
thors moreover compared their experimental phase diag
to that computed for particles interacting through a Yuka
potential ~1! ~the Yukawa phase diagram has indeed be
investigated extensively by numerical simulations44–46!.
However such a comparison experiment/theory requires
ad hoc choice for the effective chargeZeff @prefactor of Eq.
~1!#. The authors found that a reasonable agreement with
numerical results was obtained for a specific choice of
effective charge,Zsat5880 ~although they reported conduc
timetry experiments indicating a macro-ion charge arou
1200!.

We focus in the following on the melting line of th
phase diagram obtained in Ref. 14. We use here our pre
tions for the effective charges at saturation: we do not n
to know the bare charge of the polystyrene spheres, as
quantity is presumably much larger than the correspond
saturation plateau ofZeff , which means, within the PB pic
ture, thatZeff.Zsat. OnceZsat ~and the corresponding scree
ing constantKLPB , see previous section! is known for a
given density and ionic strength, it is possible to insert it in
the computed generic phase diagram of Yukawa systems44 to
obtain the corresponding stable phase. We extract in part
lar the melting line from these numerical results: we prefer
use these numerical results for the phase diagram~instead of
performing a full theoretical analysis! since our main focus
remains to check the relevance of our predictions for
effective charges. This requires a ‘‘reliable’’ description f
the melting line, which numerical simulations provide on
the potential is given.

We emphasize that at this level, the only parameter
tering our description is the diameter of the beads, which
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measured independently. Accordingly, there isno adjustable
parameterin our equations and the resulting phase diagr
is strongly constrained. The results for the melting line us
our prescription for the effective charge are confronted to
experimental data in Fig. 11. We also plot the result for
melting line for an ad hoc constant effective charge,Zsat

5880, as was proposed in Ref. 14. The observed agreem
supports the pertinence of our prescription forZsat which
reproduces the experimental phase diagram. In our case
effective charge does vary between 500 and 2000 along
melting line, depending on ionic strength and density. T
could explain that the conductimetry measurements p
formed independently by Monovoukas and Gast~although at
an unspecified ionic strength! yield another value for the
effective charge of the spheres (Z;1200 as quoted above!.

B. Osmotic pressure of a suspension of spherical
colloids

In the PB cell model, the osmotic pressure in the so
tion is related to the densities of micro-ions at the WS c
boundary,7,36,47,48

Posm5kBT@r1~RWS!1r2~RWS!22r0#, ~48!

where we have subtracted the ionic contribution from
reservoir~of salt densityr05I 0). This is because the electri
field vanishes at the WS cell and there is no contribut
from the electrostatic pressure atr 5RWS. Using Eq.~45!,
Eq. ~48! may be recast into

Posm5
kBT

4p l B
@KPB

2 ~r,I 0!2k res
2 #, ~49!

wherek res is the screening constant defined in terms of
ionic strength in the reservoir. Our prescription is suppo
to give an excellent approximate of the nonlinearKPB

FIG. 11. Liquid–solid transition of charged polystyrene colloids: volum
fraction for meltinghm as a function of salt ionic strengthI 0 . Dots are
experimental points for the melting line extracted from Ref. 14. The s
line is the theoretical prediction for the melting transition using our presc
tion for effective charges~see text! while the dashed line corresponds to a
ad hoc fixed effective chargeZeff5880, as proposed in Ref. 14.
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throughKLPB , and readily allows an estimation of the o
motic pressure. Figure 12 shows the accuracy of the e
mate, with or without added electrolyte. The comparison
our predictionsat saturationto the experimental results re
ported by Reuset al.49 is also satisfactory, see Fig. 13. It wa
already pointed out in Ref. 49 that the PB cell theory rep
duced well with the experimental data. The agreement
served in Fig. 13 however illustrates the relevance of the
saturation picture—well captured by our approach—at h
polyion/micro-ion electrostatic coupling~see the discussion
in Sec. VII!.

C. Osmotic properties of rodlike polyions

Expression~49! is also valid in cylindrical geometry, and
we show in Fig. 14 the comparison prescription vs nonlin

d
-

FIG. 12. Reduced osmotic pressureP* 54p l Ba2Posm/kT vs volume frac-
tion for spherical polyions in the salt free case whereI 0 ~and thusk res)
vanishes. The symbols are the PB values obtained from the resolution o
nonlinear problem, and the line follows from our prescription. The in
shows the same quantities in presence of an electrolyte (k resa52.6).

FIG. 13. Osmotic pressure~in Pa! as a function of volume fraction. The
symbols are the experimental measures of Ref. 49 for aqueous suspen
of bromopolystyrene particles~with radius a551 nm). The continuous
curve corresponds to our prescription assuming a salt concentratio
1026 M in the reservoir.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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PB osmotic pressure. We draw a similar conclusion as
spherical polyions concerning the accuracy of our appro
mation.

For completeness, we compare in what follows our e
mate for the osmotic pressure to the experimental result
B-DNA solutions reported in Refs. 50, 51. In this work, th
authors measured the osmotic coefficientf5Posm/Pc , de-
fined as the ratio between the osmotic pressurePosm to the
pressurePc of releasable counterions having bare densitycc

(Pc5kBTcc) against the concentration of B-DNA, a rigi
cylindrical polyelectrolyte. A related PB cell analysis may
found in Ref. 48 while a more thorough investigation h
been performed in Ref. 52.

Within the WS model, B-DNA macro-ions are confine
into cylindrical cells, which radiusRWS is related to the bare
concentration of DNA counterions ascc5( l DNApRWS

2 )21,
with l DNA51.7 Å the distance between charges along DN
Note that as in the previous section dealing with charg
spheres, there is no adjustable parameter in our descrip
since the radius of the DNA and the bare charge~only used
to normalize the osmotic pressure toPc) are known from
independent measurements. In Fig. 15, the correspondin
sults for the osmotic coefficient are confronted against
experimental data of Refs. 50 and 51 for various io

FIG. 14. Same as Fig. 12 for cylindrical polyions. Left: salt-free suspens
~the inset is a zoom in the small packing fraction region!. Right: situation
with added salt (ka53).
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strengths, showing again a good quantitative agreement
in Ref. 7, we report the prediction of classical Oosaw
Manning condensation theory~see, e.g., Refs. 19, 52!, for
which the osmotic coefficient is constant@f5 l DNA /(2l B)#
at complete variance with the experiments. In view of t
results reported in Fig. 14, the disagreement at smallcc may
be attributed to the~relative! failure of the PB theory, and no
to a weakness of our prescription that should be judged w
respect to the nonlinear PB.

VII. DISCUSSION: VALIDITY OF THE APPROACH

Our analysis was carried out at the level of Poisso
Boltzmann theory, which is mean-field-like. More refined a
proaches such as the salt-free Monte Carlo simulations
Groot53 for the cell model within the primitive model54 have
shown a nonmonotonic behavior ofZeff upon increasingZ
for spheres: after the linear regime whereZeff.Z, Zeff

reaches a maximum for a valueZbare* and then decreases
When the radiusa of the charged spheres is much larger th
Bjerrum lengthl B , this maximum is surrounded by a larg
plateau in excellent agreement with the PB saturation va
Zsat.

15,53 PB theory appears to become exact forl B/a→0.55

Given that,Zbare* scales like (a/ l B)2 and therefore become
quickly large when the colloid size is increased,53 PB theory
is successful in the colloidal limit of largea. We recall that
this is precisely the limit where our predictions for the effe
tive charge at saturationZsat are reliable~the conditiona
@k21 shoulda priori be satisfied even if we have show
above that our predictions remain fairly accurate down toka
of order 1!. More generally, the results of Groot53 shows that
the effective chargeZeff from Monte Carlo simulations
within the primitive model for arbitrarya/ l B are smaller than
the quantityZsat of the PB theory. This is a general featu
that neglect of ionic correlation~as in PB! leads to a under-
estimated screening of the macro-ion by the micro-ions,

s

FIG. 15. Osmotic coefficientf of B-DNA solutions as a function of density
of DNA phosphate ionscc , for ionic strengths of 10 mM, 2 mM, and 0 mM
~from bottom to top!. The dots are the experimental points obtained fro
Refs. 50 and 51, while the solid lines correspond to the predictions fof
using our prescription in cylindrical geometry. The dashed line is the p
diction of Oosawa–Manning condensation theory.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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thus to overestimated effective charges~see, e.g., Refs. 52
56 in cylindrical geometry!. Our approach thus provides
useful upper limit for a realisticZeff .

A related comment in favor of the validity of the P
picture with a saturation plateau forZeff comes from the
work of Cornu and Jancovici.57 For the two-dimensiona
two-component Coulomb gas bounded by a hard wall of s
face charges, these authors performed an exact calculat
at the inverse reduced temperaturee2/(kT)52 showing that
the effective surface charge of the wall saturates to a pla
value whens diverges.

Generally speaking, in an 1:1 electrolyte, PB theo
seems to be a reasonable approximation,58,59 all the better
that the size of the macro-ion is larger thanl B ; the notion of
charge renormalization then encaptures the main effect
the nonlinear PB theory, and is consistent with experime
data in dilute bulk solution60,61 ~see also the experimenta
work cited in Sec. VI!. For micro-ions of higher valences~di-
or trivalent!, strong ionic correlations rule out PB-type a
proaches, as shown by recent computer simulations of
primitive model.62–64As a consequence, the results presen
here shoulda priori not be used in the interpretation of e
periments involving multivalent salts or counterions. Fo
discussion concerning the effects of multivalent counter-io
we refer to the review by Bhuiyan, Vlachy, and Outhwaite65

VIII. CONCLUSION

The notion of an effective charge is widely used in t
fields of colloidal suspensions. It allows us in practice
describe the phase behavior of~highly! charged macro-ions
staying at the level of linearized Poisson–Boltzmann eq
tions, where the macro-ions are supposed to interact thro
Yukawa-type pair potentials. However, no general analyt
description of this renormalization process is available a
the effective charge is usually left as a free parameter,
justed to fit experimental~or numerical! data. Physically the
charge renormalization process results from the strong c
pling of the micro-ions in the vicinity of the highly charge
colloidal particle. At the level of Poisson–Boltzmann theo
the effective charge saturates to a finite value in the li
where the bare charge becomes large. We recall that o
sion of the nonlinearities of the PB theory—correctly a
counted for by the notion of effective charge—may lead
unphysical results~see, e.g., Refs. 36, 66!.

In the present paper, we have put forward a sim
method to estimate the effective charge of highly charg
colloidal objects either analytically, or through the resoluti
of a simple equation obtained within the linearized Poisso
Boltzmann approximation. This approach~mostly suited to
describe the colloidal limitka@1) amounts to considering
the highly charged colloids as objects with constant elec
static potential;4kT/e, independently of shape and phys
cochemical parameters~size, added 1:1 electrolyte...!. This
result relies on the physical picture that the electrostatic
ergyeV0 of the strongly coupled micro-ions~i.e., micro-ions
in the vicinity of the highly charged macro-ion! does balance
their thermal~entropic! energykBT, resulting in a constan
effective surface potential for the ‘‘dressed’’ macro-ion. W
have successfully tested this approach against~a! the geom-
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etry of the solid particle,~b! the confinement~finite concen-
tration situations!, ~c! the presence of added salt,~d! exact
and approximate solutions of the full nonlinear PB equatio
~e! direct experimental measurements of the effective cha
found in the literature. From these different checks, we c
clude that our prescription appears to contain the key ing
dients involved in charge renormalization.

An important point is that the effective charge is n
constant and depends explicitly on the physical conditions
the experiment, through ionic strength, density, etc. The
fect is quite obvious in the small dilution limit, where w
found that the~saturated! effective charge is anincreasing
function ofk ~for ka.1), which stems from the reduction o
the attraction between the counterions and the colloid. It p
tains for finite concentration and the effective charge
creases with the ionic strength in the suspension. Addition
salt consequently brings two antagonist effects on the ef
tive Coulombic interaction between macro-ions: the range
the interaction decreases due to screening, while the am
tude increases due to the effective charge. The compet
between these two effects might be a key point in the und
standing of these systems. It appears therefore interestin
reconsider the phase stability of macro-ion suspension
light of these results~see also Ref. 68 and more recently R
69!.

Eventually it would be desirable to extend our approa
to the case of finite size colloidal particles, such as rods w
finite length or disks.47 Accordingly, edge effects should
show up at the level of our prescription and result in
effective charge distribution along the macro-ion, due to
constant potential prescription on the object. Work alo
these lines is in progress.
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APPENDIX A: ANALYTICAL SOLUTION OF THE PB
EQUATION FOR AN ISOLATED PLANE IN AN
ELECTROLYTE

Here, we recall the analytical solution of the PB equati
for an isolated plane of bare surface chargese immersed in
an electrolyte of bulk ionic strengthI 0 . In this case, the
solution of Eq.~6! reads67

fPB~z!52 ln
11ge2kz

12ge2kz , ~A1!

whereg5Ax2112x, k258p l BI 0 , andx5klGC, with the
Gouy–Chapman length defined as

lGC5
1

2p l Bs
. ~A2!

Far from the charged surface, sayz.2k21, the solution
of PB equation reduces to

fPB~z!.fSe2kz ~A3!
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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with fS54g. The potentialfS can be interpreted as th
apparentreduced potential extrapolated at contact. In the f
lowing we shall simply refer tofS as theapparent potential.

As expected, this asymptotic expression for the redu
potential fPB in Eq. ~A3! precisely matches the solutio
fLPB of the linearized PB~LPB! equation,

¹2fLPB5k2fLPB , ~A4!

but with the fixed charge boundary condition on the pla
replaced by an effectivefixed surface potentialboundary
condition fLPB(z50)5fS54g. The effective charge den
sity is then computed using Gauss theorem at the surf
yielding

seff5
gk

p l B
. ~A5!

In doing so, we have replaced the initial nonlinear PB eq
tion with fixed charge boundary condition by the linear LP
equation with fixed surface potential.

Now at fixed k ~i.e., constant ionic strength!, we pro-
gressively increase the bare surface charges. Accordingly
klGC→0 and the parameterg goes to 1. From Eq.~A5!, we
obtain that the effective charge and the apparent potentiafS

have a simple behavior depending on the comparison os
with ssat defined as

ssat5
k

p l B
. ~A6!

Indeed

s!ssat seff>s,

fS>4s/ssat, ~A7!

s@ssat seff>ssat,

fS>4. ~A8!

The important point is that in the large bare charge limit,s
@ssat, the effective chargeseff saturates to a valuessat in-
dependent of the bare one,s. In this limit, the apparent po
tential also saturate to a constant value,fS54.

APPENDIX B: ANALYTICAL SOLUTION OF THE PB
EQUATION FOR A CONFINED PLANE WITHOUT
ADDED SALT

An infinite plane ~bare surface charge densityse) is
placed in the middle of a Wigner–Seitz slab of width 2h.
The origin of coordinatesx50 is chosen at the location o
the plane such that the volume available to the counterion
2h<x<h. For symmetry reasons, it is enough to solve
problem forx.0. The electrostatic potentialf obeys the PB
Eq. ~4!, supplemented with Neumann boundary conditio
¹f(h)50, corresponding to the electroneutrality conditio
¹f(0)522p l Bs imposing the charge on the plane. Wit
out loss of generality, we choose the origin of potential su
thatf(h)50; the analytical solution of the PB equation th
reads67

fPB~x!52 logF cos2S ~ uxu2h!

&KPB
21 D G , ~B1!
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whereKPB(s) is such that

hKPB

&
tanS hKPB

&
D 5p l Bsh. ~B2!

The inverse screening lengthKPB is related to the density o
counterions at the WS boundaryr2(h) through the follow-
ing expression, reminiscent of the standard definition of
Debye length:

KPB
2 54p l Br2~h!. ~B3!

Now we consider the corresponding LPB equation. Mo
precisely, we linearize Eq.~4! aroundx5h ~i.e., the edge of
the slab!. Since we have chosenfPB(h)50, we imposefLPB

to vanish atx5h. The resulting equation reads

¹2f5KLPB
2 ~f11!, ~B4!

where we have introducedKLPB , an ‘‘apparent’’ local Debye
screening factor for the linearized PB equation. As for t
previous PB equation in the no salt case,KLPB is not known
a priori but results from the electroneutrality condition. In
deed, solving Eq.~B4! with the appropriate boundary cond
tions @¹f(h)50,¹f(0)54p l B(s/2)# yields

fLPB~x!5cos@KLPB~x2h!#21, ~B5!

with KLPB(s) such that

hKLPB sinh@KLPBh#52p l Bsh. ~B6!

Note that comparing Eqs.~B2! and ~B6!, we see that
KLPB(s)ÞKPB(s). It is however crucial to remember tha
the LPB solution should not be used with the bare chargs
to describe the correct behavior offPB in the vicinity of
x5h.

Next, we implement the procedure proposed by Ale
ander to find the effective charge in confined situations.5 The
effective charge density is accordingly the value ofs in the
linearized PB equation such thatfPB(x) andfLPB(x) match
up to the second derivative atS, the boundary of the WS
cell.5 This condition is equivalent to set

KLPB~seff!5KPB~s!. ~B7!

Note that in general, whenever the solution of the nonlin
PB problem is known, the effective chargeseff can be di-
rectly estimated with Eq.~B7! ~this is of course quite aca
demic to obtain in this case an effective charge since the
solution for the potential is known; the notion of effectiv
charge is mostly useful in geometries where no analyt
solution of the PB equation is known!. Note also that when-
ever Eq.~B7! is verified, the third, fourth, and fifth derivative
of the linear and nonlinear solutions also match atS.

One deduces eventually the ‘‘exact’’ effective char
from Eq. ~B7! for the plane case~by ‘‘exact’’ we mean that
the effective charge is obtained from the analytical solut
of PB equation, in contrast to our prescription!,

seff5
KPB~s!sinh@KPB~s!h#

2p l B
. ~B8!

The apparent potentialfS is also obtained as

fS5fLPB~0!5cosh@KPB~s!h#21. ~B9!
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



e

f-

o

i-
he

n

at

-

,

ica
a
ss

.A

in
-

dy

J.

E

. II

. J.

t the

s.

er,

tt.

n

ce

u

8152 J. Chem. Phys., Vol. 117, No. 17, 1 November 2002 Bocquet, Trizac, and Aubouy
From Eq. ~B2!, we define a critical value for the charg
density,

sc5
1

p l Bh
~B10!

and we find the asymptotic behaviors,

s!sc H hKPB>~2s/sc!
1/2,

seff>s,
fS>2s/sc ,

~B11!

s@sc 5
hKPB>p/&,

seff>ssat5
p

2&
sinhF p

&
Gsc>5.06sc ,

fS>coshF p

&
G21>3.66.

.

~B12!

As in the infinite dilution limit, one obtains that the e
fective chargeseff coincides with the bare ones for smalls,
and saturates to a finite value whens→`. However bothsc

and the saturation value for the effective charge at finite c
centration differ from thessat of infinite dilution @Eq. ~A6!#.
We also note that strictly speaking, the limits of infinite d
lution and of vanishing added salt do not commute; if t
limit of vanishing salt is taken first~situation investigated in
this appendix!, before h→`, we obtain fS

sat5cosh@p/&#
21, whereas reverting the order corresponds to the pla
situation of Appendix A withk→0, and there, we have
fS

sat54. In both cases however, the effective charge at s
ration vanishes.
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