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ABSTRACT
Within the Poisson–Boltzmann (PB) framework useful for a wealth of charged soft matter problems, we work out the Coulombic grand
potential of a long cylindrical charged polyion in a binary electrolyte solution of arbitrary valency and for low salt concentration. We obtain
the exact analytical low-salt asymptotic expression for the grand potential, derived from the known properties of the exact solutions to the
cylindrical PB equation. These results are relevant for understanding nucleic acid processes. In practice, our expressions are accurate for
arbitrary polyion charges, provided their radius is smaller than the Debye length defined by the electrolyte.
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I. INTRODUCTION

Coulombic interactions play an important role in the physico-
chemical and thermodynamic properties of highly charged polyions
in a solution with added salt.1–3 In this work, we concentrate on free
energy calculations pertaining to stiff charged polymers, essential
for a number of applications, e.g., melting and binding of biopoly-
mers such as nucleic acids. We provide analytical expressions for the
free energy of the formation of the electrical double layer around
long cylindrical polyions such as deoxyribonucleic acid (DNA) in
the infinite dilution limit. On the mean field level, where correla-
tions are neglected, the nonlinear Poisson–Boltzmann (PB) theory
provides accurate predictions for most applications,4–7 which can
be tested against results from Monte Carlo and molecular dynam-
ics simulations.8,9 Nowadays, with available computer numerical
libraries and programs, it is fairly straightforward to solve numer-
ically the PB equation to obtain many quantities of interest, includ-
ing the free energy (see, for example, Ref. 10 and Appendix A).
However, it is desirable to obtain analytic results that give more
insight into the dependency of the free energy on the parameters
of the system: the linear charge of the polyion, the salt concen-
tration, and ion valencies. For high salt concentration situations,
an expansion in small curvature around the planar double layer
can be built to provide results for the free energy.11 Here, we will

concentrate on the opposite regime of low salt concentration, mak-
ing use of the known analytic asymptotic expansion of the solu-
tion of the PB equation.12–17 Due to the chemical equilibrium with
the reservoir, the appropriate ensemble is the grand-canonical one.
Therefore, we will concentrate on evaluating the grand potential.
The free energy can be obtained by the usual Legendre transforma-
tion (see Appendix B).

This work is organized as follows: In Sec. II, after recalling the
PB framework and previous results, we derive the exact low-salt con-
centration asymptotic analytic expression for the grand potential.
The result is valid for any value of the linear charge of the polyion.
In Sec. III, we provide a simplification of the general result that is
valid for moderately to highly charged polyions. This expression
has the advantage to be valid for any electrolyte valencies and is
not limited to 1:1. Finally in Sec. IV, we benchmark our analytic
expressions against numerical evaluation of the grand potential, and
we discuss our prediction dependence on the polyion charge, salt
concentration, and electrolyte valencies.

II. GENERAL EXPRESSION FOR THE GRAND
POTENTIAL

Our framework is the nonlinear PB equation1–3 to describe a
cylindrical polyion in an infinite electrolyte medium with dielectric
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permittivity ϵ. The persistence length of the polyion is supposed
to be much larger than all other physical lengths of interest; there-
fore, the polyion is modeled as an infinite cylinder of radius a with
uniform linear charge density λ = −e/b < 0, with e > 0 being the
elementary charge and b the longitudinal distance per unit charge.
The system is in thermal and chemical equilibrium with a salt reser-
voir at temperature T = 1/(kBβ) (kB is the Boltzmann constant) and
chemical potentials μ± = kBT ln(n0

±Λ3
±), where n0

± are the ionic bulk
densities and Λ± are the de Broglie thermal wavelengths of the ions.
The electrolyte valencies are z−:z+. Both numbers are taken as pos-
itive with the convention of writing first the coion valency (here,
z−) and then the counterion valency (z+). The charge density of
the polyion can be characterized by the dimensionless parameter
ξ = lB/b = −λlB/e > 0, with lB = βe2/ϵ being the Bjerrum length
(around 0.71 nm for water at room temperature). The solvent
(water) is modeled as a continuous medium of dielectric relative
permittivity ϵ. The Debye length κ−1 is defined by κ2

= 4πlB(z2
+n0

+
+ z2

−n0
−). The dimensionless electrostatic potential at a radial dis-

tance r from the polyion, ϕ(r) = βey(r) [with y(r) being the electro-
static potential], satisfies the PB equation

1
r
d
dr
(r

dϕ
dr
) =

κ2

z+ + z−
(ez−ϕ(r) − e−z+ϕ(r)), (1)

with boundary conditions aϕ′(a) = 2ξ (Gauss law in contact with
the polyion) and limr→∞rϕ′(r) = 0 (electroneutrality of the system
in the infinite dilution limit considered here). The grand potential
of the system can be obtained by using one of several charging pro-
cesses as recalled in Appendix B.18–20 We use here a charging process
where ξ is varied from 0 to its final value. The dimensionless excess
grand potential per unit charge is g = ω/ξ, with the dimensionless
linear density of the grand potential [see definitions (B4) and (B5) in
Appendix B],

ω = −∫
ξ

0
ϕ0 dξ′. (2)

Here, ϕ0 is the contact electrostatic potential ϕ0 = ϕ(a) seen as a
function of the charge ξ′.

In this work, we consider the low salt density regime when
κa ≪ 1. As explained in Appendix D of Ref. 17, the short distance
behavior of the electric potential can be obtained by injecting into
PB Eq. (1) of the o(1) approximation ϕ(r) = −2A ln(κr) + lnB + o(1)
to compute higher order terms of powers r. A and B are constants of
integration. Summing up all terms of order r2n(1+z+A) (n ∈ N) leads
to the asymptotic expression when κa≪ 1 for the contact potential
[see Eq. (D6) from Ref. 17],

ϕ0 = z−1
+ ln
⎡
⎢
⎢
⎢
⎢
⎣

(κa)2z+

2(z+ + z−)
(

sin(μ̃ ln(κa) + Ψ(μ̃))
μ̃

)

2⎤
⎥
⎥
⎥
⎥
⎦

, (3)

where μ̃ is defined by ĩμ = 1 + z+A and

Ψ(μ̃) = −
1
2i

ln
z+B−z+

8(z+ + z−)(ĩμ)2 . (4)

This function has the property that Ψ(0) = 0. To satisfy the boundary
condition limr→∞rϕ′(r) = 0 required by electroneutrality, the con-
stant of integration B is a function of A and therefore μ̃. The explicit
form of B and Ψ(μ̃) is only known in the cases of valencies 1:1, 1:2,

and 2:1 where the connection problem of the long and short dis-
tances of the PB solution has been solved12,14 and those results are
recalled in Appendix C. However, for other valencies, we shall show
that we only need to know the derivative at 0, C = Ψ′(0), and the
definite integral I = ∫

0
−iΨ(u)du to obtain information on the grand

potential.
The other constant of integration, A, and therefore μ̃, is

obtained by applying the boundary condition at the contact of the
polyion aϕ′(a) = 2ξ, which leads to

z+ξ − 1 = μ̃ cot(μ̃ ln(κa) + Ψ(μ̃)). (5)

For small charges ξ ≪ 1, one has at order 0 in κa, A = −ξ, and
μ̃ = i(−1 + z+ξ). As ξ increases, μ̃ moves on the imaginary axis from
−i to 0, where ξ takes the critical value ξc such that μ̃ = 0, given by

z+ξc − 1 =
1

ln(κa) + C
. (6)

Note that ξc < 1/z+: as explained in Ref. 15, the effect of salt is to
reduce the condensation threshold from 1/z+ to ξc. For ξ > ξc, the
parameter μ becomes real and moves along the real axis up to the
value17

μ̃∞ =
−π

ln(κa) + C
, (7)

as ξ → ∞. The path followed by μ̃ is shown in Fig. 1. In the past
works,13,15–17 Eq. (3) was exclusively used in the region ξ ≥ ξc (̃μ ∈ R);
however, it should be clear from its derivation13,16,17 that Eq. (3) is
also valid when ξ < ξc, provided that μ̃ is imaginary.

In the present work, we are interested in the situation with
added salt. Nevertheless, it is interesting to comment on the simi-
larities and differences of this case with the no-salt case, where there
are only counterions in the solution. In Refs. 21 and 22, the electro-
static potential in the no-salt case was worked out, which formally
bears a close resemblance to Eq. (3) with a replaced by r, and when

FIG. 1. Path followed by the parameter μ̃ on the complex plane C as ξ increases.
For vanishing charge (ξ = 0), μ̃ = −i. Increasing ξ, μ̃ moves “up” along the imagi-
nary axis, reaching μ̃ = 0 for ξ = ξc . For ξ > ξc , μ̃ is real and moves along the real
axis; it is then a positive and nondecreasing function (see the arrow).
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the integration constants are identified: in Eq. (8) of Ref. 21, the
integration constant C plays the role of μ̃ and the integration con-
stant lnA (from Ref. 21) plays the role of Ψ(μ̃). The reason for this
resemblance is that, in the close vicinity of the polyion, the coion
density is negligible; thus, the potential should behave asymptot-
ically as the one in the no salt case. However, at large distances
from the polyion, the expression for the potential becomes more
involved in the case with added salt and Eq. (3), with a replaced
by r, cannot be used at the edge of the Wigner-Seitz cell to deter-
mine the integration constant Ψ(μ̃) by applying the electroneu-
trality boundary condition, in contrast to the development done
in the no-salt case.21 Explicit expressions for this integration con-
stant can only be obtained in the infinite dilution limit (infinite
radius of the Wigner-Seitz cell) with the solution to the connection
problem.12,14

Several approximations have been developed for solving
Eq. (5) 15–17 depending on the range of values of ξ (ξ < ξc or ξ > ξc).
Therefore, it might prove difficult to perform the integral over ξ in
Eq. (2), as pointed out in Ref. 11. Attempting such a calculation
is indeed inconvenient. However, a change of variable from ξ to
μ̃ proves a useful reformulation. As shown below, this leads to an
indefinite integral that can be computed independently of the range
of values considered for ξ.

First, we perform an integration by parts,

−ω = ∫
ξ

0
ϕ0(ξ′)dξ′ = (ξ −

1
z−
)ϕ0 − ∫

ϕ0

0
(ξ −

1
z+
)dϕ0

= (ξ −
1
z−
)ϕ0 − ∫

μ̃

−i
(ξ −

1
z+
)
dϕ0

dμ
dμ, (8)

which can be interpreted as considering the thermodynamic poten-
tial appropriate for a fixed potential polyion rather than a fixed
charge one.5 In principle, the integral over μ̃ should follow the path
shown in Fig. 1; however, this is nonessential since the integrand is a
holomorphic function of μ̃ in the vicinity of the path considered in
the complex plane. Now, from Eq. (3), we have

dϕ0

dμ̃
= 2z−1

+ ((ln(κa) + Ψ′(μ̃)) cot(μ̃ ln(κa) + Ψ(μ̃)) −
1
μ̃
). (9)

Using (5), it is useful to note that

d
dμ̃
(z+ξ − 1) = cot(μ̃ ln(κa) + Ψ(μ̃)) − μ̃(ln(κa) + Ψ′(μ̃))

× (1 + cot2
(μ̃ ln(κa) + Ψ(μ̃))). (10)

With this, an exact differential appears in the integrand of (8),

(ξ −
1
z+
)
dϕ0

dμ̃
= −2z−1

+ [
d
dμ̃
(z+ξ − 1) + μ̃(ln(κa) + Ψ′(μ̃))]. (11)

This yields

ω = −(ξ −
1
z+
)ϕ0 −

2
z+
ξ −

1
z2

+
[(μ̃2 + 1) ln(κa) + 2μ̃Ψ(μ̃)

+ 2iΨ(−i) − 2∫
μ̃

−i
Ψ(u)du]. (12)

The value of Ψ(−i) corresponds to the situation of an uncharged
polyion with B = 1 in (4). Then, 2iΨ(−i) = − ln(8z−1

+ (z+ + z−)).
Because of relation (5), the following identity:

(z+ξ − 1)2 + μ̃2
= (

μ̃
sin(μ̃ ln(κa) + Ψ(μ̃))

)

2

(13)

is satisfied. This can be used in (3) to obtain an alternative expression
of the contact potential, ϕ0, that when replaced in (12) gives

ω = −
1
z+
ξ(2 + ln

(κa)2z+

2(z+ + z−)
) +

1
z+
(ξ −

1
z+
) ln[(z+ξ − 1)2 + μ̃2

]

+
1
z2

+
(2 ln 2 + (1 − μ̃2

) ln(κa) − 2μ̃Ψ(μ̃) + 2∫
μ̃

−i
Ψ(u)du).

(14)
This is the general exact analytic asymptotic expression for the grand
potential when κa ≪ 1 valid for all values of ξ. The parameter μ̃ is
obtained by solving Eq. (5). In Secs. III and IV, we will develop some
approximate solutions for Eq. (5) depending on the range of values
of ξ of interest.

It is worth noting that the grand potential is a holomorphic
function of μ̃ in the vicinity of the path shown in Fig. 1, in par-
ticular, close and at μ̃ = 0 corresponding to ξ = ξc. Therefore, in
the strict sense, there is not any phase transition for any value of
ξ at any value of κa. The grand potential changes smoothly with
ξ, even in the region close to ξc where the counterion condensa-
tion/decondensation occurs. However, the change from imaginary
μ̃ to real μ̃ does have quantitative implications on the small dis-
tance behavior of the electrostatic potential, as it has been analyzed
in Ref. 16. For this reason, following tradition and with a slight abuse
of language, we will refer to ξc as the “critical” value for counterion
condensation.

III. RESULTS FOR MODERATELY TO HIGHLY
CHARGED POLYIONS

In this section, we develop a simplified expression of the pre-
vious result (14) that is valid for a wide range of charges ξ which
includes all the region ξ ≥ ξc but also part of the region below the crit-
ical value (ξ < ξc), provided ξc − ξ≪ 1. This covers the most relevant
range of values of ξ for physicochemical and biological applications,
including the description of single (ss) and double stranded (ds)
DNA, where ξ ranges between 2 and 4.2.

For this range of values of ξ, the parameter μ̃ is small. As
in previous works, we perform a linearization of the function
Ψ(μ̃) ≃ Cμ̃. Then, Eq. (5) can be written as

z+ξ − 1
z+ξc − 1

= μ̂ cot(μ̂), (15)

where we defined

μ̂ = μ̃(ln(κa) + C) = μ̃
z+ξc − 1

. (16)

Let h be the inverse of the function μ̂↦ μ̂ cot(μ̂) which can easily be
tabulated numerically to any desired precision. Let

ζ =
z+ξ − 1
z+ξc − 1

, (17)
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then μ̂ = h(ζ) so that μ̃ is given by

μ̃ = (z+ξc − 1)h(ζ). (18)

It should be noted that h has several branches because Eq. (15)
has an infinite number of solutions. We take the branch such that
h(1) = 0 (corresponding to μ̃ = 0 when ξ = ξc). In addition, h is
to be considered as a complex function. When its argument ζ is
real and ζ ≤ 1, h(ζ) is real, [̂μ2

= h(ζ)2
≥ 0, corresponding to

ξ ≥ ξc and μ̃ ∈ [0, μ̃∞]]. When ζ > 1, h(ζ) takes imaginary values
[̂μ2
= h(ζ)2

< 0, corresponding to ξ < ξc and μ̃ ∈ [−i, 0]]. Figure 2
shows a plot of the square of the function h which gives the value of
μ̂2 as a function of ζ.

The linearization of the function Ψ around μ̃ = 0 leads to the
following approximation for the grand potential (14):

ω = −
1
z+
ξ(2 + ln

(κa)2z+

2(z+ + z−)
) +

1
z+
(ξ −

1
z+
) ln[(z+ξ − 1)2 + μ̃2

]

+
1
z2

+
(2 ln 2 − μ̃2

(ln(κa) + C) + ln(κa) + 2I). (19)

With μ̃ obtained from Eq. (18) (graphically shown in Fig. 2), Eq. (19)
gives the grand potential for ξ in the range close to ξc (both below
and above) and in all the range ξ > ξc including highly charged
cylinders. If one is interested only in the dependence of the grand
potential on the salt concentration through the value of κa, it
can be checked that Eq. (19) reproduces the results from Eq. (13)
of Ref. 11 which gives the grand potential per elementary charge
(g = ω/ξ) dependency on κa for a 1:1 electrolyte only. However,
in that work, all the dependency of g on ξ and on the electrolyte
valencies was hidden in an arbitrary reference value (named Gcoul

ref in
Ref. 11) which was inaccessible analytically up until now. Our result,
Eq. (19), provides more complete results with the complete ξ depen-
dence. It is also valid for other valencies z−:z+ besides 1:1, provided
two valency-dependent parameters are known,

C = Ψ′(0), (20)

I = ∫
0

−i
Ψ(u)du. (21)

FIG. 2. The square of h, defined as the inverse function of z ↦ z cot(z), which
gives the value of μ̂2 as a function of ζ = (z+ξ − 1)/(z+ξc − 1).

TABLE I. The constants C and I needed for the determination of the grand potential
for different valencies.

z− z+ C I

4 1 −2.069 −0.986 20
3 1 −1.938 −0.924 08
2 1 −1.764 −0.842 36
3 2 −1.649 −0.789 50
1 1 −1.502 −0.723 58
2 3 −1.377 −0.668 61
1 2 −1.302 −0.636 37
1 3 −1.215 −0.599 88
1 4 −1.167 −0.579 69

In the cases of 1:1, 1:2, and 2:1, these can be computed exactly,

C1:1 = γ − 3 ln 2 ≃ −1.502 23, (22)
C1:2 = γ − (3 ln 3)/2 − (ln 2)/3 ≃ −1.301 75, (23)
C2:1 = γ − (3 ln 3)/2 − ln 2 ≃ −1.763 85 (24)

and

I1:1 = 1 − 6 lnA − (ln 2)/3 ≃ −0.723 576, (25)
I1:2 = 1 − 6 lnA − ln 2 + (ln 3)/2 ≃ −0.636 368, (26)
I2:1 = 1 − 6 lnA − ln 2 + (5 ln 3)/16 ≃ −0.842 358, (27)

with γ ≃ 0.577 216 being the Euler Mascheroni constant and
A ≃ 1.282 43 the Glaisher constant. The values of C were com-
puted in Ref. 16, and the calculation of I is shown in Appendix C.
For other valencies, we computed numerically the values of C and
I and the values are reported in Table I. Appendix A explains the
details of this numerical evaluation. It should be kept in mind that
up to a trivial rescaling, 1:1, 2:2, 3:3, etc., electrolytes are all equiva-
lent within PB theory (only the ratio z+/z− does matter). Yet, upon
increasing ionic valencies, correlation effects, discarded at the PB
level, become more prevalent and may invalidate the mean-field
assumption.23

IV. RESULTS AND BENCHMARK OF THE ANALYTIC
PREDICTIONS

We benchmarked our analytic result against a direct numeri-
cal computation of the free energy. Details are given in Appendix A.
Two methods have been used for the numerical calculation: either
from Eq. (2) which requires to solve numerically a number of PB
equations at fixed κa for a number of charges (starting from ξ = 0)
or alternatively from Eq. (B6) which only requires the solution of
the PB equation at the chosen values of ξ and κa. Checking that
both methods yield identical results is important for assessing the
validity of the calculations. Details of the numerical resolution of
the PB equation are given in Appendix A. Figure 3 shows the grand
potential per elementary charge, g = ω/ξ, for the case κa = 0.1
and valencies 1:1 using several approximations: “analytic” stands
for Eq. (19) with μ̃ obtained from Eq. (18), DH is Debye-Hückel
prediction shown in Eq. (29), TW is the prediction from Ref. 13
recalled in Appendix D, Eq. (D5), and “large ξ” is Eq. (19) with the

J. Chem. Phys. 151, 124904 (2019); doi: 10.1063/1.5121724 151, 124904-4

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 3. Comparison of the different predictions for the grand potential g for κa = 0.1
and 1:1 electrolyte as a function of ξ: “analytic” is Eq. (19) with Eq. (18), “DH” is
Debye-Hückel prediction Eq. (29), “TW” is Tracy and Widom prediction Eq. (D5),
and “large ξ” is Eq. (19) but with μ̃ approximated as shown in Eq. (18). Inset:
relative error between the analytic predictions and the numeric result of the grand
potential.

approximation,

μ̃ ≃
−π

ln(κa) + C + (z+ξ − 1)−1 , (28)

which is valid asymptotically for large ξ ≫ ξc.17 The inset shows the
relative error between the different predictions against the numeri-
cal calculation of the grand potential. Interestingly, there is a large
overlap between the simple Debye-Hückel prediction

gDH = ξ
K0(κa)
κaK1(κa)

(29)

(where K0 and K1 are the modified Bessel functions of order 0 and
1, respectively) and the analytic prediction Eq. (19) with Eq. (18).

For large ξ ≫ ξc, Eq. (19), with either Eq. (18) or Eq. (28) for the
determination of μ̃, provides extremely accurate results with a rel-
ative difference between the numerics and the analytic predictions
that are below 0.2% (ξc ≃ 0.737 175 for κa = 0.1). This is 10 times
more accurate than previous analytic predictions11 for that range of
values.

For ξ < ξc, the solution for μ̃ involves the region ζ > 1 of h(ζ)
(see Fig. 2). In this region, ∣̂μ∣ increases faster; therefore, the range
of validity of the approximation ∣̃μ∣ ≪ 1 is smaller. Nevertheless,
the analytic prediction of Eq. (19) with Eq. (18) remains accurate
for values of ξ smaller than ξc, provided ξc − ξ ≪ 1. In practice,
Eq. (19) can be applied down to values of ξ = 1/(2z+) (half the Man-
ning parameter 1/z+) with an error that starts to become larger than
1% below that threshold. Then, for smaller values of ξ, the most
accurate analytic expression is provided by the Debye-Hückel pre-
diction (29). It turns out that the analytic expression from Ref. 13
recalled in Eqs. (D5)–(D7) is less accurate than the DH prediction.
This is probably traced back to the fact that DH prediction gives the
correct asymptotics for ξ → 0 of the nonlinear PB problem regard-
less of the value of κa (it is not limited to κa ≪ 1). In summary,
our main result Eq. (19) with Eq. (18) for moderately to highly
charged polyions combined with DH prediction (29) for smaller val-
ues of ξ provides excellent accurate analytic predictions for the grand
potential.

To test the accuracy of our prediction when κa varies, we
consider two experimentally relevant cases corresponding to sin-
gle stranded DNA ξ = ξssDNA = 2.1 and double stranded DNA
ξ = ξdsDNA = 4.2. Figure 4 shows the grand potential as a function
of κa (obtained varying salt concentration) with a comparison to
the numerical evaluation. The insets of these figures show the rel-
ative error between the two. The worst case is for 1:1 electrolyte
and ssDNA where the error reaches values beyond 1% but only for
κa ≥ 0.4. Even when κa = 1, where the analytic treatment is not sup-
posed to be accurate, we obtained a fair approximation for the grand
potential with relative error below 3.5% for 1:2 and 2:1 electrolytes
for dsDNA.

For highly charged polyions, the Debye-Hückel theory has
often been applied by correcting the bare charge with the effective
one, which encodes the large distance features of the electric

FIG. 4. Grand potential as a function of κa for (a) ssDNA and (b) dsDNA. The lines are the analytic predictions and the symbols the numerical evaluation. Inset: relative error
between the analytic prediction and the numerical evaluation. The grand potential is computed per elementary charge g = ω/ξ.

J. Chem. Phys. 151, 124904 (2019); doi: 10.1063/1.5121724 151, 124904-5

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 5. Failure of the prediction for the grand potential g using the Debye-Hückel
theory combined with effective charge corrections ξeff. The data are shown for
κa = 10−1 and 1:1 electrolyte and compared to the analytic results Eq. (19).

potential.10,16,24,25 Figure 5 compares the analytic result with this pre-
scription, showing that, for the free energy and grand potential cal-
culations, the effective charge concept as previously formulated fails.
In particular, since the effective charge saturates for highly charged
polyions, it would predict that the grand potential per elementary
charge will saturate, when in reality this is not the case. Our ana-
lytic results (19) predict that for highly charged polyions, the grand
potential behaves as

g =
1
z+
(2 ln ξ − 2 − ln

(κa)2

2(z+ + z−)z+
) + O(ξ−1 ln ξ) , ξ →∞.

(30)
The failure of the effective charge prescription for the compu-
tation of the grand potential is probably due to the strong free
energy contribution of the condensed ions, i.e., of short scale fea-
tures ignored by the far-field behavior subsumed in the effective
charge.

We now discuss the dependency of the grand potential on
the valencies z−:z+ of the electrolyte. Using our prediction Eq. (19)
and the data from Table I obtained in Appendix A, we plot g as a
function of ξ when the valency is changed (Fig. 6). The salt con-
centration is fixed at κa = 10−1. Note how the different curves can
be regrouped by common counterion valency z+. At fixed counte-
rion valency (z+), when the coion valency z− is increased, the grand
potential increases moderately. On the other hand, an increase in the
counterion valency z+ reflects in a large decrease in the grand poten-
tial. This is also apparent on the analytic expression (19), where it
can be appreciated that the dependency on z− is logarithmic, while
there are terms proportional to z+ and z2

+ responsible for a stronger
dependency on z+ than on z−. Figure 7 confirms this trend, show-
ing now g for dsDNA as a function of κa for different valencies.
From Eqs. (19) and (30), one can note that at fixed large ξ, the
leading behavior dependence on κa is g ∼ −(2/z+) ln(κa) + O(1)
for κa ≪ 1. This linear dependence of g on ln(κa) at leading order
is verified in Fig. 7, where the slope of the curves in log-scale is

FIG. 6. Grand potential per elementary charge g as a function of ξ for different
valencies z−:z+ at κa = 10−1.

FIG. 7. Grand potential per elementary charge g as a function of κa for different
valencies z−:z+ at ξ = ξdsDNA = 4.2.

indeed −2/z+. The coion valency z− only affects the subleading order
terms.

V. SUMMARY AND CONCLUSION
Coulomb interactions are key to rationalizing the thermody-

namics of nucleic acid processes11 or other properties of biopoly-
mers such as their persistence length.26 The nonlinear Poisson-
Boltzmann (PB) theory adopted here is a mean-field framework
that provides a useful description, not only in the present con-
text but more generally for studying soft matter in aqueous solu-
tions, where Coulombic effects are paramount.1–3 We computed the
exact analytic low-salt asymptotic expansion of the grand poten-
tial/free energy of a long cylindrical polyion [Eqs. (19) and (18)].
The biopolymer is thus modeled here as a uniformly charged straight
cylinder, and we addressed the case of a binary electrolyte, with arbi-
trary co- and counterion valencies z− and z+. Analytical progress
was possible taking advantage of the contact potential (3) derived
in previous works17 and writing expressions valid for all values of
polyion charge ξ. This required to introduce an auxiliary quantity,
μ̃, appropriately allowed to take complex values, either pure imag-
inary or real, as sketched in Fig. 1. This results in a significantly
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extended range of validity of the contact surface potential and the
quantities derived from it, such as the preferential interaction coef-
ficient computed in Ref. 17, and the grand potential computed here.
With this, one can obtain reliable results for moderately to highly
charged polyions, having linear charge ξ larger than half the Man-
ning parameter [ξ > 1/(2z+), therefore, 1/2 for monovalent counte-
rions]. The regime of smaller charges is somewhat less interesting:
for smaller values of ξ, one enters the realm of the simple linear
Debye–Hückel theory, which provides accurate results. This opens
the opportunity to present the analytic results for the cylindrical PB
equation13,15–17 in a unified framework, which no longer requires us
to consider different formulas for ξ < ξc and ξ ≥ ξc, as done in pre-
vious publications. In practice, our low salt approach turns reliable
for κa < 1. We finally emphasize that our work sheds some light on
the analytic properties of the grand potential. Within the present PB
formalism, it turns out to be a holomorphic function of μ̃ and ξ, with
no singularity even at ξ = ξc, unlike what the widespread terminol-
ogy pertaining to Manning “condensation transition” may lead to
believe.

ACKNOWLEDGMENTS
This work was partially funded by ECOS-Nord Action No.

C18P01. G.T. acknowledges support from Fondo de Investigaciones,
Facultad de Ciencias, Universidad de los Andes, Research Pro-
gram 2018–2019 “Modelos de baja dimensionalidad de sistemas
cargados.”

APPENDIX A: NUMERICAL EVALUATION
OF THE GRAND POTENTIAL

In this appendix, we give a few details for the algorithm to
compute the grand potential/free energy. The numerical resolution
of the PB equation was done with MATHEMATICA based on the code
presented in Appendix A of Ref. 10. Essentially, the PB equation is
solved on a cylindrical Wigner-Seitz cell of large radius R = 22κ−1

with boundary conditions at the edge of the cell ϕ′(R) = 0 (by elec-
troneutrality) and a test value for the potential at the edge ϕ(R)
= ϕedge. The resolution of the differential equation is done with the
MATHEMATICA NDSolve built-in algorithm with options MaxSteps
→ 500 and WorkingPrecision → 33. We are interested in the R
→ ∞ limit (infinite dilution) and R should be chosen accordingly,
large enough to provide an acceptable solution. It is then necessary
to check that the results obtained do not depend on R, within the
targeted accuracy.

If the algorithm converges successfully, the corresponding lin-
ear charge can be obtained as ξ = aϕ′(a)/2. In the linear regime,
for ξ ≪ ξc, ξ changes linearly with ϕedge, whereas in the nonlinear
regime, for ξ > ξc, a small change in ϕedge produces exponentially
large changes in ξ. Due to the potential saturation effect,27 if ϕedge is
too large (beyond its saturation value ϕsat), the algorithm will not
converge. By trial and error, the saturation value of ϕedge can be
determined. A sweep over values of ϕedge provides a table of data
for the contact potential ϕ(a) and the corresponding linear charge
value ξ. This sweep should be done with equal spacing on a log scale
of values of ϕedge starting at ϕsat to account for the saturation effect
to obtain linearly evenly spaced for values of ξ. In practice, we used
ϕedge = ϕsat(1 − (97/100)k) with k ranging from 0 to 400 by step

increments of 5. This produces a table of 80 values of the contact
potential and its corresponding linear charge. This table is interpo-
lated to produce numerically the function ξ ↦ ϕ0. The interpola-
tion was made with the MATHEMATICA Interpolation function with
default options (degree 3 polynomial interpolation between succes-
sive data points). This function is then integrated numerically with
MATHEMATICA Integrate to obtain the grand potential [Eq. (2)]. The
above procedure is followed for a given value of κa and gives the
grand potential for any value of ξ. If κa is changed, the procedure
should be run again since the saturation value ϕsat changes. Besides,
an important test for the correctness of the calculation is to check
that the grand potential values are recovered by a direct calculation,
without any integral over ξ, making use of relation (B6). Our results
satisfied this test.

The numerical evaluation of the constants C [Eq. (20)] and I
[Eq. (21)] for different valencies z−:z+ was done as follows: Using
Eq. (13) in Eq. (3) shows that the contact potential ϕ0 and the
parameter μ̃ satisfy

e−z+ϕ0 (κa)
2z+

2(z+ + z−)
− (z+ξ − 1)2

= μ̃2. (A1)

Therefore, the left-hand side (LHS) of Eq. (A1) vanishes when
ξ = ξc (̃μ = 0). Along with the numerical computation of the grand
potential explained above, a data table of the LHS of Eq. (A1) as a
function of ξ can be built and then interpolated. The zero of this
interpolated function the closest to 1/z+ is then found using the
MATHEMATICA FindRoot algorithm to obtain ξc. With ξc determined
numerically, the constant C is obtained from Eq. (6). The constant
I is obtained from Eq. (19) evaluated at ξ = ξc (corresponding to
μ̃ = 0). A strong test of this algorithm is that it should give the
same values of C and I independently of the chosen value of κa,
provided it is small enough. We tested this numerical procedure
using values of κa = 10−6, 10−5, and 10−4, confirmed the stability
of the numerical values of C and I and reproduced the analytically
known values for the solvable cases of valency 1:1, 1:2, and 2:1 with
a relative accuracy of 10−5 for C and 10−6 for I. Table I provides
the values of C and I for other valencies of experimental inter-
est, bearing in mind the limitations of the PB framework for larger
valencies.23

APPENDIX B: CHARGING PROCESS TO OBTAIN
THE FREE ENERGY

Several charging processes can be put forward to compute the
free energy by studying its variations with respect to different param-
eters. A review of such process can be found in Refs. 6 and 18–20.
Consider the cell model and PB theory for a polyion. In Ref. 19, it is
shown that the variations of the free energy F are given by

δ(βF) =
1

8πlB ∮Σ
(ϕ∇(δϕ) − δϕ∇ϕ) ⋅ dS + βU

δlB
lB

+ ∫
P
ϕδ(

σ
e
)dS +∑

s=±
ln(n0

sΛ
3
s )δNs, (B1)

where P is the surface of the polyion, U is the internal energy,
N± is the number of positive and negative ions, σ is the surface
charge density of the polyion, and Σ is the surface of the Wigner-
Seitz cell of arbitrary shape that encloses the system; in the present
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situation of infinite dilution, Σ is “sent to infinity” and the corre-
sponding integral is absent from the equation, as a consequence of
screening; the spatial integrals considered consequently run over all
space. Besides, the bulk electrolyte plays the role of a reservoir, with
given chemical potentials μ± for cations and anions. It is thus appro-
priate to work in the grand canonical ensemble due to the chemi-
cal equilibrium with the salt reservoir. Therefore, we consider the
grand potential Ω = F − μ+N+ − μ−N− and its excess value with
respect to that of the reservoir Ω0 = ∫ (n

+
0 + n−0 )dV . At fixed lB, its

variations are

δ(β(Ω −Ω0)) = ∫
P
ϕδ(

σ
e
)dS − ∫ (n

+
(r) − n+

0)δμ+dV

+ ∫ (n
−
(r) − n−0 )δμ−dV , (B2)

where n±(r) is the ionic density profiles around the polyion. The
second and third terms show that the variations with respect to
the chemical potentials are the excess ionic charge around the
polyion, which is essentially the preferential interaction coeffi-
cient.17,28 Therefore, the grand potential can be obtained by inte-
grating the preferential interaction coefficient with respect to the
chemical potential μ± = ln(n±0 Λ

3
±) or equivalently with respect to

ln(κa). This strategy was used in Ref. 11 to obtain analytic predic-
tions for the grand potential. However, it has the disadvantage that
it requires the determination of an arbitrary reference value of the
grand potential at a given salt density (0.15M was used in Ref. 11).
This reference value is different for each value of ξ even if κa is kept
fixed. In this work, we followed another route by considering vari-
ations of the surface charge σ of the polyion. This is equivalent to
varying ξ since σ = −ξe/(2πalB). For a cylinder of length L, at fixed
chemical potentials, Eq. (B2) becomes

δ(β(Ω −Ω0)) = −
L
lB
ϕ0 δξ. (B3)

Let us define the dimensionless excess grand potential per unit
length

ω = β(Ω −Ω0)lB/L, (B4)

and the dimensionless excess grand potential per elementary charge

g = β(Ω −Ω0)/N = ω/ξ, (B5)

with N = L/b being the number of elementary charges of the
polyion. Since at ξ = 0 the grand potential is Ω0, we obtain (2)
from (B3).

In order to test the reliability of our numerical solution, we
have computed the free energy/grand potential through an alterna-
tive route that does not require any ξ-integration. Once ξ and κa
have been chosen and the PB equation solved, we have19

βω = −
1
2
ξ ϕ0 +

κ2

8π(z+ + z−)
⎛

⎝
∫ ϕ(ez−ϕ − e−z+ϕ)d2V − 2

× ∫ [
1
z−
(ez−ϕ − 1) +

1
z+
(e−z+ϕ − 1)]d2V

⎞

⎠
, (B6)

where the second integral on the right hand side is a rewriting of
∫ (n

+ +n− −n+
0 −n

−

0 )d
2V . The two integrals in (B6) run over the 2D

plane perpendicular to the cylinder axis, outside the charged cylinder
(r > a).

APPENDIX C: EXPLICIT SOLUTIONS FOR 1:1, 1:2,
AND 2:1 VALENCIES

In the short distance asymptotics of the electrostatic poten-
tial from which the contact potential is deduced [Eq. (3)], μ̃ and
Ψ(μ̃) are the two constants of integration of the differential Eq. (1).
However, to satisfy the boundary condition rϕ′(r) → 0 when r
→ ∞, the so-called connection problem between the short and
large scale behavior of the solution has to be solved to find the
relationship between the two integration constants. This problem
was worked out in the integrable cases of valencies 1:1, 1:2, and
2:1, where the solution to the PB equation can be written down
in terms of Fredholm determinants.12,14 We recall here the main
results. For those valencies, the constant B appearing in Eq. (4) is
given by29

B1:1 = 26Aγ(
1 + A

2
)

2
, (C1)

B1:2 = 33A22Aγ(
1 + 2A

3
)γ(

2 + A
3
), (C2)

B2:1 = 33A22Aγ(
2(1 + A)

3
)γ(

1 + A
3
), (C3)

where γ(z) = Γ(z)/Γ(1 − z), with Γ being the Euler gamma function.
With A related to μ̃ by ĩμ = 1 + z+A, replacing this in Eq. (4) gives the
function Ψ,

Ψ1:1(μ̃) = −3μ̃ ln 2 + i ln(
ĩμ
2
γ(

ĩμ
2
)), (C4)

Ψ1:2(μ̃) = −
μ̃
2
(3 ln 3 + 2 ln 2) + i ln(

ĩμ
3
γ(

ĩμ
3
)) + i ln γ(

ĩμ + 3
6
),

(C5)

Ψ2:1(μ̃) = −
μ̃
2
(3 ln 3 + 2 ln 2) +

i
2

ln(
ĩμ
3
γ(

ĩμ
3
))

+
i
2

ln(
2ĩμ
3
γ(

2ĩμ
3
)). (C6)

With this, the constant I = ∫
0
−iΨ(μ̃)dμ̃ used in Eq. (19) can be

computed explicitly, leading to Eqs. (25)–(27).

APPENDIX D: RESULTS FOR ξ BELOW
THE CRITICAL VALUE ξc

In Sec. III, the main result Eq. (19) breaks down if ξ ≪ ξc.
We develop here an approximation appropriate for that range.
When ξ < ξc, μ̃ ∈ [−i, 0]; therefore, it is useful to introduce ν ∈ [−1, 0]
defined by μ̃ = iν. Equation (5) becomes

z+ξ − 1 = ν coth(ν ln(κa) + φ(ν)), (D1)

with φ(ν) = −iΨ(μ̃) ∈ R. For κa≪ 1, the argument of the hyperbolic
cotangent in (D1) is large and positive. Therefore,
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z+ξ − 1 = ν(1 + 2e−2ν ln(κa)+φ(ν) + o((κa)−2ν
)), (D2)

which yields

ν = (z+ξ−1)(1 − 2(κa)2(1−z+ξ)e−2φ(z+ξ−1) + o((κa)2(1−z+ξ))). (D3)

Replacing this in Eq. (14) and using Eq. (4), we find

ω = −ξ2 ln(κa) −
1
z+
∫

−1+z+ξ

−1
lnBdν, (D4)

where B should be seen as a function of ν = −(1 + z+A). This is the
same result as if one starts with the approximation ϕ0 = −2A ln(κa)
+ lnB, with A approximated as A = −ξ. Further progress can be only
made in the cases of valencies 1:1, 1:2, and 2:1, where B is explic-
itly known12,14 [see Eqs. (C1)–(C3) from Appendix C], recovering
previous results from Tracy and Widom,13

ω1:1 = ξ2
(− ln(κa) + 3 ln 2)

+ 4[ψ(−2)
( 1−ξ

2 ) + ψ(−2)
( 1+ξ

2 ) − 2ψ(−2)
( 1

2)], (D5)

ω1:2 = ξ2
(− ln(κa) +

3
2

ln 3 + ln 2)

+ 3[
1
2
(ψ(−2)

( 2(1+ξ)
3 ) + ψ(−2)

( 1−2ξ
3 )) + ψ(−2)

( 1+ξ
3 )

+ψ(−2)
( 2−ξ

3 ) −
3
2
(ψ(−2)

( 2
3) + ψ(−2)

( 1
3))], (D6)

ω2:1 = ξ2
(− ln(κa) +

3
2

ln 3 + ln 2)

+ 3[
1
2
(ψ(−2)

( 2(1−ξ)
3 ) + ψ(−2)

( 1+2ξ
3 )) + ψ(−2)

( 1−ξ
3 )

+ψ(−2)
( 2+ξ

3 ) −
3
2
(ψ(−2)

( 2
3) + ψ(−2)

( 1
3))], (D7)

where ψ(−2)
(x) = ∫

x
0 ln Γ(u)du.30,31
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