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Finite-size corrections to the free energies of crystalline solids
J. M. Polson,a) E. Trizac,b) S. Pronk, and D. Frenkelc)

FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

~Received 13 September 1999; accepted 29 December 1999!

We analyze the finite-size corrections to the free energy of crystals with a fixed center of mass.
When we explicitly correct for the leading (lnN/N) corrections, the remaining free energy is found
to depend linearly on 1/N. Extrapolating to the thermodynamic limit (N→`), we estimate the free
energy of a defect-free crystal of particles interacting through anr 212 potential. We also estimate
the free energy of perfect hard-sphere crystal near coexistence: atrs351.0409, the excess free
energy of a defect-free hard-sphere crystal is 5.918 89(4)kT per particle. This, however, is not the
free energy of an equilibrium hard-sphere crystal. The presence of a finite concentration of
vacancies results in a reduction of the free energy that is some two orders of magnitude larger than
the present error estimate. ©2000 American Institute of Physics.@S0021-9606~00!50912-X#
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The earliest numerical technique to compute the free
ergy of crystalline solids was introduced some 30 years
by Hoover and Ree.1,2 At present, the ‘‘single-occupancy
cell’’ method of Ree and Hoover is less widely used than
so-called ‘‘Einstein-crystal’’ method proposed by Frenk
and Ladd.3 The latter method employs thermodynamic in
gration of the Helmholtz free energy along a reversible a
ficial pathway between the system of interest and an Eins
crystal. The Einstein crystal serves as a reference system
its free energy can be computed analytically. Since its in
duction, the Einstein-crystal method has been used ex
sively in studies of phase equilibria involving crystalline so
ids. For numerical reasons—to suppress a weak diverge
of the integrand—the Einstein-crystal method calculatio
have to be carried out at fixed center of mass. The free
ergy of the reference crystal is also calculated under
center-of-mass constraint, and the final calculated free
ergy of the unconstrained crystal is determined by correc
for the effect of imposing the constraint in the calculation
In the original paper, the fixed center-of-mass constraint w
only applied to the particle coordinates, but not to the cor
sponding momenta. This is irrelevant as long as one c
putes the free-energy difference between two structures
have either both constrained or both unconstrained cente
mass. However, when computing the absolute free energ
a crystal, one needs to transform from the constrained to
unconstrained system. In the original paper, this transfor
tion was not performed consistently. This resulted in a sm
but noticeable effect on the computed absolute free energ
the crystal. Below, we describe the proper approach to
culate the free energy of arbitrary molecular crystalline s
ids. The derivation differs from the earlier work in two re
spects: first, we explicitly show the effect of momentu
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constraints. And second, we generalize the expression t
arbitrary crystal containing atoms or molecules with differe
masses.

The main point of interest involves the calculation of t
partition function of a crystal with and without a constrain
center of mass. The partition function for an unconstrain
d-dimensional crystalline solid ofNmol molecules composed
of a total ofN atoms is given by

Q5cNE ddN r ddN p exp@2bH~r i ,pi !#, ~1!

wherecN5(hdNmolN1!N2!¯Nm!) 21, where there areN1 in-
distinguishable molecules of type 1,N2 molecules of type 2,
etc., whereN11N21¯1Nm5Nmol , andh is Planck’s con-
stant. It should be noted that, in all calculations of pha
equilibria between systems that obey classical statistical
chanics, Planck’s constant drops out of the result. Hence
what follows, we omit all factorsh. Using the result of the
Appendix in an article by Ryckaert and Ciccotti,4 one can
show that the constrained partition functionQcon is given by

Qcon5cNE ddN r ddN p exp@2bH~r i ,pi !#

3d~s~r !!d~G21
•ṡ!, ~2!

wheres(r ) andṡ are the constraints and time derivatives
the constraints, respectively, and

Gi j 5 (
k51

N
1

mk

]s i

]r k
•

]s j

]r k
. ~3!

The same integration limits implicit in Eq.~1! are also used
in Eq. ~2!. To constrain the center of mass~CM!, we take
s(r )5( i 51

N m ir i , and thus,ṡ5( i 51
N (m i /mi)pi , where m i

[mi /( imi . Note that in Eqs.~1! and ~2! we have assumed
that there are no additional internal molecular constrain
such as fixed bond lengths or bond angles.

We first consider the case of an Einstein crystal, wh
has a potential energy function given byUEin

5(a/2)( i 51
N (r i2r i

(0))2, wherer i
(0) are the equilibrium lat-

tice positions. Note that the particles in a crystal are ass

,
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ated with specific lattice points and therefore behave a
they are distinguishable—thus,cN51 ~as we omit the factor
1/hd(N21)). It is easy to show that

QEin
CM5ZEin

CMPEin
CM , ~4!

with

ZEin
CM5E ddN r)

i 51

N

exp@2~ba/2!r i
2#dS (

i 51

N

m ir i D
5S ab

2p( im i
2D d/2S 2p

ab D Nd/2

5S ab

2p( im i
2D d/2

ZEin , ~5!

and

PEin
CM5E ddN p)

i 51

N

exp@2~b/2mi !pi
2#dS (

i 51

N

pi D
5S b

2pM D d/2

)
i 51

N S 2pmi

b D d/2

5S b

2pM D d/2

PEin , ~6!

whereM5( imi , while ZEin andPEin are the corresponding
contribution to QEin , the partition function of the uncon
strained Einstein crystal. Clearly,

QEin
CM5S (

i
miY (

i
mi

2D d/2

~b2a/4p2!d/2QEin . ~7!

Similarly, one can show that the partition function for a
arbitrary crystalline system subject to the CM constrain
given by

QCM5ZCM~bh2/2pM !d/2)
i 51

N

~2pmi /b!d/2, ~8!

with

ZCM5E ddN r exp@2bU~r i !#dS (
i 51

N

m ir i D , ~9!

while the partition function of the unconstrained crystal
given by

Q5Z)
i 51

N

~2pmi /b!d/2, ~10!

with

Z5E ddN r exp@2bU~r i !#. ~11!

Note that, as far as the kinetic part of the partition function
concerned, the effect of the fixed center of mass constraiis
the same for an Einstein crystal as for an arbitrary ‘‘realis
tic’’ crystal. Using Eqs.~8! and ~10!, the Helmholtz free-
energy difference between the constrained and unconstra
crystal is given by

b~F2FCM!52 ln~Q/QCM!

5 ln~ZCM/Z!2
d

2
ln~2pM /b!. ~12!

We note that
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*ddN r exp@2bU~r i !#d~( im ir i !

*ddN r exp@2bU~r i !#

5K dS (
i

m ir i D L 5P~rCM50!, ~13!

whererCM[( im ir i , andP(rCM) is the probability distribu-
tion function of the center of mass,rCM .

To calculateP(rCM), we exploit the fact that the equi
librium crystal lattice is invariant to translations over di
placements through linear combinations of integer multip
of the lattice vectors. This is true if the crystal lattice
subject to periodic boundary conditions. Consequently,
probability distribution of the center of mass of the lattice
evenly distributed over a volume equal to that of t
Wigner–Seitz cell of the lattice positioned at the center
the volume over which we carry out the integration in t
partition function. Since the average center of mass of
crystal is equal to the center of mass of the lattice, it follo
that P(rCM)51/Vws5Nws/V, whereVws is the volume of a
Wigner–Seitz cell, andNws is the number of such cells in th
system. Thus,ZCM/Z5P(rCM50)5Nws/V. In the case of
one molecule per cell, this impliesZCM/Z5Nmol /V, where
Nmol is the number of molecules in the system.

In the Frenkel–Ladd free-energy calculation, the fre
energy difference between the constrained crystal and
reference system is given by

bFCM5bFEin
CM2bE

0

1

dl^DU&l
CM , ~14!

where the statistical average ofDU[UEin2U is calculated
by simulation for fixed CM as a function ofl under an
effective potential given byŨ(l)5(12l)U1lUEin . Note
that the center of mass must be calculated in the same m
ner as described in the paragraph above. Further, note
this expression is only rigorously valid for systems intera
ing with continuous potentials. In the case of particles w
discontinuous potentials, e.g., hard particles, the internal
tential energy cannot be turned off continuously. The cal
lation for this case differs slightly, and is discussed in de
in the original article3 and in Ref. 5.

Using Eqs.~7!, ~12!, and~14!, we find that the free en-
ergy per molecule of the unconstrained crystal is given b

bF

Nmol
52S dN

2Nmol
D ln~2p/ba!2

1

Nmol
ln)

i 51

N F2pmi

bh2 Gd/2

2
b

Nmol
E

0

1

dl^DU&l
CM2

d

2Nmol
lnS ab

2p( im i
2D

2
ln~V/Nmol!

Nmol
. ~15!

If we consider the special case of a system of sing
atom, identical particles (mi5m and N5Nmol), we obtain
the following:
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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bF

N
52

d

2
lnF4p2m

ab2 G2
b

N E
0

1

dl^DU&l
CM

2
d

2N
ln~ab/2p!2

d

2

ln N

N
1

ln r

N
, ~16!

where r[N/V. The difference between the present res
and the one obtained in Ref. 3 is in the fourth term on
right-hand side:2d ln N/2N. The original article implicitly
gave the value1 ln N/2N for a 3D crystal. While the differ-
ence between the two expressions tends to zero in the
of large N, it is non-negligible for system sizes typicall
employed in the numerical calculations. However, the cal
lated free-energy differences between two solids, such as
between the face-centered-cubic~fcc! and hexagonal-closed
packed~hcp! hard-sphere crystals, to which the method w
applied both in the original article3 and, more recently, in
Ref. 6, are unaffected by this correction.

In practice, we usually need not calculate the abso
free energy of a crystal, but excess free energy,Fex[F
2F id , whereF id is the ideal gas free energy. Let us therefo
compute the finite-size corrections to the latter quant
Given thatbF id /N52 ln@VN(2pm/b)dN/2/N! #/N, we find

bFex

N
52

d

2
lnF2p

abG2
b

N E
0

1

dl^DU&l
CM

2
d

2N
ln~ab/2p!1

ln r

N
2

d11

2

ln N

N
2 ln r11

2
ln 2p

2N
, ~17!

where we have used lnN!'N ln N2N1(ln 2pN)/2.
Hoover has analyzed the system-size dependence o

entropy of a classical harmonic crystal with period
boundaries.7 In this study, it was established that the leadi
finite-size correction to the free energy per particle of a h
monic crystal is equal tob21 ln N/N. If the harmonic ap-
proximation is valid, then this implies that the integral in E
~14! should vary as1 ln N/N plus higher-order correction
terms of the order ofN21,N22, etc. Consequently, an in
spection of Eq. ~17! suggests that bFex/N1(d
21)lnN/(2N) will scale asN21, if we neglect terms of orde
O(1/N)2.

To test this prediction, we have used the Einstein-cry
method to calculate the absolute Helmholtz free energy
~three-dimensional! fcc crystal of soft spheres interactin
with pair potential ofu(r )5e(s/r )12 for systems of sizeN
5216, 810, 1728, 5832, and 12 096. The sizes were cho
such that the simulation box shape is cubic for each syst
Further, the simulations were carried out atkBT/e
51.0, rs351.1964, and employed a coupling constant
as2/e566.0. The results are shown in Fig. 1 and are clea
consistent with the predictions: The solid line is a linear
which extrapolates tobFex/N59.226 08(7) atN5` ~where
the figure between brackets is an estimate for the error in
last digit!. Incidentally, we note that, at this density and te
perature, the fcc phase of soft spheres is more stable tha
hcp phase by an amountDF fcc2hcp/(NkBT)50.0028(8).
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The present results suggest that we are able to correctly
count for the leading (lnN/N) dependence of the free energ
of an arbitrary crystal. In the analytical calculation of fre
energy of a harmonic crystal, it is always assumed that
center of mass of the crystal is fixed. Hence, the numer
results presented above do not provide an independent te
the validity of our expression for the contribution to the fr
energy due to the center-of-mass motion of the crystal.

We can perform a similar analysis for a system of ha
spheres (rs351.0409,lmax5a/253000). The results are
shown in Fig. 2. For hard spheres,bFex/N extrapolates to a
value of 5.918 89~4! at N5`, well within the error margin
of the original results of Hoover and Ree2 @5.924~15!#. Note
that the slopes of the fits~which are proportional to the 1/N
behavior of the finite-size effect! are similar, although not
exactly equal. It should be stressed that none of these ca
lations takes into account the existence of defects in the c
tal, which, at these levels of precision, is significant. In fa
using the early numerical results by Bennett and Alder,8 we

FIG. 1. bFex /N1 ln(N)/N vs 1/N for an fcc crystal of soft (r 212) spheres at
kBT/e51.0, andrs351.1964, The solid line is a linear fit to the data. Th
coefficient of the 1/N-term is26.20~7!.

FIG. 2. bFex /N1 ln(N)/N vs 1/N for an fcc crystal of hard spheres at
densityrs351.0409. The solid line is a linear fit to the data. The coefficie
of the 1/N-term is26.0~2!.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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can estimate the equilibrium vacancy concentration in
hard-sphere crystal at coexistence to be 2.631024. Such a
vacancy concentration has a noticeable effect on the loca
of the melting point. For instance, the Gibbs free energy
particle at coexistence is lowered by an amountDm'3
31023kT.9 This correction is far from negligible, as it i
some two orders of magnitude larger than the present
merical accuracy in the absolute free energy. It is likely t
vacancies also lower the equilibrium free energy of the s
sphere crystal. However, for that model, the equilibrium v
cancy concentration has, to our knowledge, not been c
puted.
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