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The implications of soft “patchy” interactions on the orientational disorder-order transition of
strongly elongated colloidal rods and flat disks is studied within a simple Onsager-van der Waals den-
sity functional theory. The theory provides a generic framework for studying the liquid crystal phase
behaviour of highly anisometric cylindrical colloids which carry a distinct geometrical pattern of re-
pulsive or attractive soft interactions localized on the particle surface. In this paper, we apply our the-
ory to the case of charged rods and disks for which the local electrostatic interactions can be described
by a screened-Coulomb potential. We consider infinitely thin rod like cylinders with a uniform line
charge and infinitely thin discotic cylinders with several distinctly different surface charge patterns.
Irrespective of the backbone shape the isotropic-nematic phase diagrams of charged colloids feature
a generic destabilization of nematic order at low ionic strength, a dramatic narrowing of the bipha-
sic density region, and a reentrant phenomenon upon reducing the electrostatic screening. The low
screening regime is characterized by a complete suppression of nematic order in favor of positionally
ordered liquid crystal phases. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4851217]

I. INTRODUCTION

Many colloidal dispersions, such as natural clays, and
(bio-)macromolecular systems consist of rod- or disk-shaped
mesogens whose intrinsic ability to form liquid crystalline or-
der gives rise to unique rheological and optical properties.1

Despite their abundance in nature, the statistical mechanics
of fluids containing non-anisometric particles in general (and
oblate ones in particular) has received far less attention than
that of their spherical counterparts. The possibility of a first-
order disorder-order transition from an isotropic to a nematic
phase was first established theoretically by Onsager2 in the
late 1940s. Although originally devised for rod-like particles
in solution, his theory also makes qualitative predictions for
plate-like particles based on the central idea that orientation-
dependent harshly repulsive interactions alone are responsible
for stabilizing nematic order. Subsequent numerical studies
have fully established the phase diagram of hard prolate3–8

and oblate hard cylinders.9–11 Owing to the simplicity of the
interaction potential hard-body systems constitute an essen-
tial benchmark for the study of liquid crystals and their phase
stability. Temperature becomes merely an irrelevant scaling
factor in the free energy and the phase behaviour is fully de-
termined by the volume fraction occupied by the particles and
the aspect ratio. At high volume fraction, additional entropy-
driven disorder-order transitions occur where a nematic fluid
transforms into positionally ordered phases.12 Depending on
the cylinder aspect ratio the system may develop a smectic
phase, characterized by a one-dimensional periodic modula-
tion along the nematic director, or a columnar phase consist-
ing of columns with a liquid internal structure self-assembled
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into a two-dimensional crystal lattice. Similar to nematic or-
der, the formation of smectic, columnar, or fully crystalline
structures is based entirely on entropic grounds;13 the loss
of configurational entropy associated with (partial) crystalline
arrangement is more than offset by a simultaneous increase in
translational entropy, that is, the average free space each par-
ticle can explore becomes larger in the ordered phase.

In most practical cases, however, particle interactions are
never truly hard and additional enthalpic contributions play
a role in the free energy of the system. Long-ranged interac-
tions usually originate from the presence of surface charges
leading to electrostatic repulsions between colloids14, 15 or
traces of other colloidal components such as non-adsorbing
polymers, which act as depletion agents and give rise to
effective attractive interactions.16, 17 Other site-specific in-
teractions may originate from hydrogen-bonding18 or end-
functionalized polymers such as DNA grafted onto the col-
loid surface.19 Depending on their nature (repulsive or at-
tractive), interaction range, and topological arrangement on
the particle surface, these site-specific directional interactions
may greatly affect the self-assembly properties of anisomet-
ric particles.20–22 In this context, it is also worth mentioning
recent progress in the fabrication of anisometric colloids with
“patchy” interactions23, 24 where the interplay between patch-
iness and the anisometric backbone shape offers a rich and
intriguing repertoire of novel structures.25

These recent developments suggest the need for a com-
prehensive theory for lyotropic systems which explicitly ac-
counts for these patchy interactions. The aim of the present
paper is to set up such a theory by combining the clas-
sic Onsager theory for slender hard bodies with a mean-
field van der Waals treatment for the additional long-
ranged interactions.26–30 Most molecular-field type theories
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developed to date focus on rod-like mesogens with disper-
sion interactions represented by an orientation-dependent po-
tential with some radially symmetric spatial variation, akin to
a Maier-Saupe form.31–34 Here, we shall lay out the frame-
work for the more general case of slender rod and disk-
shaped cylinders carrying site interactions with arbitrary in-
tegrable form and spatial arrangement. By exploiting the
simple second-virial structure of the Onsager reference free
energy, we show that these soft patchy interactions, on
the mean-field level, give rise to a non-trivial orientation-
dependent van der Waals (or molecular field) term which
strongly affects the disorder-order transition in the fluid state.

We illustrate its practical use by focusing on isotropic-
to-nematic and nematic-to-smectic or columnar phase transi-
tions in systems of charged prolate and discotic colloid in the
salt-dominated regime, a subject of considerable research in-
terest given that natural clays consist of strongly charged col-
loids. The majority of clays are composed of sheet-like miner-
als colloids35, 36 but rod-shaped mineral colloids may display
similar properties.37–39 It is still largely unclear how the in-
terplay between particle shape and electrostatics controls the
structure and dynamics of clay systems. The fundamental un-
derstanding is further complicated by the fact that both the
magnitude and sign of the local charge density may vary sig-
nificantly along the particle surface. For instance, under cer-
tain chemical conditions laponite platelets40 adopt opposite
face and rim-charges and the intrinsic patchiness of the elec-
trostatic interactions may lead to unusual liquid behaviour.41

Incorporating these patchy interactions into a state-of-the-art
statistical physical machinery to extract structural information
remains a daunting task. Headway can be made by using com-
puter simulation in which context a number of coarse-grained
models for non-isometric charged colloids have been studied
over the past decade.42–47

With the present theory, we aim to set a first step to-
wards linking microscopic patchiness of soft interactions to
liquid crystal stability for strongly anisometric colloids. We
apply the generalized Onsager theory to the case of charged
cylinders interacting through an effective Yukawa potential
and demonstrate a generic destabilization and non-monotonic
narrowing of the biphasic gap upon reducing the electro-
static screening. The influence of the geometric pattern of the
charge patches can be incorporated explicitly by means of a
form factor as shown for disklike colloids. The present calcu-
lations, however, merely serve an illustrative purpose and the
main goal is to open up viable routes to studying more com-
plicated surface charge architectures of clay nano sheets48–51

or anisotropic Janus particles.52, 53 Moreover, the theory can
be further refined by using effective parameters, pertaining to
the backbone shape, charge density, screening constant, etc.,
in order to enable more quantitative predictions for highly
charged anisometric colloids.

Although the Onsager treatment is strictly limited to low
to moderate density, it offers possibilities to assess the sta-
bility of high-density liquid crystal phases on the level of a
simple bifurcation analysis.54 We show that it is possible to
extend the generalized-Onsager form into a full density func-
tional form by using a judiciously chosen parametric form
for the one-body density. This holds promise for incorporat-

ing soft interactions into more sophisticated hard-body den-
sity functionals such as those based on fundamental measure
theory,55–57 weighted-density approximations,8 renormalized
Onsager theories,30, 58 or cell-theories.3, 7, 59 The use of reli-
able non-local reference free energy functionals is expected
to give a more quantitative account of patchy rods or disks
with broken translational symmetry induced by a high parti-
cle density, geometric confinement,60 or surfaces.61 The gen-
eralized Onsager theory bears some resemblance to other
interaction-site models such as PRISM/RISM theories62, 63

which have been invoked to study the thermodynamic prop-
erties of isotropic plate fluids but have not yet proven capable
of treating liquid crystal phases at higher particle densities.
The effect of attractive interparticle forces on the bulk phase
behaviour of ionic liquid crystals has been scrutinized in
Ref. 64 using a mean-field theory of the Gay-Berne potential
for ellipsoidal mesogens.

The remainder of this paper is structured as follows. In
Sec. II, we outline the mean-field Onsager theory for soft
patchy cylinders with vanishing thickness. The theory will
then be applied in Sec. III to study the isotropic-nematic phase
diagram of charged rod- and disklike cylinders in the strong
screening regime. Results for the isotropic-nematic phase di-
agrams will be presented in Sec. IV. Possible ways to include
spatially inhomogeneous liquid crystals into the generalized
Onsager treatment are highlighted in Sec. V. Finally, some
concluding remarks are formulated in Sec. VI.

II. MEAN-FIELD ONSAGER THEORY FOR SOFT
PATCHY POTENTIALS

Let us consider a system of N infinitely thin colloidal
cylindrical disks or rods with length L and diameter D at
positions {rN} and orientations {�N} in a 3D volume V at
temperature T. We assume the particle shape to be maximally
anisotropic so that the aspect ratio L/D → ∞ (infinitely elon-
gated rods) and L/D↓0 (infinitely flat disks). In the fluid state,
the particle density ρ = N/V is homogeneous throughout
space. Following Onsager’s classical theory,2 we may write
the Helmholtz free energy as follows:

βF

N
∼ lnVρ + 〈ln 4πf (�)〉 − ρ

2

〈〈∫
V

dr�(r; �1,�2)

〉〉
,

(1)
with β−1 = kBT in terms of Boltzmann’s constant kB

and V the total thermal volume of a cylinder including
contributions from the rotational momenta. The brackets
denote orientation averages 〈 · 〉 = ∫

d�f(�)( · ) and 〈〈·〉〉
= ∫∫

d�1d�2f (�1)f (�2)(·) in terms of the orientational
distribution function (ODF) f(�) which expresses the prob-
ability for a cylinder to adopt a solid angle � on the 2D
unit sphere. The shape of the ODF allows us to distinguish
between isotropic order, where f = 1/4π , and nematic order
where f is some peaked function. Particle interactions are in-
corporated on the second-virial level via a spatial integral over
the Mayer function

�(r; �1,�2) = e−βU (r;�1,�2) − 1, (2)
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which depends on the pair potential U between two cylinders
with centre-of-mass distance r = r1 − r2. In our model, we
shall assume each particle to consist of a cylindrical hard core
(HC) with diameter D and height L supplemented with a soft
interaction potential Us describing (effective) long-ranged in-
teraction with neighboring particles. These soft interactions
can either be repulsive or attractive and may originate from
effective interparticle forces between the colloids under the
influence of depletion agents,17 polymers end-grafted onto the
colloid surface,65 or electrostatics.14 The corresponding po-
tential is unlikely to be a simple radially symmetric function
but rather emerges from a particular spatial arrangement of
interaction sites located on the cylinder surface. In the latter
case, the soft potential is given by a summation over site-site
interactions which are assumed to have a radially symmetric
form u(r),66

Us(r; �1,�2) =
∑
l,m

u(|r + sl(�1) − sm(�2)|), (3)

where sl denotes the distance vector between site l located on
the surface of cylinder 1 and the centre-of-mass r1. The total
pair potential thus reads

U (r; �1,�2) =
{∞ if hard cores overlap
Us(r; �1,�2) otherwise.

(4)

For hard cylinders (Us = 0), the spatial integral over the
Mayer function yields the excluded volume between two
cylinders at fixed orientations. In the limit of maximal cylin-
der anisotropy, one obtains2

vexcl(γ ) = −
∫

V

dr�HC(r; �1,�2) = v0| sin γ |, (5)

with v0 = 2L2D for needles (L/D → ∞) and v0 = πD3/2 for
disks (L/D↓0). γ (�1, �2) denotes the enclosed angle between
the normal vectors of two cylinders. The total free energy of
the fluid can be compactly written as

βF

N
∼ lnVρ + 〈ln 4πf (�)〉 + ρ

2
〈〈vexcl(γ )〉〉

+ ρ

2

〈〈∫
r/∈vexcl

dr(1 − e−βUs (r;�1,�2))

〉〉
. (6)

The spatial integral in the final term runs over the space com-
plementary to the finite excluded volume manifold formed by
the hard cores of two cylinders at fixed orientations. The last
term can be interpreted as an effective excluded volume but a
direct calculation of this quantity poses some serious techni-
cal difficulties.67 A more tractable expression can be obtained
by adopting a mean-field form which can be obtained by tak-
ing the limit βUs 	 1 in the second-virial term. Equation (6)
can then be recast into a form resembling a generalized van
der Waals free energy

βF

N
∼ lnVρ + 〈ln 4πf (�)〉 + ρ

2
〈〈vexcl(γ )〉〉

+ βρ

2
(a0 − 〈〈a1(�1,�2)〉〉) , (7)

where the contributions a0 and a1 can be identified as van der
Waals constants emerging from spatial averages of the soft

potential. The non-trivial one, a1, runs over the excluded vol-
ume manifold of the cylinders

a1(�1,�2) =
∫

r∈vexcl

drUs(r; �1,�2), (8)

whereas a0 represents an integration over the entire spatial
volume V ,

a0 =
∫

V

drUs(r; �1,�2)

=
∑
l,m

∫
V

dru(|r + sl(�1) − sm(�2)|). (9)

Introducing a linear coordinate transformation y → r
+ sl(�1) − sm(�2) (with Jacobian unity) yields a trivial
constant

a0 =
∑
l,m

∫
V

dyu(|y|) = 4π

∫ ∞

0
drr2u(r) = cst, (10)

independent of the mutual cylinder orientation. In arriving at
Eq. (10), we have tacitly assumed that the spatial integral over
the soft part of the pair potential is bounded. For this to be
true, the site potential must be less singular than 1/r3 such
that its 3D Fourier transform (FT) exists,

û(q) = 4π

∫ ∞

0
drr2 sin qr

qr
u(r). (11)

Steep repulsive potentials such as the repulsive Coulomb
(u ∼ r−1) or the attractive van der Waals dispersion
potential68 (u ∼ −r−6) do not qualify and our treatment
is therefore limited to cases such as the screened-Coulomb
(Yukawa) potential14 or various bounded potentials such
as Gaussian,69, 70 square-well,71, 72 or linear ramp potentials
which routinely arise from free-volume type theories for de-
pletion interactions17 or as effective potentials for end-grafted
polymers.65 We remark that the free energy Eq. (7) represents
a hybrid between the second-virial approach, which is valid
at low particle densities, and the mean-field approximation,
accurate at high particle density. For charged cylinders, it will
be shown that the theory represents a simplified alternative to
a more formal variational hard-core PB theory for anisometric
colloids developed by Lue and co-workers.73, 74

We shall now proceed with analyzing the non-trivial van-
der-Waals contribution Eq. (8). In view of the existing FT, it is
expedient to recast the spatial integral in Eq. (7) in reciprocal
space. The analysis is further facilitated by using the linear
transform introduced right after Eq. (9). After some rearrang-
ing the angle-dependent van der Waals term Eq. (8) can be
factorized in Fourier space in the following way:

a1(�1,�2) = 1

(2π )3

∫
dqû(q)W (q; �1)W (−q; �2)

×v̂excl(q; �1,�2), (12)

in terms of the FT of the excluded volume manifold of two
cylinders (calculated in the Appendix),

v̂excl(q; �1,�2) =
∫

r∈vexcl

dreiq·r

= v0| sin γ |F(q; �1,�2), (13)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.175.97.14 On: Wed, 08 Jan 2014 17:51:30



024901-4 H. H. Wensink and E. Trizac J. Chem. Phys. 140, 024901 (2014)

where the expressions for F are given explicitly in the Ap-
pendix. The contribution W pertains to a FT of the spatial
resolution of the interaction sites according to

W (q; �α) =
∑

l

eiq·sl (�α), α = 1, 2 (14)

which may be interpreted as a form factor reflecting the in-
ternal structure of the interaction sites on the particle surface.
The simplest case, a point segment located at the centre-of-
mass thus corresponds to s1 = s2 = 0 so that W = 1. More
realistic configurations shall be considered in Sec. III.

Next, the equilibrium form of the ODF is obtained by a
formal minimization of Eq. (7),

δ

δf

(
βF

N
− λ〈1〉

)
= 0, (15)

where the Lagrange parameter λ ensures the ODF to be nor-
malized on the unit sphere. The associated self-consistency
equation for the ODF reads

f (�1) = Z−1 exp[−ρ〈(vexcl(�1,�2) − βa1(�1,�2))〉2],
(16)

with normalization constant Z = 〈exp[·]〉1. It is easy to see
that the isotropic solution f = cst, i.e., all orientations being
equally probable, is a trivial solution of the stationarity con-
dition. Beyond a critical particle density, non-trivial nematic
solutions will appear which can be obtained by numerically
solving Eq. (16).75 Once the equilibrium ODF is established
for a given density phase equilibria between isotropic and ne-
matic states can be investigated by equating the pressure P
and chemical potential μ in both states. These are obtained
by standard thermodynamic derivatives of the free energy
Eq. (7),

βP = ρ + ρ2

2
〈〈vexcl(�1,�2) + βa0 − βa1(�1,�2)〉〉 ,

βμ = ln ρV + 〈ln 4πf (�)〉
+ρ 〈〈vexcl(�1,�2) + βa0 − βa1(�1,�2)〉〉 . (17)

The thermodynamic properties of the isotropic-nematic tran-
sition can be calculated by numerically solving these coexis-
tence equation in combination with Eq. (16), the stationarity
condition for the ODF. Collective orientation order of cylin-
ders with orientation unit vector û order can be probed by in-
troducing a common nematic director n̂ and defining nematic
order parameters such as

Sn = 〈Pn(û · n̂)〉, (18)

where Pn represents a nth-order Legendre polynomial (e.g.,
P2(x) = (3x2 − 1)/2). Odd contributions of Sn are strictly
zero for non-polar phases and S2 is routinely used to discrim-
inate isotropic order (S2 = 0) from uniaxial nematic order
S2 
= 0.

III. GENERALIZED SCREENED-COULOMB
POTENTIAL FOR CYLINDERS

In this section, we shall consider a simple model for
charged anisotropic colloidal particles. Let us consider two
disk-shaped macro-ions with total surface charge Z in an

electrolyte solution with ionic strength determined by the
counter ions and additional co- and counter ions due to added
salt. Formally, the electrostatic potential around the charged
surface of a macro-ion in an ionic solution with a given
ionic strength can be obtained from the nonlinear Poisson-
Boltzmann (PB) equation.14 This theory neglects any correla-
tions between micro-ions and assumes the solvent to be treat-
able as a continuous medium with a given dielectric constant.
In the Debye-Hückel approximation, valid if the electrostatic
potential at the macro-ion surface is smaller than the ther-
mal energy, the PB equation can be linearized and the elec-
trostatic interaction between two point macro-ions with equal
charge ±Ze in a dielectric solvent with relative permittivity εr

is given by the screened-Coulomb or Yukawa form

βu0(r) = Z2λB

e−κr

r
, (19)

with ε0 the dielectric permittivity in vacuum, r the distance
between the macro-ions, λB = βe2/4πε0εr the Bjerrum length
(λB = 0.7 nm for water at T = 298 K), and κ−1 the De-
bye screening length which measures the extent of the elec-
tric double layer. In the limit of strong electrostatic screen-
ing, the screening factor is proportional to κ = (8πλBρ0)1/2

with ρ0 the concentration of added 1:1 electrolyte. In general,
for highly charged colloids nonlinear effects of the PB equa-
tion can be accounted for by invoking a cell approximation76

which assumes a fully crystalline structure where each parti-
cle is compartmentalized in Wigner-Seitz cells or a so-called
Jellium model77 where a tagged particle is exposed to a struc-
tureless background made up by its neighboring particles.
Both methods allow for a solution of the full nonlinear PB
equation for an isolated colloidal with the effect of the sur-
rounding charged particles subsumed into a suitable bound-
ary condition. This procedure yields so-called effective val-
ues for the charge Zeff < Z and Debye screening constant
κeff which can be used to achieve accurate predictions for
the thermodynamic properties (e.g., osmotic pressure) of flu-
ids of highly charged spheres.78 We will briefly touch upon
these effective parameters in Sec. III C. We reiterate that
we focus here on the high-salt regime where use of the lin-
earized form Eq. (19) combined with effective electrostatic
parameters is deemed appropriate. The low-screening regime
requires a lot more care due to the fact that the effective in-
teraction becomes inherently dependent on the macroion den-
sity. As a consequence, the free energy contains non-trivial
volume terms which may have important implications for the
fluid phase behaviour.79–81

The FT of the Yukawa potential is given by a simple
Lorentzian

û(q) = Z2λB

4π

q2 + κ2
. (20)

The spatial average over Eq. (19) yields for a0

βa0 = 4πZ2λBκ−2. (21)

We may generalize the screened-Coulomb potential for a
cylindrical object by imposing the total effective electrostatic
potential given by a sum over n identical Yukawa sites located
on the cylinder surface. As per Eq. (3), the pair potential is
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given by

βUs = Z2λB

n2

∑
i,j<n

exp[−κ|r + si(�1) − sj (�2)|
|r + si(�1) − sj (�2)| . (22)

Next, we shall first specify this expression for the case of slen-
der rods and subsequently for flat cylindrical disks.

A. Needle limit

In case of infinitely slender charged rods, we assume a
continuous distribution of sites located along the normal unit
vector û running through the centre-of-mass of the cylinder.
The result is a double integration along the one-dimensional
contours of the rod pair. Defining a dimensionless contour pa-
rameter i, so that s(�α) = αLûα the generalized screened-
Coulomb potential between rodlike particles can be written as

βUs = Z2λB

∫ 1
2

− 1
2

d1

∫ 1
2

− 1
2

d2
exp[−κ|r + L(1û1 − 2û2)|

|r + L(1û1 − 2û2)| .

(23)
A closed-form solution of the electrostatic rod potential was
reported in Ref. 82 and a generalized DLVO form for rod-
like macro-ions has been analyzed in Refs. 83 and 84. A
tractable form for the electrostatic potential between infinitely
stretched linear charges was used by Onsager in his seminal
paper2, 85 based on a limiting form for κL → ∞.86

Since our focus is on a simple van der Waals descrip-
tion for uniform fluids (ρ = cst), the compound form of
Eq. (23) naturally deconvolutes into a spherically symmet-
ric kernel û(q) and form factor W (cf. Eq. (12)). It is
obvious that such a factorization becomes much more com-
plicated in the columnar, smectic, or crystalline states where
inhomogeneities in the density field are intricately coupled to
the distance-variation of the electrostatic potential. This we
shall see in more detail in Sec. IV. We may specify the form
factor by considering a linear array of interaction sites.87 In
the continuum limit, Eq. (14) becomes

Wneedle(q; �α) =
∫ 1

2

− 1
2

dαe−iLq·ûα

= j0

(
L

2
q · ûα

)
, α = 1, 2 (24)

with j0(x) = x−1 sin x a spherical Bessel function. With this
the orientation-dependent van der Waals constant Eq. (12)
for rods is completely specified. The remaining 3D inte-
gration over reciprocal space must be carried out numeri-
cally for every orientation. Note that an evaluation in real
space would confront us with a fivefold numerical integration
since Eq. (23) cannot be solved analytically. To facilitate the
integration over q-space, we adopt a particle-based frame
{û1, û2, v̂} introduced in the Appendix. This allows us to re-
express the dot products in terms of the angle γ between the

main axis of the rod pair via

Lq · û1 = q1 + q2 cos γ,

Lq · û2 = q1 cos γ + q2, (25)

Dq · v̂ = q3,

and
∫

dq = (L2D)−1| sin γ | ∏i≤3

∫ ∞
−∞ dqi . The integration

over q3 can be carried out analytically and the remaining ex-
pression can be simplified by taking the leading order con-
tribution in the needle limit x = D/L 	 1. The mean-field
contribution a1(γ ) for strongly elongated charged rods then
reads in normalized form

a1(γ )

a0
= 1

4π2
(1 − e−κD) sin2 γ

∫ ∞

−∞
dq1

∫ ∞

−∞
dq2

×j 2
0 (Lq · û1)j 2

0 (Lq · û2). (26)

Recalling that a0∝κ−2 one can infer that a1 vanishes in the
limit of infinite screening κD → ∞ and diverges in the
Coulomb limit (κD↓0)88 as one would intuitively expect.

B. Flat disk limit

We now turn to the case of infinitely thin disks. Similar to
the needles we assume a continuous charge distribution along
circular surface of the disk which is most conveniently param-
eterized by invoking the particle-based coordinate frame (see
the Appendix) so that

s(�α) = D

2
rα(v̂ cos ξα + ŵα sin ξα), (27)

where 0 ≤ rα ≤ 1 and 0 ≤ ξα ≤ 2π . The electrostatic potential
between two flat disks at fixed orientations is represented by
a fourfold integral

βUs = Z2λB

1

π2

∏
α=1,2

∫ 1

0
drαrα

∫ 2π

0
dξα

×exp[−κ|r + s(�1) − s(�2)|
|r + s(�1) − s(�2)| . (28)

The form factor associated with a discotic arrangement of sur-
face charges is given by the cosine transform of Eq. (27),

Wface(q; �α) = 1

π

∫ 1

0
drαrα

∫ 2π

0
dξα cos(q · s(�α))

= 2J1(q̃α)/q̃α, (29)

with Jn(x) a Bessel function of the first kind and q̃α

= [(D
2 q · ŵα)2 + (D

2 q · v̂)2]1/2. We may also consider the sit-
uation where the charges are distributed along the circular rim
of the disk (Fig. 1). The corresponding form factor simply fol-
lows from Eqs. (27) and (28) by setting rα = 1 and integrating
over the remaining angular part

Wrim(q; �α) = 1

2π

∫ 2π

0
dξα cos

(
D

2
(v̂ cos ξα + ŵα sin ξα)

)
= J0(q̃α). (30)

Alternatively, we may consider a discrete hexagonal arrange-
ment of surface charges (see Fig. 1), in which case the form
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.

FIG. 1. Sketch of three possible surface charge patterns for infinitely thin
disks. From left to right: uniform distribution over the circular face with di-
ameter D (“face”), one-dimensional distribution along the outermost circular
contour (“rim”), and a discrete hexagonal arrangement (“hex”).

factor becomes

Whex(q; �α) = 1

7

(
1 + cos(Dq · v̂) + 2 cos

(
D

2
q · v̂

)

× cos

(
D

√
3

2
q · ŵα

)
+ (v̂ ↔ ŵα)

)
. (31)

The last term ensures that the form factor remains invariant
with respect to a rotation in the v̂, ŵα plane so that Whex at-
tains the same symmetry as the expressions for the “face”
and “rim” patterns. The additional angular correlations nat-
urally arise from the discrete nature of the hexagonal pattern.
In view of the fluid phases considered here, they are deemed
of negligible importance. We remark that all form factors ap-
proach the radially symmetric limit (W = 1) in the macro-
scopic limit q↓0. Similar to the needle case the FT defini-
tion of the van der Waals contribution Eq. (12) reduces the
dimensionality of the problem to a straightforward integration
over 3D q-space whereas the real-space route would confront
us with an intractable sevenfold integration. Analogous to
Eq. (25), the integration over reciprocal space can be param-
eterized using the particle-based frame for disks (see the Ap-
pendix): Dq · ŵ1 = q1 + q2 cos γ , Dq · ŵ2 = q1 cos γ + q2,
and Dq · v̂ = q3 so that a1 depends only on enclosed angle
γ between the normal vectors of the disks as should be the
case for apolar uniaxial cylinders.

Judging from Eq. (16) it is evident that a1 can be iden-
tified with an aligning potential of mean force Vmf(�) re-
flecting the average potential incurred by the soft potential
of all the surrounding cylinders. This potential is inherently
density-dependent and reads

Vmf(�) = −ρ

∫
d�′a1(γ (�,�′))f (�′), (32)

where the ODF f depends implicitly on ρ. Its angular depen-
dence generally disfavors parallel orientations as illustrated
in Fig. 2 for the case of disks with a continuous distribu-
tion of Yukawa sites (“face”). Similar monotonically decreas-
ing functions are obtained for rods with the screening con-
stant κD governing the typical range of the potential. We
reiterate that a1(γ ) represents a distance-averaged orienta-
tional mean-field potential which is only applicable in the
context of uniform isotropic or nematic fluids. The spatially
resolved electrostatic potential for charged disks bears an in-
tricate coupling between the mutual orientation and centre-

−1

−0.75

−0.5

−0.25

0

0 0.1 0.2 0.3 0.4 0.5

−
a 1

(γ
)/

a 0

D = 100
D = 20
D = 13

FIG. 2. Aligning potential of mean force (in dimensionless units) for in-
finitely thin Yukawa disks with a homogeneous distribution of screened
charges covering the circular surface of the disk. Shown are curves for differ-
ent ionic strengths κD. Near-parallel disk orientations (γ ∼ 0) are strongly
disfavored.

of-mass separation distance of the disk pair such that, at least
in the far-field limit, coaxial pair configurations are favored
over planar ones (see Eq. (33) in Sec. III cC).43, 89 At high
particle density, the interplay between near-field steric and
far-field electrostatic forces may drive the formation of liq-
uid crystalline structures with unusual positional and orienta-
tional microstructure44, 47 and significantly affect the stability
of smectic and columnar order as we shall see in Sec. V.

C. Second-virial coefficient for highly charged disks

In this section, we shall look at an alternative route to-
wards incorporating electrostatic interactions into the On-
sager density functional theory (DFT) for the case of highly
charged discotic colloids. The objective is to make an esti-
mate of the total second-virial coefficient of a charged disk.
The orientational dependence of this quantity gives us an idea
of the effective shape (anisometry) of a charged discotic ob-
ject and its propensity to form orientationally ordered phases
at various screening conditions.67, 90 To circumvent the com-
putational burden associated with a spatial integration of the
Mayer function for segment potentials, we shall consider a
tractable form for the electrostatic potential that can be ob-
tained from Poisson-Boltzmann theory for discotic macro-
ions using a multi-pole expansion of the formal expression
Eq. (28) for uniformly charged disks. In the far-field limit, a
generalized Yukawa potential for anisotropic colloids can be
recast into the following form:43, 89

Us(r; �1,�2) = Z2
effλBξ (κD, ϑ1)ξ (κD, ϑ2)

e−κr

r
. (33)

The anisotropy function ξ (κD, ϑ) depends on the screen-
ing parameter κ and the angle ϑ between the centre-of-mass
distance vector r̂ and disk normal û such that cos ϑ = r̂ · û.
Generally, ξ increases with ϑ and reaches a maximum at
ϑ = π /2. Equation (33) tells us that the orientation-
dependence of the electrostatic potential is retained in the
far-field limit and that stacked pair configurations are energet-
ically favored over co-planar ones, irrespective of the centre-
of-mass separation distance r. For highly charged colloidal
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disks, the strong coupling between the macro- and micro-ion
charges leads to nonlinear effects (such as counterion conden-
sation) which can be quantified from the nonlinear PB equa-
tion. The nonlinearities can be taken into account by replac-
ing the bare charge by an effective renormalized charge Zeff.
Its saturation value47 depends on the screening parameter and
can be estimated as Zsat

effλB/D ≈ 0.5κD + 1.12. An approxi-
mate form for the anisotropy function is given by Ref. 43,

ξ (κD, ϑ) = 2
I1

(
κD
2 sin ϑ

)
κD
2 sin ϑ

, (34)

with sin ϑ = (1 − (r̂ · û)2)1/2 and I1(x) a modified Bessel
function of the first kind. Within Onsager’s original second-
virial approximation, the excess free energy is proportional
to the second-virial coefficient B2 embodied by the last two
terms of Eq. (6). The excess free energy can thus be com-
pactly written as

βFex

N
= −ρ

2
〈〈β1(�1,�2)〉〉 = ρB2, (35)

where the cluster integral β1 is given by a spatial integral
of the Mayer function Eq. (2). For the electrostatic part, we
need to integrate over the space complementary to the ex-
cluded volume between two infinitely thin disks for which
we may invoke the parameterization Eq. (A6) proposed in the
Appendix. The cluster integral then becomes

β1(γ ) = −vexcl(γ )

+
(∫

V

dr −
∏

i=1,3

∫ 1

−1
dtiJcc

)
�(ti ; γ ), (36)

with Jcc = D3

8 | sin γ |[(1 − t2
1 )1/2 + (1 − t2

2 )1/2] the Jacobian
associated with the transformation from the Cartesian lab
frame to the particle frame and � the Mayer function given
by Eq. (2). Since both volume integrals are defined within the
latter frame the orientation degrees of freedom naturally con-
dense into a single angle γ between the disk normals. Com-
paring Eq. (36) to the van der Waals form for patchy cylinders
Eq. (12) we see that both expressions involve a 3D integration
in Fourier or real space which can be numerically resolved
without difficulty.

IV. RESULTS FOR THE ISOTROPIC-NEMATIC
TRANSITION

In this section, we shall look into the isotropic-nematic
phase diagram for charged cylinders in the extreme aspect ra-
tio limit. Let us first concentrate on the case of infinitely elon-
gated rodlike cylinders with L/D → ∞. The physical quanti-
ties of interest are the dimensionless concentration c = ρL2D,
the charge Z, and the amplitude of the screened Coulomb po-
tential. It is customary to define a linear charge density σ

indicating the number of elementary charges per unit length
so that the total rod charge Z = σL leads to a dimension-
less amplitude σ 2DλB. If we take a typical rod diameter of
D ∼ 10 nm, the Yukawa amplitudes in Fig. 3 corresponds to
a linear charge density σ of several elementary charges per
nm. Furthermore, we consider the case of excess salt so that
the screening constant κ does not depend on the colloid con-
centration. The phase diagram in Fig. 3 features a dramatic
narrowing of the biphasic gap at low ionic strength and a

FIG. 3. (a) Isotropic-nematic phase diagram for charged elongated colloidal rods (L/D → ∞) for three different values of the Yukawa amplitude σ 2λBD.
Plotted are the coexistence densities c = ρL2D versus ionic strength κD. (b) Osmotic pressure P at coexistence. (c) and (d) Orientational order parameters S2
and S4 quantifying the nematic and cubatic order of the nematic phase.
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significant weakening of nematic order of the coexisting ne-
matic phase. The negative sign of S4 reflects an increased
propensity for the rods to adopt perpendicular pair configu-
rations at low screening so as to minimize the overlap of their
electric double layers. This is a manifestation of the so-called
“electrostatic twist” for line charges which has been quanti-
fied in detail in Ref. 85. The rapid variation of the binodal
densities at low ionic strength reveals a marked re-entrant
phase separation effect. A homogeneous isotropic sample at
fixed particle density (say c ∼ 5.3) undergoes a sequence
of phase transformations upon increasing the ionic strength.
First, the system exhibits isotropic-nematic phase coexistence
with a weak density contrast. Second, the sample reverts to
a homogenous isotropic state before re-entering into a phase-
separation with a strong density difference between the coex-
isting phases. The isotropic-nematic transition vanishes com-
pletely below a critical screening constant which is roughly
constant to the line charge. The narrowing of the phase gap
and upward shift of the transition density as the strength of the
electrostatic interaction potential increases are both generic
features of charged anisometric colloids consistent with pre-
dictions from previous mean-field theories for rods in the
Coulomb limit,88 and at finite screening.85

We remark that most colloidal systems consist of highly
charged colloidal objects and that nonlinear effects arising
from the PB equation must be taken into account. As alluded
to before, this can be done by retaining the linearized Debye-
Hückel form and using a “dressed” renormalized line charge
σeff which depends, in general, on the macro-ion density,
shape, and salt concentration. Despite the highly non-trivial
relation between these quantities, it is possible to derive sim-
ple analytical estimates for the saturation value, such that, for
strongly elongated cylinders one can write σ sat

eff λB ∼ κD.91

However, within the current scheme serious complications
arise when simply replacing σ by σeff in case of strong screen-
ing since (σ sat

eff )2λBD � 1 and the isotropic-nematic transition
will be completely obstructed by the denematizing mean-field
potential a1(γ ). This spurious outcome could be remedied, at
least in part, by carrying over part of the harshly repulsive
near-field electrostatic potential into the second virial coef-
ficient, e.g., by introducing an effective diameter Deff > D.
This opens up ways to designing optimized schemes that com-
bine an effective particle shape with an appropriately rescaled
aligning background potential capturing the far-field electro-
statics at high particle density. These ideas have been pursued
in detail in Refs. 73, 74, and 67 and shall not be further dis-
cussed here.

Let us now turn to the case of charged disks. The
isotropic-nematic phase diagram emerging from the Onsager-
van der Waals theory for the various charge patterns depicted
in Fig. 1 is shown in Fig. 4. Similar to the case of rods we
observe a marked weakening of nematic order and a narrow-
ing of the biphasic gap. The overall shape of the binodals
does not depend too sensitively on the amplitude provided
that Z2λB/D ∼ O(10) at most. Similar to what is observed
for rods the isotropic-nematic ceases to exist below a critical
ionic strength. This effect is most noticeable for disks with
a continuous charge distribution along the face or rim. For
disks with a discrete hexagonal charge patterns, the window
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FIG. 4. (a) Isotropic-nematic binodals for charged disks with charge distribu-
tions corresponding to the patterns indicated in Fig. 1. Plotted is the particle
concentration c = ρD3 versus the ionic strength κD. The Yukawa amplitude
is Z2λB/D = 10. (b) Orientational order parameters of the nematic phase at
coexistence.

of stable nematic order is somewhat larger in terms of ionic
strength. The curvature of the binodals point to a reentrant
phase separation phenomenon similar to the case of rods in
Fig. 3. For highly charged disks, the suppression of nematic
order is even more drastic and is borne out from the second-
virial free energy Eq. (35) using the orientation-dependent
Yukawa potential Eq. (33). No stable isotropic-nematic was
found in the experimentally relevant range of disk diameters
35λB < D < 200λB and densities. The lack of nematic sta-
bility can be inferred from Fig. 5 illustrating the effective ex-
cluded volume −β1 of a charged disk. Although the volume
depends strongly on the ionic strength its angular variation

FIG. 5. Effective excluded volume −β1(γ ) between highly charged disks
with diameter D = 35λB interacting via the orientation-dependent Yukawa
potential Eq. (33). The black solid line indicates the bare excluded volume of
hard disks.
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remains very weak throughout. The effective shape of a highly
charged colloidal disk resembles that of a slightly deformed
spherical object whose anisometry is insufficient to generate
a thermodynamically stable orientational disorder-order tran-
sition. Like for the rod case, improved schemes could be en-
visaged for the strong-coupling regime by combining an ef-
fective disk shape with a suitably chosen amplitude for the
mean-field aligning potential a1(γ ).

V. STABILITY OF LIQUID CRYSTAL PHASES WITH
POSITIONAL ORDER

Possible phase transitions to spatially inhomogeneous
states with smectic or columnar order can be investigated by
recasting the mean-field Onsager into a functional form de-
pending on the one-body density field ρ(r, �).92 Within the
framework of classical DFT, the free energy functional needs
to be minimized with respect to ρ to yield the unique equi-
librium density profile for a given chemical potential, temper-
ature, and external potential.93 In this work, we shall adopt
a simple stability analysis94, 95 by assuming a weak periodic
density modulation with wave-vector k and amplitude ε,

ρ(r,�) = ρ0f0(�) + εf ∗(�) cos(k · r), (37)

superimposed onto the one-body density ρ0(r, �) = ρ0f0(�)
of the spatially homogeneous phase. Beyond a particular
value of the bulk density such a periodic density perturba-
tion will lead to a reduction of the free energy and the ho-
mogeneous bulk phase will become marginally unstable. The
so-called bifurcation point can be found by inserting Eq. (37)
into the density functional and Taylor-expanding up to second
order in ε. The resulting bifurcation condition is represented
by a linear eigenvalue equation,96

f ∗(�1) = ρ0f0(�1)
∫

d�2f
∗(�2)�̂(k; �1,�2), (38)

in terms of the cosine transformed Mayer function

�̂(k; �1,�2) =
∫

dr�(r; �1,�2) cos(k · r). (39)

The eigenvector f*(�) probes the angular distribution in the
new phase and reflects the intrinsic coupling between posi-
tional and orientational order. A bifurcation to the position-
ally modulated state occurs at the wave vector k that generates
the smallest eigenvalue ρ0 > 0 of Eq. (38). If we neglect the
translation-rotation coupling, then f*(�) = f0(�) and the bi-
furcation condition takes the form of a divergence of the static
structure factor S(k),

S(k)−1 = (1 − ρ0〈〈�̂(k; �1,�2)〉〉) = 0. (40)

By applying the van der Waals approximation outlined in
Sec. II, �̂ can be expressed as a sum of the hard-core con-
tribution and a part that encodes the effect of the soft poten-
tial. Eliminating the angular dependency of the excluded vol-
ume v̂excl and form factor W for notational brevity, one arrives
at the following expression for the Mayer kernel in Fourier

space:

�̂(k) = −v̂excl(k) − û(k)

+ 1

(2π )3

∫
dqû(q)W (q)W (−q)v̂excl(k − q).

(41)

The Fourier integral presents a non-trivial mode-coupling
term that convolutes the imposed density wave with the modes
describing the distance-dependence of the soft interactions.
The solution of Eq. (40) (or Eq. (38)) for particles with full
orientational degrees of freedom poses a substantial technical
task and we shall simplify matters by considering the more
tractable case of parallel cylinders. Let us equate the parti-
cle frame to the lab frame {x̂, ŷ, ẑ} with the cylinder normals
pointing along ẑ. The excluded volume of two parallel cylin-
ders is again a cylinder with volume 2πLD2. In Fourier space,
the excluded volume takes the following form:

v̂excl(q) = 2πLD2j0(Lq · ẑ)
J1(

√
(Dq · x̂)2 + (Dq · ŷ)2)

1
2

√
(Dq · x̂)2 + (Dq · ŷ)2

.

(42)
Due to the parallel orientation it is no longer possible to take
the limit of infinite particle anisometry since the excluded
volume vanishes in both limits (similar to setting γ = 0 in
Eq. (5)). Therefore, we shall consider the case D/L 	 x (rods)
and L/D 	 x (disks) with x a small but finite number and use
the volume fraction φ = (π /4)LD2ρ0 as a convenient measure
for the particle concentration.

We may probe instabilities pertaining to smectic order by
identifying k = kS{0, 0, 1}, a one-dimensional periodic mod-
ulation along the nematic director. Hexagonal columnar order
can be parametrized by a linear superposition of three modu-
lations with wavevectors k1 = kC{0, 1, 0}, k2 = kC{

√
3

2 , 1
2 , 0},

and k3 = kC{−
√

3
2 , 1

2 , 0} describing a two-dimensional trian-
gular lattice perpendicular to the director.

The results in Fig. 6 reveal a marked stabilization of
columnar at the expense of smectic order for rodlike cylin-
ders at low ionic strength. This outcome is in accordance with
previous numerical results for Yukawa rods in a strong exter-
nal aligning field.54 Needless to say that the transition values
are merely qualitative and that the volume fractions can be
brought down to more realistic values, for instance, by us-
ing an effective second-virial theory based on a resummation
of higher virial coefficient (e.g., using Parsons’ theory58). For
hard parallel cylinders, the nematic-smectic always pre-empts
the nematic-columnar one irrespective of the aspect ratio x.
This implies that the parallel approximation fares rather badly
for hard discotic systems which are known to form colum-
nar phases only.9, 97 Nevertheless, some general trends can be
gleaned from Fig. 6(b) such as an apparently stabilization of
smectic order for uniformly charged disks in the low screen-
ing regime. The prevalence of smectic order has been recently
reported in weakly screened discotic systems.98 As for the
other charge patterns, the observation from Fig. 6 that both
smectic and columnar-type order are destabilized upon reduc-
ing the screening could hint at more complicated instability
mechanisms prevailing in the low screening region, such as
those pertaining to crystalline order where both longitudinal
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FIG. 6. (a) Variation of the nematic-smectic (NS) and nematic-columnar
(NC) bifurcation density with ionic strength κD for parallel charged rods
with aspect ratio L/D = 50 and (b) parallel disks with surface charge pat-
terns indicated in Fig. 1 (D/L = 10, Z2λB/D = 10). Solid curves indicate NS
bifurcations, dotted curves NC instabilities.

and transverse density modulations compete with spatial in-
homogeneities in the director field.47

We wish to underline that the approach outlined above is
generic in that it provides a simple route to gauge the effect
of soft interactions on the stability of positionally ordered liq-
uid crystals. It can be applied to a vast range of model sys-
tems with various segment potentials (provided integrable)
and form factors. Instabilities from nematic to other liquid
crystals symmetries or three-dimensional crystals (e.g., fcc or
bcc) can easily be included by adapting the k vectors to the
desired Bravais lattice. In order to describe fully crystalline
states, we may exploit the fact that particles are strongly local-
ized around their lattice site to construct an appropriate den-
sity functional representation for the excess Helmholtz free
energy. In the following, we shall briefly sketch the approach
outlined in Refs. 99 and 100. The central assumption is that
the density profile of the solid consists of Gaussian peaks cen-
tred on a predefined lattice vector {Ri} factorized with the
orientational probability (ODF) f(�). If we assume a spatially
homogeneous director field, the one-body density can be writ-
ten as

ρ(r,�) = f (�)
N∑

i=1

G(r − Ri), (43)

with

G(r − Ri) =
(α

π

)3/2
exp[−α(r − Ri)

2], (44)

where α is a parameter which describes how localized the par-
ticles are around each lattice site. If we assume the propor-
tion of lattice defects to be negligible, each lattice site should
contain only one particle as reflected in the normalization of
Eq. (44). The excess free energy of the system can be ex-
pressed in terms of the following Fourier integral:

Fex = −kBT

2

∑
i 
=j

1

(2π )3

∫
dkeik·Rij Ĝ(k)2〈〈�̂(k; �,�′)〉〉,

(45)
in terms of the FT of the orientation-dependent Mayer kernel
Eq. (41), and the Gaussian weight Ĝ(k) = exp(−k2/4α). In
general, the radially symmetric form Eq. (44) is justified only
if particles are strongly localized around their lattice points
(α � 1) so that the density peaks are not affected by the sym-
metry of the underlying lattice. The total free energy is ob-
tained by combining the excess free energy with the ideal free
energy associated with the Gaussian parameterization

Fid = NkBT

{
3

2
ln

(V2α

π

)
− 5

2
+ 〈ln f (�)〉

}
. (46)

Next, the free energy must be minimized with respect to
the localization parameter α, the set of relevant lattice con-
stants corresponding to the imposed lattice symmetry101 and
f(�). This simple variational scheme allows one to com-
pare the stability of various crystal symmetries as a func-
tion of density and interaction range and strength. In addition,
due to the translation-orientation coupling via f both aligned
and rotationally disordered, plastic crystal states can be in-
cluded. Phase transitions between fluid and crystal phases can
be probed by equating the pressure and chemical potential
emerging from the Gaussian free energy with those of the
fluid phases Eq. (17).

VI. CONCLUDING REMARKS

We have proposed a generalized Onsager theory for
strongly non-spherical colloidal particles with an intrinsic
patchiness in the interaction potential. The theory supple-
ments the second-virial reference free energy for the hard-
core interaction with a first-order perturbative (van der Waals)
term which captures the directional soft interactions between
the rods or the disks. As such, the theory interpolates between
the low density regime, where the second-virial approxima-
tion holds, and the high density regime where the mean-field
approach is accurate. We have aimed at formulating a generic
framework that should be applicable to a wide range of par-
ticle shapes, ranging from elongated rods to flat, sheet-like
disks with an arbitrary spatial organization of interactions
sites distributed along the colloid surface. By recasting the
mean-field contribution in terms of a Fourier series, the ex-
cess free energy naturally factorizes into three main contribu-
tions; the site-site interaction potential, the shape of the col-
loidal hard-core, and a form factor associated with the spatial
arrangement of the interaction site residing on each particle.

As a test case, we have applied our theory to investigate
orientation disorder-order transitions in fluids of charged rods
and disks with a uniform, localized, or discretized surface
charge pattern. The results for the isotropic-nematic phase
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diagram and the instability analysis of transverse and longi-
tudinal freezing of a nematic fluid in the high-density regime
reveal a picture that is consistent with results from experiment
and particle simulation.

Evidence for the trends predicted by our theory can be
drawn from various experimental observations that we will
summarily discuss next. A reduction of the biphasic gap as
well as indications of a non-monotonic dependence of the
isotropic- (cholesteric) nematic phase boundaries upon de-
creasing ionic strength have been reported in systems of stiff
fd rods.102 A similar reduction of the phase gap was reported
for rigid tobacco mosaic virus (TMV) rods103 and high aspect-
ratio zirconium phosphate platelets.104 The marked destabi-
lization and indeed complete absence of nematic order for
charged platelets at low ionic strength (Fig. 4) is in line with
results from recent simulation of particles with a hard-core
Yukawa potential.47 In addition, charged gibbsite platelets
cease to form stable nematic phases at low ionic strength in
favor of columnar order.105 As for the high-density regime
discussed in Sec. V, a crossover from smectic order to a
more intricate ordered state upon decreasing ionic strength
has been observed in concentrated systems of TMV rods.106

However, it is not fully clear whether these structures are re-
ally columnar or represent three-dimensional crystalline or-
der. A much more convincing account of the preference of
hexagonal columnar over smectic order of elongated charged
rods (see Fig. 6(a)) has been reported for semiflexible fd
virus rods.107 Conversely, the tendency of charged platelets
to self-assemble into layered structures, hinted at by the re-
sults in Fig. 6(b), was highlighted in recent studies of charged
niobate nanosheets108 and gibbsite platelets at low-screening
solvent conditions.98 Recent simulation work on discotic sys-
tems with explicit point charges demonstrates that similar lay-
ered, smectic phases may be formed by oppositely charged
oblate mesogens.42

These observations lend credence to our theory as a prac-
tical tool to assess the influence of soft patchy interactions
on the liquid crystal phase diagram of non-isometric colloids.
Although the focus of this study is on the liquid crystal fluid
phases that emerge at relatively low particle density, the sta-
bility of spatially ordered liquid crystals at higher particle
concentration can also be scrutinized using a simple bifur-
cation analysis while fully crystalline phases can be expedi-
ently accounted for using a Gaussian parameterization for the
one-body density often used in density functional theories of
freezing.

We remark that the present theory is amenable to vari-
ous extensions towards more complicated systems. Colloidal
dispersions composed of non-spherical particles are rarely
monodisperse but are often characterized by a continuous
spread in particle sizes. The polydisperse nature of the col-
loid shape and/or the amplitude of the soft interactions can be
incorporated in a straightforward manner.109, 110 Bio-colloids
such as stiff viral rods111 and DNA are commonly charac-
terized by an intrinsic helical patchiness which has profound
implications on the mesostructure in bulk and confinement.112

The present theory could be extended to relate the mesoscopic
chirality of twisted nematics to the intrinsic helical form fac-
tor of the colloid.113

Last but not least, similar to systems of spherical
subunits,114, 115 more accurate reference free energies could be
employed which should give a more reliable account of cor-
relations in systems of less anisometric colloids (dumbbells,
thick platelets, polyhedra) which routinely form highly or-
dered (liquid) crystals at high particle volume fraction.116, 117

APPENDIX: EXCLUDED VOLUME OF STRONGLY
ANISOMETRIC CYLINDERS

In this appendix, we derive expressions for the FT of the
excluded volume manifold of two infinitely slender rods and
disks, featured in Eq. (12) of the main text. The excluded vol-
ume of two hard cylinders at fixed angle γ is a parallelepiped
which can be parameterized by switching from the laboratory
frame to a particle frame spanned by the normal orientational
unit vectors ûα of the cylinder pair. Let us define the addi-
tional unit vectors

v̂| sin γ | = û1 × û2,

ŵα = ûα × v̂ (α = 1, 2), (A1)

so that {ûα, v̂, ŵα} are two orthonormal basis sets in 3D. The
centre-of-mass distance vector can be uniquely decomposed
in terms of these basis vectors

r = (r · ûα)ûα + (r · v̂)v̂ + (r · ŵα)ŵα. (A2)

The leading order contribution to the excluded-volume body
is of O(L2D) and stems from the overlap of the cylindrical
parts of the spherocylinders. This resulting parallelepiped can
be parameterized as follows:

rcc = L

2
t1û1 + L

2
t2û2 + Dt3v̂, (A3)

with −1 ≤ ti ≤ 1 for i = 1, 2, 3. The Jacobian associated with
the coordinate transformation is Jcc = 1

4L2D| sin γ |. The FT
of the parallelepiped is thus given by

v̂excl(�1,�2) =
∫

drcce
iq·rcc

= Jcc

∏
i<3

∫ 1

−1
dti cos(q · rCC)

= v0| sin γ |F(q; �1,�2), (A4)

where v0 = 2L2D. Using that
∫ 1
−1 dx cos(ax + b)

= 2j0(x) cos b, one obtains for strongly elongated
cylinders,

F(q; �1,�2)

= j0

(
L

2
q · û1

)
j0

(
L

2
q · û2

)
j0(Dq · v̂), (needles),

(A5)

in terms of the spherical Bessel function j0(x) = x−1 sin x.
A similar procedure can be carried out for disk-shaped cylin-
ders. Two infinitely flat cylinders overlap if the separation r of
their centre-of-mass is in a sphero-cuboid (see Fig. 7) which
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FIG. 7. The excluded-volume manifold of two infinitely slender cylindrical
rods (L/D → ∞) is a parallelepiped spanned by the particle-based coordi-
nate frame {û1, û2, v̂} (left figure) whereas that of two infinitely thin disks
(L/D↓0) is represented by a sphero-cuboid (right figure). Both manifolds
correspond to the case where the cylinders are perpendicular to each other
(û1 ⊥ û2).

can be parameterized as follows:

rcc = −D

2
t1ŵ1 − D

2
t2ŵ2 + D

2
t3[(1 − t2

1 )1/2 + (1 − t2
2 )1/2]v̂,

(A6)
with −1 ≤ ti ≤ 1 for i = 1, 2, 3. The Jacobian associated
with the transformation from the lab to the particle frame
is drcc = Jccdt1d2dt3 with Jcc = D3

8 | sin γ |[(1 − t2
1 )1/2 + (1

− t2
2 )1/2]. Similar to the case of rods the FT of the excluded

volume figure is cast into a cosine transform according to
Eq. (A4) substituting v0 = πD3/2 for disks. The shape func-
tion F , however, requires a bit more effort in this case. First,
the integration over t3 can be carried out straightforwardly us-
ing the relation involving the spherical Bessel function men-
tioned above Eq. (A5). This yields

F = 1

πDq · v̂

∫ 1

−1
dt1

∫ 1

−1
dt2 cos

(
D

2
t1q · ŵ1 + D

2
t2q · ŵ2

)

× sin

{[(
1 − t2

1

)1/2 + (
1 − t2

2

)1/2]D

2
q · v̂

}
. (A7)

The double integral can be split into single integrals us-
ing standard trigonometric manipulations. Rearranging terms
gives the final expression for infinitely flat discotic cylinders,

F(q; �1,�2) = 1

πDq · v̂
(A1B2 + A2B1), (disks), (A8)

in terms of the orientation-dependent functions

Aα =
∫ 1

−1
dt cos

(
D

2
tq · ŵα

)
cos

(
D

2
(1 − t2)1/2q · v̂

)
,

Bα =
∫ 1

−1
dt cos

(
D

2
tq · ŵα

)
sin

(
D

2
(1 − t2)1/2q · v̂

)
.

(A9)

The last integral can be solved in closed form by substituting
t = cos θ and invoking Catalan’s integral representation of
Bessel functions118

J0(
√

β2 − α2) = 1

π

∫ π

0
dθeα cos θ cos(β sin θ ), (A10)

with Jn(x) a Bessel function of the first kind. With this, the so-
lution of Eq. (A9) can be found by taking the partial derivative

to α on both sides and rearranging terms

Bα = π

2
(q · v̂)J1(q̃α)/(q̃α), (A11)

where q̃α = [(D
2 q · ŵα)2 + (D

2 q · v̂)2]1/2. Despite the similar-
ity between A and B, there is no closed analytical expres-
sion available for A but the one-dimensional integral is readily
evaluated using standard numerical integration routines.
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