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Hydrodynamic behavior at the vicinity of a confining wall is closely related to the friction properties
of the liquid/solid interface. Here we consider, using molecular dynamics simulations, the electric
contribution to friction for charged surfaces, and the induced modification of the hydrodynamic
boundary condition at the confining boundary. The consequences of liquid slippage for
electrokinetic phenomena, through the coupling between hydrodynamics and electrostatics within
the electric double layer, are explored. Strong amplification of electro-osmotic effects is revealed,
and the nontrivial effect of surface charge is discussed. This work allows us to reconsider existing
experimental data, concerning � potentials of hydrophobic surfaces and suggests the possibility to
generate “giant” electro-osmotic and electrophoretic effects, with direct applications in
microfluidics. © 2006 American Institute of Physics. �DOI: 10.1063/1.2397677�

I. INTRODUCTION

With the important development of microfluidic systems,
miniaturization of flow devices has become a real challenge.1

Microchannels are characterized by a large surface-to-
volume ratio, so that flows are strongly affected by surface
properties. A clear understanding of liquids dynamics close
to solid surfaces is consequently an important prerequisite
for further progress. Over the recent years, important ad-
vances in the rheology of fluids at small scales have been
performed, partly thanks to computer simulations, such as
molecular dynamics �see, e.g., Ref. 2 and references therein�,
but mainly thanks to the development of new experimental
techniques, such as optical velocimetry �see Refs. 3 and 4
and references therein� or dissipation measurements using
surface force apparatus �SFA� and atomic force microscope
�see Refs. 5 and 6 and references therein�.

In this context, the usual assumption of a no-slip bound-
ary condition for simple liquids at solid surfaces has been
critically revisited at small scales in the last years, see, e.g.,
Ref. 7 for a review. The conclusions emerging from these
studies are that, while the continuum hydrodynamics theory
surprisingly remains valid up to very small length scales, the
no-slip boundary condition �BC� for the fluid velocity at the
solid surface may be violated in many situations �see, e.g.,
Refs. 2, 5, 6, 8, and 9�. Moreover, it has been shown that this
violation of the usual no-slip BC is controlled by the wetting
properties of the fluid on the solid surface: while the no-slip
BC is fulfilled on hydrophilic surfaces, a finite velocity slip

is measured on hydrophobic surfaces,2,5,8 originating in a low
friction of the liquid at the wall.

In this work, we consider the role of electric properties
on liquid-solid friction, a point which has been barely ex-
plored up to now.10,11 Surfaces indeed usually release charges
when in contact with a polar solvent such as water, which in
turns strongly modifies the liquid-solid interactions at the
interface. The natural length scale characterizing the electric
interaction range in electrolytes is the so-called Debye
length. This length being typically nanometric in standard
aqueous electrolytes, one can anticipate that the dynamics of
charged systems should probe hydrodynamics in the nano-
metric vicinity of charged solid surfaces. One can, in particu-
lar, expect an interesting coupling with nanometric slippage,
as predicted theoretically for neutral surfaces2 and evidenced
experimentally.5,8 Furthermore, hydrophilic and hydrophobic
surfaces exhibit different electric properties,12 and the cou-
pling between pure wetting effects and “charge-mediated”
effects is a priori subtle and remains to be clarified. Eventu-
ally, such an interplay is expected to affect interfacial trans-
port of charges, i.e., electrokinetics, which is commonly used
to manipulate liquids in microsystems �e.g., electrophoresis
and electro-osmosis�. These different points will be consid-
ered in the present paper. To study the relevant length scales
involved, extensive molecular dynamics �MD� simulations
have been used.

In a previous article,13 we presented first results concern-
ing the influence of surface hydrodynamic properties �as en-
compassed in the so-called hydrodynamic boundary condi-
tion� on electrokinetic effects, focusing on streaming current
experiments and with a restricted set of electric parameters.
Beyond the generalization to other electrokinetic effects, the
purpose of the present work is to extend this previous analy-
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sis by extensively exploring the influence of the various elec-
tric parameters on both the static and the dynamic properties
of the surface, therefore rationalizing the interplay between
surface charge, hydrodynamics at the interface and electro-
kinetics response. The paper is organized as follows. In Sec.
II, we describe our numerical model, together with some
details of the simulation procedure. We focus in Sec. III on
the static properties of our systems. We then turn to the dy-
namic behavior and explore in Sec. IV the coupling between
liquid/solid friction and surface charge. The reciprocal cou-
pling between hydrodynamics and electric properties of the
interface is studied in Sec. V. A strong amplification of elec-
trokinetic effects in the presence of slip at the solid surface is
reported. Finally experimental consequences of this work are
addressed in Sec. VI, with focus on the origin of � potential
on hydrophobic surfaces, and the possibility to strongly am-
plify electrokinetics effects using polarized hydrophobic sur-
faces, with direct applications in microfluidics.

II. MODEL AND PARAMETERS

We first describe our microscopic model �see Fig. 1� and
some details of the simulation procedure.

The fluid system �solvent and microions� is confined be-
tween two parallel solid substrates, themselves composed of
individual atoms fixed on a fcc lattice. The solvent and solid
substrate particles interact via Lennard-Jones �LJ� potentials,

vij�r� = 4����

r
�12

− cij��

r
�6� , �1�

with identical interaction energies � and molecular diameters
�. The tunable parameters cij enable us to adjust the wetting
properties of the fluid on the substrate:2 for a given fluid-
fluid cohesion cFF, the substrate displays a “hydrophilic” be-
havior for large fluid-solid cohesivity, cFS, and a “hydropho-
bic” behavior for small cFS. Here, the wetting �nonwetting�
situation is typically achieved by taking cFS=1 �0.5� for a
fixed cFF=1.2. This leads to a contact angle � of a liquid
droplet on the substrate, measured in the simulations, equal
to 80° �140°� for a temperature kBT /�=1 �see Ref. 2 for an
exhaustive discussion on this point�.

Besides, microions interact through both Lennard-Jones
potentials as described in Eq. �1� and Coulomb potential in a
medium with dielectric permittivity �d,

v���r� = kBTq�q�

�B

r
, �2�

where q� and q� are the valences of the interacting charges
and �B=e2 / �4��dkBT� is the Bjerrum length, e denoting the
elementary charge �the Bjerrum length is the typical scale at
which thermal energy and electric interaction energy com-
pare; in water at room temperature �B	0.7 nm�. The influ-
ence of the solvent permittivity on static and dynamical
properties will be tested by varying �B in the parameter range
�0.25� ;5��; otherwise we will choose �B=� as the default
value. Note that we consider a case where LJ parameters are
identical for charged and neutral atoms �liquid or solid�; as
we verified in Appendix B, this simplifying assumption en-
ables us to clearly separate hydrodynamic and electrostatic
properties, without affecting the generic mechanisms evi-
denced in this work.

Wall atoms are organized into five layers of a fcc solid
�in the 100 direction� in both walls. For each wall, only the
first layer, which is in contact with the fluid, is charged. The
corresponding Nwall atoms bear a discrete charge, with va-
lency qwall=−Z /Nwall so that each wall bears a negative net
charge −Ze. The solvent contains 2Z monovalent counteri-
ons, to which Ns=N++N− salt ions are added, all with unit
valence. Global electroneutrality is enforced by imposing
N+=N−. The simulated systems are generally made up of 104

atoms. A typical solvent density is 	 f�
3
0.9, while the con-

centration of microions 	s=N± /V will be varied between
	s�

3=5
10−3 and 	s�
3=0.16 �with V the total volume of

the sample�. With a typical value �=0.5 nm, this corre-
sponds roughly to an ionic strength varying between 10−2M
and 1M. For �B=�, the corresponding Debye screening
length �see below� ranges from a few �B to a fraction of �B.
Salt-free situations have also been investigated and will be
reported below. The influence of surface charge will be con-
sidered by varying the charge per unit surface − in the pa-
rameter range �−0.02e /�2 ;−0.8e /�2� �note that for conve-
nience we define the parameter � to be the negative of the
surface charge�. Unless otherwise stated, we will choose
�=0.2e /�2, with a corresponding Gouy-Chapman length
�GC=1/ �2��B����=0.8�. For �=0.5 nm, this translates into
a typical surface density of −0.13 C/m2. For �B=� and the
salt concentrations considered here, the surface potential V0

ranges between eV0	kBT and eV0	4kBT, allowing us to
explore both linear �Debye-Hückel-type� and nonlinear situ-
ations. Periodic boundary conditions are applied in the x and
y directions with Lx=Ly =16�, and the distance between the
walls is Lz=20.9�. Ewald sums are used to compute Cou-
lombic interactions �assuming a periodicity in the z direction
with a box size of 5Lz�.

44. In the subsequent analysis,
Lennard-Jones units are used, with a characteristic distance �
and time �= �m�2 /��1/2. Temperature is kept constant to
kBT=1 by applying a Hoover drag to the y degrees of free-
dom only, i.e., in the direction perpendicular to the flow and
confinement.2

FIG. 1. Simulated system. The simulation cell extends over 16� along the
Oy direction, perpendicular to the figure.
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Our model therefore includes the discrete nature of the
solvent and charges and a tuning wettability of the surface,
whereas these effects are usually neglected in the traditional
description of electrokinetic phenomena. This approach al-
lows us, in particular, to separate the effects of charge and
hydrophobicity: while the origin of charge on hydrophobic
surface still remains to be clarified �ion adsorption, specific
effects, defects in the nonwetting coatings, etc.�, the separa-
tion of effects allows us to show that slippage effects leads to
large zeta potential on weakly charged surfaces, an effect
which has not been considered up to now.

We chose moreover to describe Coulombic interactions
at the level of an effective dielectric medium �with dielectric
permittivity �d�. This simplifying assumption—which could
be relaxed using a more realistic model for the
solvent14,15—enables us to investigate specifically the ge-
neric interplay between hydrodynamic and electrostatic ef-
fects, which is the main focus of this work. We expect the
conclusions obtained to be generically valid.

In order to model the contribution of electric charges to
friction, we will explore the influence of various electric pa-
rameters: electrolyte concentration 	s, surface charge �, and
permittivity of the solvent, via the Bjerrum length �B. To be
specific, we performed different sets of simulations, includ-
ing varying salt concentration �	s�

3� �5
10−3 ;0.16��, with
fixed Bjerrum length ��B=�� and surface charge
��=0.2e /�2�; varying surface charge ��2 /e� �0.02;0.8��,
with fixed Bjerrum length ��B=�� and salt concentration
�	s�

3=0.06�; and varying Bjerrum length ��B /�� �0.25;5��,
with fixed surface charge ��=0.2e /�2� and no electrolyte. In
addition, we finally considered the effect of doubling the
Bjerrum length ��B=2�� in the presence of salt, with 	s�

3

=0.06 and �=0.2e /�2.

III. STATIC

We now turn to the results of the simulations. We first
focus on the equilibrium properties of the charged interfaces.
As a rule, a solid surface immersed in an electrolyte solution
develops spontaneously an electric charge, under the action
of several mechanisms: dissociation of ionizable groups, re-
lease of ionic impurities, specific adsorption of charged spe-
cies present in the solution, etc. In response to this surface
charge, the microions of the liquid rearrange themselves to
form, in the vicinity of the solid surface, a diffuse layer
named electric double layer �EDL�, carrying a net charge
opposite to that of the surface. The so-called Debye length,
denoted here 
−1, provides a measure of the EDL extension
and determines the electric interaction range between macro-
molecules. This characteristic length plays a crucial role in
the static phase behavior of these systems.16

The standard description of the microions cloud in the
vicinity of a charged surface, in the framework of the Gouy-
Chapman theory, involves a Poisson description of the elec-
trostatics ��V+	e /�d=0, with V the electric potential and
	e=e�	+−	−� the charge density, defined in terms of the mi-
croions concentrations�, coupled with a Boltzmann equilib-
rium description for the microions distribution
�	±=	s

bulk exp���eV�, with �=1/kBT and 	s
bulk the bulk mi-

croions concentration�, leading to the standard Poisson-
Boltzmann �PB� equation for the electric potential V in the
EDL,17

�e�V = 
2 sinh��eV� , �3�

where 
−1= �8��B	s
bulk�−1/2 is the Debye screening length. In

situations of extreme confinement where the notion of bulk
becomes irrelevant, 	s

bulk should be viewed as a normaliza-
tion density, or equivalently as the salt density in a salt res-
ervoir against which the solution is dialyzed.

In Fig. 2, we show typical density profiles of the micro-
ions close to one of the confining surfaces. Important struc-
turation effects can be observed close to the charged surface.
This is a priori incompatible with the PB prediction:17 within
PB, an oscillating charge density profile implies that the elec-
tric field vanishes at every extrema, which corresponds to a
change of sign of the integrated charge. This in turns implies
that the system exhibits overcharging. Such an effect can be
rigorously ruled out within mean-field descriptions, such as
the PB one.18 However, the oscillations in the microion pro-
files exhibited here are not associated with any charge inver-
sion, but result from the structuration of the solvent itself.
Such an effect can be captured by a modified PB description.
Indeed, due to the presence of the solvent particles, the mi-
croions not only organize themselves due to electrostatic in-
teractions �which corresponds to the usual PB description�
but also due to the effective external field associated with the
structuration in the solvent, Vext�z�=−kBT log�	 f�z� /	 f�, with
	 f�z� the solvent density profile and 	 f its bulk value. The
microions density profiles 	±�z� correspondingly obey a
modified Boltzmann equilibrium,

	±�z� � e���eV�z�−Vext�z�� � 	 f�z�e��eV�z�. �4�

Such a relationship emerges naturally from a simple density
functional theory, that allows to rationalize the argument,
accounting for the the discrete nature of both solvent and
charged atoms exactly, while the standard mean-field PB free

FIG. 2. Microionic density profiles, averaged over the xy directions �	s�
3

=0.06, �=0.2e /�2, �B=�, wetting case�. Symbols: molecular dynamics re-
sults for the counterions ��� and coions ���; solid and dashed lines corre-
spond to the predictions of the modified PB description �see text�. The inset
shows the electrostatic potential. Symbols ���: molecular dynamics results
calculated from Poisson’s equation and the measured microions profiles and
dashed line: bare PB prediction �see text�. The position of the wall, defined
as that of the centers of the last layer of wall atoms, is located at zwall=
−10.9�.
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energy is assumed for the electrostatic part. The details can
be found in Appendix C.

Inserting Eq. �4� into Poisson equation, we find that the
electrostatic potential follows a modified PB equation,

�e�V = 
2��z�sinh��eV� , �5�

where ��z�=	 f�z� /	 f is the normalized solvent density pro-
file. This equation allows, for instance, to compute the elec-
tric potential once the solvent density is known, but should
be supplemented with a closure relation to predict both 	 f�z�
and V�z�. A more modest goal is to test the relevance of this
approach by measuring the fluid density profiles, 	 f�z�, and
subsequently solving Poisson equation with the microionic
densities given by Eq. �4�. As shown in Fig. 2, this procedure
leads to results that are in remarkable agreement with simu-
lations profiles obtained from molecular dynamics. More-
over, a further useful approximation can be proposed: the
solution of the modified PB equation for the electrostatic
potential is as a matter of fact very close to the “bare” PB
solution VPB�z� �corresponding to ��z�=1�, whose analytic
expression can be found in the literature.16,17,19 This leads to
	±�z��	 f�z�exp���eVPB�z��. The validity of this
approximation—surprising in view of the strong layering ef-
fect at work—is emphasized in Fig. 2 �inset�, where the cor-
responding bare PB potential19 is plotted against the “exact”
electrostatic potential. The latter is obtained from the simu-
lations using Poisson’s equation by integrating twice the
charge density profile 	e=e�	+−	−�.

The case of no-added salt gives another interesting lim-
iting case, which we now consider. In the no-salt case, only
counterions are present in the solution, with a total charge
compensating exactly the charge of both surfaces. The PB
equation becomes

�e�V = − 4��Be	0e−�eV, �6�

where 	0 represents a reference concentration for counteri-
ons, for which V=0. This equation can be solved analytically
for the electric potential VPB and the counterions concentra-
tion 	i in the simple case of an electrolyte confined between
two parallel plates, as considered in our simulations.17 As in
the presence of salt, we can extend the PB prediction to take
into account the effective external field due to the structura-
tion of the solvent, using the very same approach. The results
for a typical no-salt configuration are presented on Fig. 3. We
can check that the bare PB prediction perfectly accounts for
the electric potential, for which no structuration can be seen.
The counterions density profile is accordingly well described
by 	i�z�=	 f�z�exp�−�eVPB�z��.

Globally we have tested the validity of this modified PB
approach in our simulations with various conditions, involv-
ing a broad range of the different parameters, salt concentra-
tion 	s, surface charge −�, and Bjerrum length �B. The modi-
fied PB approach has been found to describe with accuracy
every situation considered, over the whole parameter range
for both surface charge and salt concentration �not shown�.
However, we found that the modified PB prediction breaks
down at large Bjerrum length �we considered two cases with
�B=2.24� and �B=5.04�, not shown�. This failure is, how-
ever, expected: for large Bjerrum length, microionic correla-

tions become important and invalidate the modified Poisson-
Boltzmann ansatz. A simple analysis, discussed in details at
the end of Appendix C, shows that the criterion for this fail-
ure can be written as �� /e��B

2 �1.

IV. DYNAMICS

A. Wetting versus nonwetting: The Poiseuille test
bench

We now come to the dynamical aspects. As a first step,
we briefly recall how the hydrodynamics at the interface, as
characterized by the hydrodynamic boundary condition
�HBC�, is affected by a modification of the wetting proper-
ties of the surfaces �see Refs. 2, 20, and 21 for a more de-
tailed discussion�; we then turn to the specific role of electric
parameters.

We chose to probe the HBC in a Poiseuille configuration
by applying an external force per particle f0, in the x direc-
tion, to all microscopic particles. The Bjerrum length and
surface charge are set to their default values ��B=� and
�=0.2e /�2�, and the salt concentration is varied between
	s�

3=5
10−3 and 	s�
3=0.16. We start by discussing the

measured velocity profiles. The situation corresponding to a
wetting substrate—with cFS=1 in Eq. �1�—is shown in the
main plot of Fig. 4 �here for f0=0.02 in LJ units�.

The velocity profile shows a parabolic shape as predicted
by continuum hydrodynamics, even at the EDL level. More-
over, the viscosity, deduced from the curvature of the para-
bolic shape, retains its bulk value. Nevertheless, our mea-
surements have shown that the no-slip BC applies inside the
liquid, at a distance of about one layer of solvent particle.
This observation is consistent with previous theoretical and
experimental predictions.2,21 This position of the no-slip BC
here defines the “plane of shear” position zs usually intro-
duced in the electrokinetic literature.19 We note that zs does
not vary significantly with the salt concentration in the pa-
rameter range investigated.

On the other hand, the nonwetting case displays a very

FIG. 3. Counterions density profile, averaged over the xy directions, without
added electrolyte ��=0.2e /�2, �B=�, wetting case�. �—�: MD results and
�−−�: prediction of the modified PB description using the bare PB potential
�see text�. Inset: electrostatic potential. Symbols ���: MD results calculated
from Poisson’s equation and counterions profiles and dashed line: bare PB
prediction �see text�. The walls are located at zwall

inf =−10.9� and zwall
sup

=10.0�.
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different behavior, as shown in the inset of Fig. 4. A nonwet-
ting substrate is set up by choosing a smaller value of cFS,
here cFS=0.5. First, concerning the velocity profile, a large
amount of slip is found at the wall surface, in accordance
with observations on nonwetting surfaces.2 More quantita-
tively, slippage is characterized by a slip length b, defined as
the distance at which the linear extrapolation of the velocity
profile vanishes. In other words, this amounts to replace the
no-slip BC by a partial slip BC, defined as b �zv=v at the
wall position.21 As shown in the inset of Fig. 4, the velocity
profile is well fitted by the continuum hydrodynamics �para-
bolic� prediction, together with a partial slip BC, character-
ized by a nonvanishing slip length �here b	11��. The mea-
sured slip length b barely depends on the salt concentration,
a point which we now rationalize.

B. Rationalizing friction and slipping

Slippage can be interpreted in terms of friction proper-
ties at the liquid/solid interface. Indeed, the usual partial slip
BC can be interpreted as the continuity of tangential stress at
the liquid/solid interface: the viscous shear stress exerted by
the liquid on the wall � �zv �where � is the liquid viscosity�
is equal to the friction stress suffered by the liquid from the
wall, which can be written in the form �xz=�vs, where � is
the interfacial friction coefficient, linking the friction stress
�xz and the relative liquid/solid slip velocity vs. This equality
corresponds to the partial slip BC vs=b �zv, with the slip
length b=� /�. This expression formalizes the simple idea
that liquids slip all the more as the interfacial friction is low.
It also means that the slip length characteristics can be di-
rectly deduced from a friction analysis at the liquid/solid
interface.

The dependence of the slip length on the electric param-

eters can then be rationalized on the basis of a simple argu-
ment based on the influence of the electric interaction on the
friction coefficient. We start from a Green-Kubo expression
for the interfacial friction coefficient,21

� =
�

b
=

1

AkBT
�

0

�


Fx�t�Fx�0��dt , �7�

where A=LxLy is the area of the solid surface under consid-
eration and Fx is the Ox component of the instantaneous
force exerted by the wall on the liquid at equilibrium. Apart
from a few simple situations, it is difficult to evaluate this
expression.20 In this study we therefore restrict ourselves to
extracting scaling laws for the slip length b. We start with the
evaluation of an order of magnitude for the temporal auto-
correlation integral,

�
0

�


Fx�t�Fx�0��dt = Fx
2�d, �8�

where Fx=�
Fx
2�t�� is the rms force and �d the relaxation

time scale of the force correlation function. The latter can be
estimated as the diffusion time of the liquid molecules over
the characteristic wavelength of the wall corrugation �r,

20

�d =
�r

2

D
, �9�

where D is the self-diffusion coefficient of liquid molecules.
The validity of this estimate has been exhaustively tested in
Ref. 20.

We now separate Lennard-Jones and electric contribu-
tions to the total force: Fx=FLJ+FES. Using Eq. �7�, we then
write 1 /b� �FLJ+FES�2�FLJ

2 +FLJFES+FES
2 . In every per-

formed simulations, we noticed that the slip properties were
only slightly affected by the presence of charge; we can
therefore assume that the electric contribution to friction is
small compared to the Lennard-Jones term; it is then possible
to neglect the pure electric contribution �the FES

2 term�,
which leads to

1

b
=

1

bLJ
+

1

b�
, �10�

with 1/b��FLJFES. We can then estimate an order of mag-
nitude for the first order electric contribution to friction:
1 /b��FES
QE, where Q=�A is the total charge of the
EDL �compensating the surface charge� and E=� /�d
��B

the electric field at the interface. We finally find that the b�
contribution to slippage varies as

b� 
 �−2�B
−1, �11�

which we rewrite b� /�=����2 /e�−2��B /��−1, �
1 a nu-
merical prefactor. The electric contribution to the slip length
therefore does not depend on the Debye length of the system.
Altogether, we obtain the following prediction for the slip
length b on the surface charge:

FIG. 4. Measured Poiseuille velocity profile �solid line� in the wetting case
�cFS=1, �B=�, �=0.2e /�2, 	s�

3=0.06�. Dashed line: hydrodynamic predic-
tion using a no-slip BC at the ’plane of shear’ located at zs, �indicated by the
arrow�. To emphasize the existence of an immobile Stern layer, we also
indicate the charge density profile 	e�z�=e�	+�z�−	−�z�� �dotted line� with
arbitrary units. The position of the wall �defined as that of the centers of the
last layer of wall atoms� is at zwall=−10.9�. Inset: results for the nonwetting
case �cFS=0.5�. Solid line: velocity profile measured in the simulation
�shown on the same scale as in the main graph�, dashed line: hydrodynamic
prediction with a partial slip BC with a slip length b	11�, dashed-dot line:
hydrodynamic prediction with a no-slip BC, and dotted line: charge density
profile �arbitrary units�.

204716-5 Liquid friction on charged surfaces J. Chem. Phys. 125, 204716 �2006�

Downloaded 06 Dec 2006 to 129.175.97.14. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



b =
bLJ

1 + �1/�����2/e�2��B/��bLJ
. �12�

Note that the dependence of the Lennard-Jones contribution
to the slip length bLJ on the microscopic parameters can also
be predicted �see Ref. 20�.

C. Comparison of simulation data against theory for
slip length and shear plane position

We have tested the above description against MD results.
To this end, we extracted the first order electric contribution
b� from the simulation results using Eq. �10�; to this purpose,
the LJ contribution was measured in complementary simula-
tions �with the same LJ parameters� and turning electric in-
teractions off. The inset of Fig. 5 presents the numerical
results for b� as a function of �2�B using various � and �B,
which are perfectly fitted with the prediction of our simple
model: b� /�=1.10���2 /e�−2��B /��−1. Only with the highest
surface charges does a slight discrepancy appear.45 We were
thus able to account precisely for the complete slip length b
with an analytical expression �Eq. �12��, simply by adding
the LJ and electric contributions, as can be seen on the main
graph of Fig. 5. Finally we have checked that the slip length
is independent on the salt concentration at fixed � and �B

�not shown�, again in accordance with our simple model.
In the wetting case, no slip occurs at the surfaces; yet we

can consider the position of the no-slip plane zs, defining
equivalently the width of the immobile Stern layer �see
Sec. V�. Figure 6 shows the evolution of zs with � �main
graph� and �B �inset�. Using a Green-Kubo expression simi-
lar to the one used for b �Ref. 21� and following the same
derivation as above, one expects zs
�2�B. In spite of the
rather important measurement noise, this prediction is rather
well verified as can be seen from Fig. 6 where zs��� is fitted

by zs /�=0.94+2.27���2 /e�2 and zs��B� by zs /�=1.01
+0.145�B /�. Finally, we recall that no effect of salt concen-
tration on zs has been observed.

V. ELECTROKINETICS

In Sec. IV, we have shown that the traditional no-slip BC
for the liquid velocity at the wall was violated on nonwetting
surfaces, with a small but finite slip length �b
10�, corre-
sponding to b
5 nm�, even for highly charged surfaces �sig-
nificant slip until �
−0.3e /�2, corresponding to �

0.2 C/m2 and V0
80 mV�. We now investigate the con-
sequences of these modifications of hydrodynamics at the
interfaces for the dynamics of charged systems, and particu-
larly for electrokinetic phenomena, commonly used to ma-
nipulate liquids in microsystems �e.g, electrophoresis and
electro-osmosis�. After a brief recall of electrokinetic effects,
we will perform streaming current and electro-osmosis simu-
lations in order to explore the influence of such hydrody-
namic slippage. Finally, we will focus on the specific role of
electric parameters.

A. Zeta potential

In addition to its interest for the understanding of static
properties of charged systems, the EDL is, on the dynamical
level, at the origin of numerous electrokinetic phenomena:
electrophoresis, electro-osmosis, streaming current or poten-
tial, etc. Because these various effects take their origin at the
surface of the sample via the EDL, they provide smart and
particularly efficient ways to drive or manipulate flows in
microfluidic devices,1,22 where surface effects become pre-
dominant.

The extension of the EDL is typically on the order of a
few nanometers and electrokinetic phenomena therefore
probe the nanorheology of the solvent+ions system at the
charged surface. This can thus raise some doubts regarding
the validity of continuum approaches to describe the dynam-
ics at such scales. Those doubts seem particularly relevant
concerning the traditional description of the EDL dynamics,

FIG. 5. Slip length b as a function of �2�B in the nonwetting case. Symbols:
MD results with fixed Bjerrum length �B=� and varying surface charge ���
�	s�

3=0.06�, or fixed surface charge �=0.2e /�2 and varying Bjerrum
length, without added salt ���. Dashed line: analytical fit using Eq. �12� �see
text�. Inset: first order electric contribution b� as a function of �2�B. Sym-
bols: MD results �symbols are identical to those of the main graph�. Uncer-
tainties on results with varying Bjerrum length, not represented for the sake
of clarity, are comparable to the size of the symbols. The dashed line has a
slope of −1. The agreement is excellent except for very high surface charge
�see text�.

FIG. 6. Width of the immobile Stern layer zs as a function of surface charge
� �wetting case, �B=�, 	s�

3=0.06�. Symbols: MD results and dashed line:
analytical fit with a simple quadratic expression �see text�. Inset: zs as a
function of Bjerrum length �B �wetting case, no salt, �=0.2e /�2�. Symbols:
MD results and dashed line: simple analytical fit.
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which relies both on the mean-field Poisson-Boltzmann
theory of the microion clouds, but also on continuum hydro-
dynamics for the flow fields.19 These two aspects are embod-
ied in the so-called zeta potential, denoted as �, which is
traditionally defined as the electric potential V�zs� computed
at the surface of shear zs, where the fluid velocity vanishes.
This quantity plays a key role in electrokinetic
phenomena,14,19,23,24 since it quantifies the coupling between
flow characteristics in the solvent �via the mean velocity or
applied pressure drop� and electric quantities �electric field,
induced streaming current or potential�. An important point
is that the standard electrokinetic description is based on the
assumption of a no-slip boundary condition of the liquid at
the solid interface.

In Sec. III, we showed that the traditional PB description
is relevant for the electric potential, even at the EDL scale.
Yet in Sec. IV, we observed that although a continuum hy-
drodynamic approach stands down to EDL sizes, the no-slip
BC could be violated in nonwetting situations, in accordance
with previous numerical2 and experimental5,8 works. We ex-
pect this modification of the interfacial hydrodynamics to
affect electrokinetic properties of charged interfaces, as it
was demonstrated in a previous work,13 focused on stream-
ing current simulations, and where only a limited set of elec-
tric parameters has been investigated. We will now extend
this work to other electrokinetic phenomena, exploring ex-
tensively the influence of various electric parameters.

B. Streaming current

First of all, we note that the Poiseuille configurations
implemented in the preceding section to probe the HBC cor-
responds directly to streaming current experiments: the ex-
ternal force f0 accounts for the pressure gradient, and we can
measure the electric current Ie associated with the convective
motion of the microions.

The standard EDL description of this electrokinetic ef-
fect predicts a linear relationship between the current and the
force in the form19

Ie = −
�d�

�
Af0, �13�

where � is the shear viscosity of the fluid and A the fluid
slab cross area. Linear response �in the applied force� was
carefully checked in our simulations. In the following we use
this expression as the definition of the � potential, in line
with experimental procedures.

In the wetting case, we have seen that the liquid velocity
vanishes inside the liquid at a distance zs of about one layer
of solvent particles �see Sec. IV�. As shown in Fig. 4, where
the charge density profile, 	e�z�, is plotted against distance,
the first layer of microions, located within zs, does not con-
tribute to the convective transport, thereby reducing the glo-
bal streaming current. This first layer coincides with the so-
called Stern layer of immobile microions close to the
charged surface.19

In the nonwetting case, the liquid was shown to slip
significantly at the wall, with a complete disappearance of
the immobile Stern layer �see Sec. IV�. Concerning micro-

ions transport, an important point here is that the first layer
of microions now contributes by a large amount to the global
streaming current at variance with the wetting case. In other
words, the plane of shear position zs is now virtually located
beyond the wall, and the Stern layer has completely disap-
peared. The remobilization of the Stern layer adds on to the
slippage effect and contributes significantly to the increase of
the electric current measured for hydrophobic surfaces.

We summarize our results in Fig. 7 and plot the � poten-
tial �deduced from the measure of the charge current and Eq.
�13�� as a function of the Debye screening factor in the wet-
ting and nonwetting cases. In this figure the � potential is
normalized by the bare surface potential V0, obtained from
the analytic PB expression,19 as shown, e.g, in the inset of
Fig. 2.

The overall conclusion from Fig. 7 is that nonwettability
strongly amplifies the electrokinetic effects: the ratio be-
tween the � potential and the surface potential is much larger
in the hydrophobic case as compared to the hydrophilic case.
More precisely, in the wetting case the � potential is fixed by
the electric properties of the surface, and coincides with the
electric potential at the “plane of shear,” �	V�zs�, as is usu-
ally assumed.19 Indeed, the simulation points for � are com-
pared to the PB estimate for the electric potential, V�zs�,
showing an overall very good correspondence. Conversely,
the � potential in the nonwetting case is dominated by the
slip effect and the immobile Stern layer is completely absent.
The effect of such a modification of the hydrodynamic sur-
face properties can be accounted for by considering the par-
tial slip BC in the electrokinetic current Ie=�dS	e�z�v�z�,
with 	e�z� the charge density and v�z� the velocity profile,
characterized by a slip length b. Within linearized PB de-
scription �valid for eV0�kBT�, the result for the current Ie

�Eq. �13�� may then be written Ie= ��dV0 /���1+
b�f0.1,24 For
the � potential in the nonwetting case, this amounts to

FIG. 7. Measured � potential as a function of the screening factor 
�B in
streaming current ����: wetting case and ���: nonwetting case� and electro-
osmosis ����: wetting case and ���: nonwetting case� simulations. The �
potential is normalized by the bare surface potential V0 obtained from the
PB expression at a given 
 and surface charge �see the discussion on the
inset of Fig. 2�. For the wetting case �bottom�, the dashed-dotted line is the
PB electrostatic potential V�zs�, where the plane of shear position zs does not
vary significantly with salt. For the nonwetting case �top�, the dashed line
corresponds to the slip prediction �Eq. �15�� with b=11�.
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� = V0�1 + 
b� , �14�

with V0 the bare potential of the surface. A detailed deriva-
tion of this effect is given in Appendix A.

For large potentials �eV0�kBT�, a nonlinear PB counter-
part of this expression can be obtained �see Appendix A 3�,

� = V0�1 + 
effb� , �15�

where the effective Debye length 
eff
−1 is defined by 
eff=

−�nV�0� /V0 and goes to 
−1 in the linear limit. An equivalent
expression has been recently discussed in a molecular hydro-
dynamics study of electro-osmosis in clays.15 This expres-
sion is compared to simulation results in Fig. 7, showing
again a very good agreement.

It is possible to retrieve the expression of the amplifica-
tion ratio using a simple argument: the streaming current is
given by Ie
Qv̄, Q being the charge of the EDL and v̄ the
average velocity of the EDL, with v̄=
−1�̇ in the absence of
slip, whereas v̄= �
−1+b��̇ with a slip length b. The amplifi-
cation ratio is therefore given by v̄slip / v̄no-slip=1+
b.

C. Electro-osmosis

The streaming current simulations show that electroki-
netic measurements do not probe electrostatic properties of
the system only: when slippage occurs at the walls, the �
potential is much larger than the bare surface potential V0.
This also means that the electrokinetic phenomena used to
move liquids in microfluidic systems could be strongly am-
plified by hydrodynamic slippage. In order to illustrate this
interesting outlook, we performed electro-osmosis simula-
tions, using the same numerical system. A uniform electric
field Ex applied in the channel induces a volume force inside
the EDL, generating in fine a plug flow of the liquid. The
standard description of this phenomenon predicts again a lin-
ear relationship between the electro-osmotic velocity and the
applied field,

veo = − ��d�/��Ex. �16�

In the simulation, we imposed an electric force fx=qeEx to
every ion �qe being the ion charge�, and we measured the
resulting velocity profile in the channel. We then used Eq.
�16� to compute the corresponding � potential �the results
presented were obtained for Ex=1.0 in Lennard-Jones units�.
As for the streaming current, linear response in the applied
electric field was checked.

Typical velocity profiles are shown in Fig. 8. For both
wetting and nonwetting situations, we observe a plug flow,
characteristic of electro-osmosis. Moreover, we note that the
electro-osmotic velocity is considerably amplified—by al-
most two orders of magnitude—in the nonwetting case, all
electric parameters being equal. The � potentials, computed
from the measured electro-osmotic velocity using Eq. �16�,
are in perfect agreement with those obtained in streaming
current simulations.

It is possible to recover the slip prediction for � in the
electro-osmosis case by stating that just outside the EDL, the
viscous stress �� compensates the electric forcing �e

�integrated over the Debye layer�. Writing ��=��zv=�veo/
�
−1+b� and �e=QEx=−��d
V0�Ex, Q=−� being the net
surface charge of the EDL, one immediately finds

veo = −
�dV0�1 + 
b�

�
Ex = −

�d�

�
Ex, �17�

with �=V0�1+
b�. The amplification of the zeta potential
thus originates in the reduction of the velocity gradient in the
Debye layer by a factor 
−1 / �
−1+b�.

D. Influence of electric parameters

We finally investigate the influence of electric param-
eters on � potential. Figure 9 presents a comparison between
the measured � potential and the slip prediction �15� for vari-
ous electric parameters �with added salt�. The excellent cor-
respondence between the two quantities confirms the robust-

FIG. 8. Solvent velocity profile v�z�, averaged over the xy directions, in a
typical electro-osmosis simulation �	s�

3=0.06�. An electric field Ex is ap-
plied along the x direction, leading to a plug velocity profile in the cell. The
dashed line corresponds to the wetting case �cFS=1�, whereas the solid line
corresponds to the nonwetting case �cFS=0.5�. The Debye screening factor is

�B=1.3.

FIG. 9. Measured � potential vs slip prediction �th for various situations:
previous streaming current ��� and electro-osmosis ��� simulations with
fixed �B=� and �=0.2e /�2; new streaming current simulations with fixed
�B=� and varying surface charge ��2 /e� �0.1;0.8� ���; larger Bjerrum
length �B=2� ���; nonwetting solvent �cFS=0.5�, various ions wetting
properties, and concentration �cIS� �0.6;1.0� and 	s�

3� �0.004;0.14�� ���.
� potentials are normalized by the bare surface potential V0 �see the discus-
sion on the inset of Fig. 2�. The dashed line represents �=�th as given by Eq.
�15�.
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ness of the suggested picture, namely, the � potential
originates in the coupling between electrostatic properties of
the ion cloud and the hydrodynamic behavior of the solvent
in the vicinity of charged surfaces.

In the no-salt case, it is not possible to relate the stream-
ing current to the zeta potential only, because the electric
potential is not fully screened over the fluid slab. However,
the simulations results are very well described by a simple
model which takes into account the electric properties at a
PB level and the hydrodynamic ones at a continuum level in
the presence of slip �results not shown�.

We now focus on the role of surface charge �. Figure 10
shows the evolution of the absolute � potential with surface
charge.

An important point is that it is possible to fully account
for the simulation results with analytical expressions: in the
wetting case, we simply used the value of the electric poten-
tial at the plane of shear V�zs�, together with the analytical fit
for zs���, derived in Sec. IV; in the nonwetting case, we
combined the formula �15�, relating � to b and electric pa-
rameters, with the analytical expression for b���, �12�, de-
rived in Sec. IV. Moreover, we used the PB expression for
the evolution of electric parameters involved in � expression
�V�z�, V0, 
eff� as a function of surface charge.

The nonmonotonous behavior of � with � is an interest-
ing feature: while the bare surface potential V0 increases con-
tinuously with �, the amplification factor—related to the
HBC—decreases, following an increase of electric friction
�1/b��. Those two conflicting effects result in a nonmonoto-
nous evolution and the apparition of a maximum for ����.
This represents a particularly important signature of the inti-
mate coupling between hydrodynamics and electrostatics in
the definition of the � potential. We now discuss some con-
sequences of these results in the following section.

VI. DISCUSSION

A. � potential on hydrophobic surfaces: A slippage
effect?

As we have shown above, the interplay between surface
properties and electrokinetic phenomena may lead to � po-
tential much higher than the real surface potential on hydro-
phobic surfaces due, in particular, to the modification of sur-
face hydrodynamic properties and the onset of liquid/solid
slippage. In realistic experimental situations, the dynamical
amplification ratio 1+
b can take important values, even in
the case of a moderate slip length: indeed, slip lengths are
expected to range in the tens of nanometers range, as pre-
dicted theoretically2 and evidenced experimentally,5,8 while
the Debye length 
−1 is typically of a few nanometers in
quite standard aqueous electrolyte solutions �from 3 Å with a
1M salt to 30 nm at 10−4M�. A factor of 10 between � and V0

is therefore quite conceivable.
This analysis therefore provides an interesting scenario

to interpret the observation of important � potentials on dif-
ferent hydrophobic surfaces.25–29 Despite the expected
weaker surface charge, the measured � potentials are typi-
cally of the same order of magnitude as those observed on
hydrophilic surfaces.30 This could in fact arise from small
bare surface potentials and slip-induced amplification.

We note, however, that another interpretation is usually
suggested: surface charge could be increased by preferential
adsorption of anions �OH− or Cl−� at the wall. Recent atomic
force microscopy31 �AFM� and numerical32 studies show that
this phenomenon indeed contributes to a certain extent to
increase surface charge. Yet charge generation on hydropho-
bic surfaces is still not plainly understood, and the determi-
nation of the relative contributions of adsorption and dy-
namical amplification remains a challenge. To overcome
those obstacles, comparative static �using SFA or AFM� and
dynamic �with electrokinetics� measurements on the same
surfaces would enable to test critically the relevance of the
mechanisms suggested by this work. To the best of our
knowledge, no such experiment has already been carried on.

Finally we mention a recent experimental work by
Churaev et al.,24 who performed � potential measurements
for aqueous KCl solutions in silanized quartz capillaries.
When a nonionic surfactant is added to the solution, the mea-
sured � potential decreases; this effect is attributed to the
disappearance of hydrodynamic slippage at the walls, result-
ing from the surfactant adsorption. Using formula �14�, the
authors estimate the effective slip length �averaged over the
surface of the channel� to lie between 5 and 8 nm. This first
experiment using electrokinetics to characterize the dynami-
cal properties of the liquid at the interfaces is encouraging,
but it seems that the results should be interpreted with care.
Indeed, to apply Eq. �14�, the authors assume that the adsorp-
tion of the surfactant only affects wetting properties of the
surface �and therefore slip properties�, electric properties be-
ing unaffected, which is difficult to assess.

B. Zeta potential versus surface charge

In light of the previous results, it may be possible to
generate very large electrokinetic effects by using polarized

FIG. 10. Zeta potential as a function of surface charge � ��B=�, 	s�
3

=0.06�. Symbols: MD results for the wetting ��� and the nonwetting ���
case. Dotted line: bare surface potential V0, obtained from the PB prediction
at a given 
=1.3� �see the discussion in the inset of Fig. 2�. Dashed line:
slip prediction using the analytical fit of b variation with � in Eq. �12� �see
Fig. 5 and associated text�. Dashed-dotted line: no-slip prediction using the
analytical fit of zs variation with � �see Fig. 6 and associated text�. The inset
is a zoom in the small � / small � region.
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hydrophobic surfaces.33 However, we saw in Secs. IV and V
that eventually too high surface charges will enhance friction
and therefore reduce the efficiency of hydrodynamic slip-
page. Consequently, there should be an optimal choice for
the imposed surface charge, where the bare surface potential
reaches its maximum value compatible with a small contri-
bution of electric terms to the friction, therefore leaving the
slip length almost unaffected �see Fig. 10�.

To determine the largest achievable zeta potential ac-
cording to our model, we now estimate the crossover charge
at which the electric friction equals the LJ friction, which
gives �c
0.3e /�2. For �=0.5 nm, this value corresponds
roughly to 0.2 C/m2. Furthermore, using �B=
=�, we find
for the corresponding bare surface potential V0
80 mV
�and therefore �
10V0
800 mV�.

This estimation for the optimal � potential is ten times
larger than typical values which can be obtained on hydro-
philic surfaces.30 This should motivate experiments to test
this prediction. We believe that the phenomena discussed
provide interesting hints concerning the possibility to gener-
ate efficient electro-osmotic flows, with direct applications in
microfluidics.

C. Curvature effects

Our prediction for the dynamical amplification ratio 1
+
b can take arbitrarily large values as the slip length b goes
to infinity �corresponding to a vanishing shear boundary con-
dition at the interface�. This prediction corresponds, how-
ever, to a planar surface and we show in this paragraph that
curvature effects actually lead to a saturation of the amplifi-
cation ratio for the zeta potential.

To demonstrate this effect, we shall generalize the cal-
culation of electrophoretic mobility of a sphere initiated by
Smoluchowski34 in 1921 to take into account the partial slip
BC at the sphere surface.

Let us consider a dielectric sphere, with radius a, im-
mersed in an electrolyte solution and submitted to an exter-
nal electric field E�. We assume that the width of the EDL is
small compared to the size of the sphere �
a�1�, and that
the sphere permittivity is small compared to the one of the
liquid.46 Finally we consider that the external electric field
does not modify the ions distribution inside the EDL.47 We
then solve the equations of the problem separately inside and
outside the EDL. We note S+ the sphere separating the EDL
and the exterior.

Since the sphere permittivity is very low, the normal
component of the electric field vanishes just outside the
EDL. Inside the EDL, the problem is reduced to an electro-
osmosis one: neglecting the 1/r2 terms in the Laplacian of
the velocity field, we recover literally the equations of the
plane case, simply replacing vt with v� and n with r.48 Thus
we can immediately write

�v��S+ = −
�d�

�
�E��S+. �18�

Finally, for an irrotational flow, the potential of velocities
obeys Laplace equation in the liquid outside the EDL, just as
the electric potential. As the BCs at infinity and on S+ are

identical, we can identify both fields at the constant �d� /�.
We directly deduce that ve= ��d� /��E�.

Nevertheless, the partial slip BC has to be modified to
take into account the sphere curvature:35 indeed, this condi-
tion accounts for the equality of friction �v� and viscous �r�

tangential stresses, but in spherical coordinates the expres-
sion of the stress tensor at a radius a includes a curvature
term: �r�=���rv�−v� /a�. We obtain a generalized slip con-
dition at a surface with curvature a,

�v�

�r
= v�� 1

b0
+

1

a
� , �19�

where b0=� /� is the intrinsic slip length on a plane surface;
we define the slip length bc on a curved surface by

1

bc
=

1

b0
+

1

a
. �20�

This equation shows that slippage is limited by the smallest
of b0 and a and curvature leads to a saturation of the effec-
tive slip length as b0→�. Coming back to the calculation of
the zeta potential, the problem is equivalent to that of a pla-
nar surface with slip length bc. We therefore simply deduce
from Eq. �14� the effective � potential,

� = V0�1 + 
bc� . �21�

The zeta potential therefore depends on the ratio a /b0,
with the limiting values: �0=V0�1+
b0� for b0�a, indepen-
dent of the radius of the particle, and �c=V0�1+
a� in the
opposite limit b0�a.

VII. CONCLUSION

The liquid properties close to an interface, embodied in
the so-called hydrodynamic boundary condition, are inti-
mately related to the friction properties of the liquid at the
solid surface. In this paper we investigated extensively the
electric contribution to liquid/solid friction, and how it af-
fects the slip properties of liquids in the presence of charged
walls. Various electric parameters were considered and we
provided a simple but efficient model of electric friction,
validated numerically, thanks to molecular dynamics simula-
tions. This model describes the slip length b dependence
with the surface charge � and the Bjerrum length �B of the
solvent. Moreover, it explains the weak dependence of b
with the salt concentration measured in the simulations.

We then addressed the consequences of such a hydrody-
namic slippage on electrokinetic phenomena, through the
coupling between hydrodynamics and electric charge within
the electric double layer. In this work, we extended a previ-
ous study,13 by considering various electric parameters and
electrokinetic configurations. We confirmed the robustness of
the suggested picture, namely, the widely used “zeta
potential”—characterizing the amplitude of electrokinetic
effects—is not only a signature of electrostatic interfacial
features, but is also intrinsically related to the dynamics of
the solvent at the solid surface, providing new perspectives
to control this quantity. A similar conclusion was reached in
recent work.15 In particular, we showed the existence of
strongly amplified electro-osmotic effects on hydrophobic
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surfaces through the induced slippage, in quantitative agree-
ment with previous streaming current simulations. In the
slipping case, we discussed the nontrivial role of the surface
charge � on the � potential: in addition to its direct influence
on the surface potential V0, it enhances friction and therefore
reduces the efficiency of hydrodynamic slippage. These con-
flicting effects lead to a nonmonotonous variation of � with
�, which represents an important signature of the coupling
mechanisms suggested here. Besides, the simulation results
were shown to be in excellent agreement with predictions
taking into account the slippage of the fluid at the solid sur-
face. The amplification effect is accordingly controlled by
the ratio between the slip length �of the fluid at the solid
surface� and the Debye length.

Furthermore, practical consequences of our work have
been discussed, reconsidering existing experimental data of �
potentials on hydrophobic surfaces, and suggesting the pos-
sibility to generate strongly enhanced electro-osmotic and
electrophoretic effects in microchannels, using, in particular,
polarized hydrophobic surfaces. If confirmed, this feature
would provide various interesting applications for microflu-
idic devices.

Finally, this work suggests the possibility to use the zeta
potential as a new observable for the characterization of in-
terfacial hydrodynamics, through the coupling at small scales
of electrostatics and hydrodynamics. In a following step, we
plan to refine the model, with a more realistic description of
solvent and ions14,15 simple point charge/extended �SPC/E�
model of water, ions with different sizes and wetting proper-
ties, etc.� in order to relate in a more quantitative way elec-
trokinetics measurements and slippage properties.
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APPENDIX A: ZETA POTENTIAL AND SLIP

We detail here how the standard calculation of �
potential19 is modified when a partial slip BC applies at the
walls in both streaming current and electro-osmosis situa-
tions.

1. Streaming current

To calculate the streaming current expression, we con-
sider a channel of arbitrary section �Fig. 11�.

We assume that the Debye length 
−1 is small compared
to the typical size of the channel R and to the local inverse

curvature of the channel r everywhere on the contour C. We
can therefore consider that the channel surface is flat at the
EDL scale.

The elementary contribution to streaming current due to
the displacement of the EDL past a channel slice of width dl
is

dIe = dl�
0

�

	e�n�v�n�dn , �A1�

where ��
−1 and n is the coordinate normal to the surface.
We then substitute 	e using Poisson equation,

dIe = − �ddl�
0

� �2V

�n2 v�n�dn . �A2�

To evaluate this integral, we must introduce the boundary
conditions for the velocity v and the potential V at the wall
�z=0� and far from the wall �z=��. The velocity follows a
partial slip BC: v�0�=b�nv �we assume that b�r, so that
curvature effects can be neglected35�; we note V0=V�0� the
electric potential at the wall. Far from the wall, the potential
is constant ��nV=0�, conveniently fixed at V���=0. We can
now integrate by parts the expression in �A2�,

dIe = − �ddl�� �V

�n
v�

0

�

− �
0

� �V

�n

�v
�n

dn� �A3a�

�A3b�

=− �ddl�−� �V

�n
�

0
b� �v

�n
�

0
+ V0� �v

�n
�

0
� �A3c�

=− �ddlV0� �v
�n
�

0
�1 + b

− �nV�0�
V0

� . �A3d�

We then integrate this expression on the contour of the chan-
nel,

Ie = − �dV0�1 + b
− �nV�0�

V0
��

C

�v
�n

dl . �A4�

The second Green theorem36 enables us to transform this
expression,

Ie = − �dV0�1 + b
− �nV�0�

V0
� � �

S
�vdS . �A5�

The Laplacian of velocity is directly related to forcing
through Stokes equation: �v= �1/���−�p�=Const.. We fi-
nally obtain

Ie = −
�dV0�1 + 
effb�

�
A�− �p� , �A6�

where the effective Debye length 
eff
−1 is defined by 
eff=

−�nV�0� /V0 and goes to 
−1 in the linear limit eV0�kBT �A
is the area of the channel section S�. The � potential, derived
from streaming current measurements, is therefore related to

FIG. 11. Illustration of the channel used for � calculation.
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the bare surface potential by a dynamical amplification factor
arising from slip,

� = V0�1 + 
effb� . �A7�

The effective length 1/
eff is discussed in Appendix A 3.

2. Electro-osmosis

To calculate the electro-osmotic velocity on the same
system, we solve Stokes equation, thanks to the BCs intro-
duced in Appendix A 1,

− �
�2v
�n2 = 	eEt. �A8�

We replace 	e by its expression derived from Poisson equa-
tion,

�
�2v
�n2 = �dEt

�2V

�n2 . �A9�

This equation is integrated, assuming �nV and �nv both van-
ish far from the wall,

�
�v
�n

= �dEt
�V

�n
. �A10�

From this equation, we deduce that v�0�=b�nv�0�
=b��dEt /���nV�0�. A second integration between the wall—
where V=V0 and v�0�=b�nv�0�—and a plane located outside
the EDL—where V=0 and v=Const.=veo—leads to

veo − v�0� = −
�dEt

�
�V0 − 0� , �A11a�

veo = −
�dEt

�
�V0 − b� �V

�n
�

0
� , �A11b�

from which we extract the electro-osmotic velocity,

veo = −
�d�

�
Et, �A12�

with the � potential,

� = V0�1 + 
effb� . �A13�

The fact that we get the same � potential for both phe-
nomena complies with the Onsager reciprocity theorem.

3. The effective Debye length

In Sec. V B, we introduced the length scale 1 /
eff=
−V0 /�nV�0� that allows us to relate the surface potential V0,
the slip length b, and the effective � potential �see, e.g., Eq.
�15��. In the weak overlap regime where the double layer is
not affected by the opposite boundary, one may use the ana-
lytical solution of PB theory in the planar geometry37 to ob-
tain


/
eff = argth���
1 − �2

�
, �A14�

where �=−
�GC+��
�GC�2+1 and �GC denotes the Gouy
length �GC=1/ �2��B����. In the weak coupling regime �low
� where � vanishes�, we find 
eff�
 while conversely, for

high charges, 
 /
eff
−
�GC log�
�GC� which decreases as
log��� /�.

The effective length 1/
eff is reminiscent of a related
quantity �GW=−�nV�0� /�n

2V�0� introduced some time ago as
a scaling length for charged interfaces.38 Upon increasing the
surface charge, �GW crosses over from the Debye length at
low � �as 1/
eff� to the Gouy length. It therefore decreases
as 1/� for large interfacial charges, whereas 1/
eff is slightly
larger ��log��� /��.

Finally, it appears that the increase of 
eff at large � due
to nonlinear effects is overruled by the decrease of the slip-
ping length �b�1/�2, see Sec. IV B�: increasing � decreases
the slip-driven amplification factor 1+
effb �see Fig 10�.

APPENDIX B: WETTING PROPERTIES OF
IONS

To obtain the present results, we considered a very
simple model with identical wetting properties for all liquid
atoms, including ions. This specific choice of LJ parameters
aims at separating electric properties at the interface from the
dynamical slipping behavior of the liquid. To separate these
effects, ions were therefore supposed to interact with the wall
in the same way as the solvent, so as to keep the interfacial
friction unaffected. Moreover, no effect of salt on slip length
has been reported experimentally in the literature, therefore
suggesting that no specific behavior of the ions as compared
to the solvent occurs at the solid surface. In other words,
solvent-surface and ion-surface interactions are expected to
be rather similar and not very asymmetric. However, so as to
explore the influence of our specific choice of LJ interactions
on the solvent dynamics, we performed complementary
simulations, exploring various solvent-surface �cFS� and ion-
surface �cIS� interactions, in the parameter window cFS,cIS

� �0.5;1� �with different values for cFS and cIS� for different
salt concentrations. We calculated both equilibrium and dy-
namical quantities for these parameters.

Let us first focus on the equilibrium properties of the
EDL. For moderately asymmetric situations ��cIS�0.2�, the
modified PB approach �Sec. III� remains valid. Indeed, as
can be seen on Fig. 12, the standard PB potential �without
structuration� describes quite well the electric potential, com-
puted from the simulation by double integration of the
charge density profile 	e�z�=e�	+�z�−	−�z��. Nevertheless,
for strongly asymmetric situations—typically with a “non-
wetting” solvent �cFS=0.5� and “wetting” ions �cIS=1�—we
observe specific ions-wall interactions, and the modified PB
model fails to describe the electric potential at the interface
�see Fig. 12�. To conclude on the static properties, the modi-
fied PB approach, even if it fails to describe specific ionsolid
interactions, provides an accurate description for moderately
asymmetric parameters, which we think are representative of
experimental situations.

As far as dynamical properties are concerned, all the
situations considered confirm the robustness of the picture
put forward in the main text. In Fig. 9, we compare the �
potentials measured from the simulations with the slip pre-
diction �15�. For moderately asymmetric situations, we used
the PB potential as an input, whereas for strongly asymmet-
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ric ones we used the “exact” surface potential, extracted from
the simulations. These quantities correspond to each other
perfectly. Thus these complementary results confirm that the
message emerging from the simpler case of equal LJ inter-
actions is not modified when exploring a larger parameter
space: namely the zeta potential is a signature of the cou-
pling between the electrostatics and the fluid dynamical
properties at the surface.

APPENDIX C: DENSITY FUNCTIONAL THEORY AND
THE MODIFIED POISSON-BOLTZMANN
EQUILIBRIUM

For arbitrary solvent and microionic density profiles
�	 f�r� and 	±�r��, the total free energy of our confined system
may be written as the functional

�F�	 f,	±� = �
i�f ,+,−

�
V

	i�r��log��i
3	i�r�� − 1�dr

+ �Fexcess
LJ �	tot� + �FCoul�	+,	−� , �C1�

where V denotes the total volume and the �i are irrelevant
length scales. The first term on the right hand side accounts
for the ideal gas entropy while the excess part is included in
Fexcess

LJ . This a priori unknown functional depends on the
total density only

	tot = 	 f + 	+ + 	−. �C2�

This is a consequence of treating solvent and microions on
equal footings, not only in their mutual interactions but also
in their interaction with wall atoms. Finally, the last term on
the right hand side of Eq. �C1� denotes the Coulombic con-
tribution to the total free energy. Unlike its Lennard-Jones
counterpart, treated exactly �but formally�, FCoul�	+ ,	−� is
approximated, in a mean-field spirit �see, e.e., Ref. 18�, by

�FCoul�	+,	−� =
1

2
�

V
V
	e�r�G�r,r��	e�r��drdr�, �C3�

where G�r ,r�� denotes Green’s function inverting the La-
placian in the geometry under study and 	e�r�=e�	+�r�

−	−�r�� is the local charge density outside the confining
walls.

Minimizing the total free energy F with respect to sol-
vent density leads to

log�� f
3	 f�r�� +

��Fexcess
LJ

�	tot�r�
= const, �C4�

both in the canonical ensemble where the total number of
solvent molecules is fixed, or in a grand canonical descrip-
tion where the chemical potential is given. Here, explicit use
was made of Eq. �C2�. On the other hand, minimization with
respect to microionic densities yields

log��±
3	±�r�� +

��Fexcess
LJ

�	tot�r�
± �e�

V
	e�r��G�r,r��dr�

= const�. �C5�

Inserting Eq. �C4� and �C5� and realizing that the electric
potential reads

�eV�r� = �
V

	e�r��G�r,r��dr�, �C6�

we obtain

	±�r� � 	 f�r�e��eV�r�. �C7�

This is precisely the form obtained in Eq. �4� on more heu-
ristic grounds. Upon neglecting the LJ excess free energy,
one recovers the standard Poisson-Boltzmann relation.

The fact that the Lennard-Jones free energy functional
only depends on the total density 	tot given by �C2� plays a
pivotal role in the derivation of �C7� and results from the
symmetrical role played by ions and solvent molecules as far
as nonionic interactions are concerned. Whenever the wet-
ting properties of the ions differ from those of the solvent,
Fexcess

LJ no longer depends on 	tot but in general separately on
	 f, 	+, and 	−. A similar remark applies if the non-Coulombic
solvent-solvent interaction differs from solvent-ion and ion-
ion interactions. In those situations, Eq. �C7� does not hold,
see, e.g., Appendix B. While analytical progress might be
possible, we did not attempt a density functional description
in these cases.

A criterion for the validity of the modified Poisson-
Boltzmann description �C7�, Eq. �C1� assumes a mean field
factorization of the Coulombic energy, which discards micro-
ionic correlations. The importance of these correlations is
quantified by the plasma parameter �=z2�B /dii where dii de-
notes the typical distance between counterions of valency z
in the electric double layer.39 This distance is most conve-
niently estimated assuming that the counterions form a
Wigner crystal at the planar interface, which gives dii

2 � =ze.
We consequently obtain the following criterion for the valid-
ity of the mean-field assumption underlying the modified
Poisson-Boltzmann picture:

� = z3/2���B
2/e�1/2 � 1. �C8�

A priori, the threshold value of is expected to be of the order
of 1, and a survey of the literature indicates that it is very
close to unity, hence Eq. �C8� �see Refs. 39 and 40 and

FIG. 12. Electrostatic potential for a nonwetting solvent �cFS=0.5� and ions
with different wetting properties �	s�

3=0.07�. Dashed line: bare PB predic-
tion and symbols: MD results for cIS=0.6 ��� and cIS=1 ���. Inset: density
profiles in the strongly asymmetric case �cFS=0.5 and cIS=1�: solvent �¯�,
counterions �—�, and coions �--�.
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references therein�. At fixed �B=�, �C8� implies for monova-
lent microions ��2 /e�1, which is always fulfilled in the
situations investigated in the present study. We emphasize
here that the short distance repulsion of the Lennard-Jones
potential used ensures that dii��, so that one always has
�=�B /dii�1 for �B=� �and more generally for �B���. On
the other hand, considering �=0.2e /�2, �C8� translates,
again for z=1, into �B�2.2�. We thus expect here deviations
from the modified PB equilibrium for �B�2.2�. This point
is discussed at the end of Sec. III.
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