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Finite-size corrections to the free energies of crystalline solids
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We analyze the finite-size corrections to the free energy of crystals with a fixed center of mass.
When we explicitly correct for the leading (M/N) corrections, the remaining free energy is found

to depend linearly on N. Extrapolating to the thermodynamic limiN( ), we estimate the free
energy of a defect-free crystal of particles interacting through @A potential. We also estimate

the free energy of perfect hard-sphere crystal near coexistenger®at1.0409, the excess free
energy of a defect-free hard-sphere crystal is 5.918 89(4pjer particle. This, however, is not the

free energy of an equilibrium hard-sphere crystal. The presence of a finite concentration of
vacancies results in a reduction of the free energy that is some two orders of magnitude larger than
the present error estimate. @000 American Institute of Physid$0021-960600)50912-X]

The earliest numerical technique to compute the free eneonstraints. And second, we generalize the expression to an
ergy of crystalline solids was introduced some 30 years agarbitrary crystal containing atoms or molecules with different
by Hoover and Re&? At present, the “single-occupancy- masses.
cell” method of Ree and Hoover is less widely used than the ~ The main point of interest involves the calculation of the
so-called “Einstein-crystal” method proposed by Frenkel partition function of a crystal with and without a constrained
and Ladd® The latter method employs thermodynamic ime_cen_ter of_mass. The ;_)artition function for an unconstrained,
gration of the Helmholtz free energy along a reversible arti-d-dimensional crystalline solid dfl,, molecules composed
ficial pathway between the system of interest and an Einsteifif @ total of N atoms is given by
crystal. The Einstein crystal serves as a reference system, as 3 AN dN
its free energy can be computed analytically. Since its intro- Q_CNJ d™r d"" pexd — BH(ri,pi)], @
duction, the Einstein-crystal method has been used exten-

sively in studies of phase equilibria involving crystalline sol- wherecy=(hmaN; IN5!---Npi!) ~*, where there arél, in-
SIVely > 0P q g crystat distinguishable molecules of type M, molecules of type 2,
ids. For numerical reasons—to suppress a weak divergen

_ ) ) JeNGSc., whereN;+ Ny+---+N,,=N,o;, andh is Planck’s con-
of the integrand—the Einstein-crystal method calculation A, mme :

9 - - y Stant. It should be noted that, in all calculations of phase
have to be carried out at fixed center of mass. The free ensqyjjibria between systems that obey classical statistical me-
ergy of the reference crystal is also calculated under th@nanics, Planck’s constant drops out of the result. Hence, in
center-of-mass constraint, and the final calculated free enynat follows, we omit all factor. Using the result of the
ergy of the unconstrained crystal is determined by correcting\ppendix in an article by Ryckaert and Ciccdttgne can
for the effect of imposing the constraint in the calculations.show that the constrained partition functi@s°"is given by
In the original paper, the fixed center-of-mass constraint was
only applied to the particle coordinates, but not to the corre-  Qn= CNI dNr dNpexd — BH(r;,pi)]
sponding momenta. This is irrelevant as long as one com-
putes the free-energy difference between two structures that X 8(a(r)8(G L o), 2
have either both constrained or both unconstrained centers of . . . -

H h tina the absolute f Vﬁhere(r(r) and o are the constraints and time derivatives of

mass. However, when computing the absolute free energy of o . siraints, respectively, and

a crystal, one needs to transform from the constrained to the N

unconstrained system. In the original paper, this transforma- _ 1 do; do;
tion was not performed consistently. This resulted in a small Gij TEIm o ary )

but noticeable effect on the computed absolute free energy ofh . ion limits implicit | | q
the crystal. Below, we describe the proper approach to cal]— Esar;e lltltegratusn , my;s |mp;C|t "} Eql) al\;|e aiso tuie
culate the free energy of arbitrary molecular crystalline sol"" EO- ( R, 0 constrain the cenNer of magSM), we take

. S . ) . o(r)==;_,uir, and thus,o==;_,(ui/m;)p;, where y;

ids. The derivation differs from the earlier work in two re- — .
spects: first, we explicitly show the effect of momentum , /Zim;. Note that in Eqs(1) and(2) we have assumed
P ' ' that there are no additional internal molecular constraints,
such as fixed bond lengths or bond angles.
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ated with specific lattice points and therefore behave as if zM  [ddNr exd — BU(r,)]18(Z; mir)

they are distinguishable—thus,=1 (as we omit the factor 7 = d™r exd — BU(r.
1/h9N=1) |t is easy to show that I H-AU(r)]

QEin=ZEnPen 4 < (E it )> (rem=0), (13
with

wherercy=Z;uir;, andP(rcy) is the probability distribu-

N N
ZEM= fddNr_H exd — (Bal2)r?]1s| > wir; tion function of the center of masegy, -
i=1 =1 To calculateP(rcy), we exploit the fact that the equi-

( B )d/Z(Zﬂ_)NdIZ ( B )d/ZZ - librium crystal lattice is invariant to translations over dis-
Ein»

placements through linear combinations of integer multiples

- 2 - 2
27Ei i ap 27 pi of the lattice vectors. This is true if the crystal lattice is
and subject to periodic boundary conditions. Consequently, the
N probability distribution of the center of mass of the lattice is
N evenly distributed over a volume equal to that of the
Pen= f o H exi — (Bl2mi)pi ]5( 21 p‘) Wigngr—Seitz cell of the lattice positioqned at the center of
the volume over which we carry out the integration in the
[ B 925 (27 m dlz_ B \¥ partition function. Since the average center of mass of the
“\27M i];[l B 27M Pein,  (6) crystal is equal to the center of mass of the lattice, it follows

) ) that P(rcm) = IV s=Nys/V, whereV,,s is the volume of a
whereM =Z;m;, while Zg;, and Pg;, are the corresponding  \igner—Seitz cell, anl,,s is the number of such cells in the
contribution to Qgiy, the partition function of the uncon- gystem. ThuszM/Z="P(rcy=0)=N,s/V. In the case of

strained Einstein crystal. Clearly, one molecule per cell, this implied®/Z=N,,,/V, where

o . dr2 , o Nnor is the number of molecules in the system.
Ein=<2 mi/ 2 m{| (B aldm?) Qg . (7 In the Frenkel-Ladd free-energy calculation, the free-
! ! energy difference between the constrained crystal and the
Similarly, one can show that the partition function for an reference system is given by
arbitrary crystalline system subject to the CM constraint is

iven b
e N BFM=BFEl - B f “dnau)M, (14)
0
QM=zM(gh22aM)?[ [ (27m;/B)%?, ®
i=1

. where the statistical average atU=Ug;,— U is calculated
with by simulation for fixed CM as a function of under an

N effective potential given by (A\)=(1—\)U+\Ugj,. Note
Zl Ml

, (9) that the center of mass must be calculated in the same man-
ner as described in the paragraph above. Further, note that

while the partition function of the unconstrained crystal isthis expression is only rigorously valid for systems interact-
given by ing with continuous potentials. In the case of particles with
discontinuous potentials, e.g., hard particles, the internal po-
tential energy cannot be turned off continuously. The calcu-
lation for this case differs slightly, and is discussed in detail
. in the original articlé and in Ref. 5.
with Using Egs.(7), (12), and(14), we find that the free en-

ZCsz diNrexd —BU(r)]6

N
Q= ziljl (27m; 18)92, (10)

ergy per molecule of the unconstrained crystal is given by
z=f dNrexg — BU(r))]. (11
N d/2
Note that, as far as the kinetic part of the partition function is AF = _( dN >|n(277/lga H 277"; }
concerned, the effect of the fixed center of mass constiint ~ Nmol 2Nmol Nmol =1 Bh
the same for an Einstein crystal as for an arbitrary “realis- o
tic” crystal. Using Egs.(8) and (10), the Helmholtz free- J d)\(AU> [ ( 5
energy difference between the constrained and unconstrained Ninol 2Nm0l 2mip|
crystal is given by ) IN(V/N, o) s
B(F_FCM)Z_In(QlQCM) Nmol
d
=In(Z*M/z)— EIn(ZWM/,B). (12 If we consider the special case of a system of single-
atom, identical particlesnf;=m and N=N,,), we obtain
We note that the following:
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BF d [47*m] B (1 o 9.23 ; . :
N2 | TN, IMAUN —— 9.22608(7)-6.20(7)/IN
d o diN Inp . 9.22 |
“onM@Bl2m T 1o 5
c 921 ¢

where p=N/V. The difference between the present result '_T_
and the one obtained in Ref. 3 is in the fourth term on the
right-hand side:—d In N/2N. The original article implicitly = 9.2 ¢
gave the valuerIn N/2N for a 3D crystal. While the differ-
ence between the two expressions tends to zero in the limi®*
of large N, it is non-negligible for system sizes typically
employed in the numerical calculations. However, the calcu-
lated free-energy differences between two solids, such as the  9.18 : : : :
between the face-centered-culficc) and hexagonal-closed- 0 0.001 0'0021 /N0'003 0.004  0.005
packed(hcp hard-sphere crystals, to which the method was
applied both in the original articleand, more recently, in  FIG. 1. BF¢/N+In(N)/N vs 1N for an fcc crystal of softi(~?) spheres at
Ref. 6, are unaffected by this correction. kgT/e=1.0, andpo®=1.1964, The solid line is a linear fit to the data. The
In practice, we usually need not calculate the absolut&®efficient of the I-term is —6.207).
free energy of a crystal, but excess free eneffgy=F

—Fiq, whereFq is the ideal gas free energy. Let us thereforerpo hresent results suggest that we are able to correctly ac-

compute the finite-size corrections to the latter quantity:Count for the leading (IN/N) dependence of the free energy
Given thatBF y/N= —In[VN2mm/B)IN?/NI ]/N, we find

of an arbitrary crystal. In the analytical calculation of free

9.19 r

BF oy d [27] B [t energy of a harmonic crystal, it is always assumed that the
=— —In[—} - —f dr(AUYTM center of mass of the crystal is fixed. Hence, the numerical
N 2 lap] NJo results presented above do not provide an independent test of
d Inp d+1InN the validity of our expression for the contribution to the free
- mln(a[g’/2w)+ N 5N Inp+1 energy due to the center-of-mass motion of the crystal.
We can perform a similar analysis for a system of hard
In2m spheres fo®=1.0409) na—=/2=3000). The results are
ToON (170 shown in Fig. 2. For hard spherg8F,,/N extrapolates to a
value of 5.918 881 at N=co, well within the error margin
where we have used M ~NIn N—N+(In 2z7N)/2. of the original results of Hoover and Relé.92415)]. Note

Hoover has analyzed the system-size dependence of tlibat the slopes of the fitavhich are proportional to the I/
entropy of a classical harmonic crystal with periodic behavior of the finite-size effectre similar, although not
boundaries. In this study, it was established that the leadingexactly equal. It should be stressed that none of these calcu-
finite-size correction to the free energy per particle of a hardations takes into account the existence of defects in the crys-
monic crystal is equal tg8~1InN/N. If the harmonic ap- tal, which, at these levels of precision, is significant. In fact,
proximation is valid, then this implies that the integral in Eq. using the early numerical results by Bennett and Afdee
(14) should vary as+InN/N plus higher-order correction
terms of the order oN~%,N~2, etc. Consequently, an in-
spection of Eqg. (17) suggests that BFq/N+(d
—1)InN/(2N) will scale asN ™, if we neglect terms of order
O(1IN)2.

To test this prediction, we have used the Einstein-crystalé 591 ¢
method to calculate the absolute Helmholtz free energy of a=
(three-dimensionalfcc crystal of soft spheres interacting &£
with pair potential ofu(r)=e(o/r)*? for systems of sizé\ + 59}
=216, 810, 1728, 5832, and 12 096. The sizes were choseiZ
such that the simulation box shape is cubic for each system §
Further, the simulations were carried out &gT/e =) 589 |
=1.0, po®=1.1964, and employed a coupling constant of -
ao?le=66.0. The results are shown in Fig. 1 and are clearly
consistent with the predictions: The solid line is a linear fit 5.88 ‘ ) , )
which extrapolates tBF .,/N=9.226 08(7) alN=c (where ] 0.001 0.002 0.003 0004 0.005
the figure between brackets is an estimate for the error in the /N
last digif. Incidentally, we note that, at t_hls density and tem'FIG. 2. BF¢/N+In(N)/N vs 1IN for an fcc crystal of hard spheres at a
perature, the fcc phase of soft spheres is more stable than tQgnsitypo®=1.0409. The solid line is a linear fit to the data. The coefficient
hcp phase by an amoumkFy. c,/(NkgT)=0.00288).  of the IN-term is —6.0(2).

5.92

— 5.91889(4)-6.0(2)/N
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