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An approach is proposed which allows to self-consistently calculate the structural and the
thermodynamic properties of highly charged aqueous colloidal suspensions. The method is based on
the renormalized jellium model with the background charge distribution related to the
colloid-colloid correlation function. The theory is used to calculate the correlation functions and the
effective colloidal charges for suspensions containing additional monovalent electrolyte. The
predictions of the theory are in excellent agreement with Monte Carlo simulations. © 2009
American Institute of Physics. �DOI: 10.1063/1.3211305�

I. INTRODUCTION

Over the span of the last century, colloidal suspensions
have been the subject of intense theoretical and experimental
study. The great effort is well justified by the importance that
these systems play in industrial, biological, and medical ap-
plications. A practical problem that arises is how to stabilize
suspensions against flocculation and precipitation, resulting
from the short range attractive van der Waals interaction.
One approach is to synthesize colloidal particles with acidic
groups on their surface. In aqueous environment, these
groups become ionized, resulting in a repulsion between the
macroions.

Charge stabilized colloidal suspensions are an extreme
example of a large asymmetry electrolyte. Both the charge
and the size of the macroions are orders of magnitude larger
than those of other ionic species present inside the suspen-
sion. Typically a colloidal particle of radius 1000 Å will
carry 103–104 ionizable groups uniformly distributed over
its surface. The huge asymmetry between the macroions and
the microions makes the theoretical investigation of colloidal
suspensions a very difficult task.1–4 The standard approach
used to study these systems is based on the primitive model
�PM�, which treats solvent as a dielectric continuum of per-
mittivity �. The interaction potential between the ionic spe-
cies is taken to be composed of a long range Coulomb inter-
action and a short range hard-core repulsion. Unfortunately,
due to the large charge and size asymmetry between the mac-
roions and the microions, even for this simplified model, the
traditional methods of liquid state theory—such as the mo-
lecular dynamics simulations, Monte Carlo �MC� simula-
tions, and the integral equations theories—prove to be only
partially successful.2 The integral equations are plagued by
the convergence problems,5 while the huge number of coun-

terions needed to ensure the bulk electroneutrality allows the
maximum charge asymmetry, which can be accurately simu-
lated using the present day computers to be around 100:1.
The important case of added electrolyte remains practically
unaccessible to direct computer simulations. Nevertheless,
simulations have been extensively used to describe dynami-
cal, thermodynamic, as well as structural properties of
charged colloidal suspensions.6

To obtain a more tractable description of these systems,
it is, therefore, necessary to introduce further simplifications.
This can be achieved by integrating out the microion degrees
of freedom, leaving only a state dependent interaction poten-
tial between the colloidal particles. This defines the, so
called, one component model �OCM�. In spite of its apparent
simplicity, the OCM requires knowledge of the effective
macroion-macroion interaction, which implicitly depends on
all the ionic species. Formally, the potential can be obtained
by explicitly tracing out the degrees of freedom of the mi-
croions of the PM.2,7 This can, in principle, be achieved us-
ing MC simulations.8 However, such approach is time con-
suming and is not always practical. A more direct method is
to use approximate theories, such as the Poisson
Boltzmann7,9 or the Ornstein–Zernike �OZ� equations, with
appropriate closure relations.5,10,11 Furthermore, to avoid
computational difficulties, one usually assumes that the ef-
fective interaction potential is pairwise additive. This is quite
reasonable at low macroion concentrations, however, care
must be used when applying this assumption to more con-
centrated systems. As the concentration increases, the many-
body correlations start to play an important role for both
structural and thermodynamic properties. Assuming the
OCM description with pairwise macroion interactions, there
still remains a question of how to obtain the effective inter-
action potential. This has been the subject of many
works.1,12–14 The difficulty in answering it is due to various
factors, among which are strong correlations between the
various particles and the huge asymmetry between the differ-
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ent ionic species—forcing different approximations for dif-
ferent correlations. In the limit of large dilutions, small col-
loidal charge, and monovalent electrolyte, a linearized
Debye–Hückel theory can be applied and the pair potential
takes a simple Yukawa-like form, known as the Derjaguin–
Landau–Overbeek–Verwey �DLVO� potential. For a system
of colloidal particles of radius a, charge −Zoq, density �o,
and microions of valence zi and bulk concentrations
�i, i�0, the DLVO potential is given by

�u�r� = �b� Zo

�1 + �a��
2e−��r−2a�

r
, �1�

where �b=�q2 /� is the Bjerrum length, �=1 /kBT, q is
the elementary charge, � is the dielectric constant, and

�=�4��b�i�o�izi
2 defines the inverse Debye screening

length. From Eq. �1� one can see that, at this level of ap-
proximation, the role of the small ions is only to screen the
electrostatic interaction between the macroions.1

Even though the potential in Eq. �1� is restricted to low
concentrations and small colloidal charges, the functional
form of the DLVO potential can be extended to describe
systems at moderate and high concentrations as well as large
colloidal charge. To do this the structural charge Zo is re-
placed by an effective charge Zeff, which accounts for the
nonlinear effects of the counterion condensation.1,5,15–17 In
fact, it can be formally shown that nonlinear short range
correlations within the PM electrolytes can all be introduced
into the DH theory by means of appropriate renormalization
procedures.18 The physical picture behind the charge renor-
malization is that strong electrostatic attraction between the
macroions and the counterions leads to their association, so
that from large distances �compared to the Debye length�, a
macroion can be viewed as carrying charge smaller than its
structural bare charge. Both the macroion and its layer of
condensed counterions can then be considered as forming a
single entity of an effective charge Zeff. Once the nonlinear
correlations are taken into account through the charge renor-
malization, the DLVO pair potential, Eq. �1�, can be used in
the OCM description to account for the structural properties
of colloidal suspensions with monovalent electrolytes.

In this paper, we propose an ansatz which allows us to
calculate both the thermodynamic and structural properties
of charge stabilized colloidal suspensions in a fully self-
consistent way. This ansatz is based on a coupling of the
renormalized jellium model19,20 with the OCM OZ integral
equations theory. From now on, we will only consider the
case of aqueous monovalent electrolytes with zj =z�= �1.

II. THEORETICAL BACKGROUND

Most of the theoretical work to obtain the effective
charge of colloidal particles is based on the mean field
Poisson–Boltzmann equation.15 In many cases, the infinite
dilution limit is employed and the problem reduces to that of
a spherical macroion or an infinite planar wall immersed in
electrolyte. For a more realistic situation of finite macroion
concentration, the colloidal distribution must be incorporated
into the PB equation. To do this, one must solve the PB
equation for a fixed macroion configuration from which the

stress tensor and the force acting on each macroparticle can
be calculated. Clearly, a numerical implementation of such
procedure is very difficult.9,21 To have a more tractable ap-
proach, further simplifications are necessary. In this respect
two approximations have been proven to be particularly use-
ful: the cell and the renormalized jellium models. Before
introducing the new theory, we will make a brief review of
the basic features of these approximations and discuss how
the effective charges can be extracted from them.

A. Renormalization models

In the cell model, colloids are assumed to have a quasi-
solid-state-like structure—macroions arranged in a form of a
lattice. This allows us to consider one macroion in a corre-
sponding Wigner–Seitz �WS� cell. A further approximation is
to replace the polyhedral WS cell by a cell having the same
symmetry as the macroion.22 The size of the cell is obtained
from the overall macroion concentration. Because of the
charge neutrality, the electric field must vanish on the surface
of each cell, so that within this approach there is no pair
interaction between the colloidal particles. Nevertheless, the
model is often used to calculate the effective macroion
charges, which enter the DLVO pair interaction potential. To
obtain the effective charge, the nonlinear PB equation is
solved numerically inside the WS cell. The solution is then
asymptotically matched to that of the linearized PB equation
with an effective charge—the so called Alexander
prescription.22,23

The jellium model captures the opposite limit in which
the colloid-colloid correlation function is assumed to be
completely disordered,11 goo�r�	1. This approach is well
suited for low colloidal density and weakly charged particles.
For strongly charged macroions, the jellium approximation
fails to converge. Recently, Trizac and Levin19,20 proposed a
renormalization procedure designed to extend the validity of
the jellium approximation for strongly charged colloidal par-
ticles. The renormalized jellium model relies on the concept
of counterion condensation to determine the effective charge
of the macroions. The method works as follows. One mac-
roion with a charge Zo is positioned at the origin of the
coordinate system; the remaining macroions with their con-
densed counterions are assumed to form a uniform neutral-
izing background in which the uncondensed counterions and
coions move freely. Because it is not know how many coun-
terions will condense onto the colloidal particles, the back-
ground charge density is not known a priori, but must be
determined self-consistently. The distribution of uncon-
densed counterions and coion around the central macroion is
assumed to be of the Boltzmann form, goj�r�=e−�qzj��r� with
zj = �1, where ��r� is the mean electrostatic potential around
the central macroion. The electrostatic potential satisfies the
modified Poisson–Boltzmann equation,

�2��r� = −
4�q

� ��
j=�

� jzje
−�qzj��r� − Zback�back�r�� , �2�

where Zback and �back�r� are the background charge and den-
sity, respectively. In the canonical ensemble—fixed number
of all particles—� j are determined from the overall electro-
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neutrality, while in the semigrand canonical ensemble,20

when the suspension is in contact with a salt reservoir at
concentration cs, � j =cs. We note that Eq. �2� would be exact
if the electrostatic potential ��r� on the right hand side of Eq.
�2� is replaced by the potential of mean force between the
microion and colloid, w�r�. In that case Zback would simply
be the bare colloidal charge Zo and �back�r�=�ogoo�r�, where
�o is the mean colloidal density. Unfortunately, there is no
explicit way of calculating the potential of mean force. We
are, thus, forced to identify w�r�	��r�. This is permissible
for monovalent ions in aqueous suspensions for which the
electrostatic correlations between the microions are small.
The price for identifying w�r�	��r� is, however, a manda-
tory renormalization of the colloidal charge. Furthermore,
one loses the direct identity between the background density
and the colloid-colloid correlation function.

Within the renormalized jellium approximation �back�r�
=�o and the bulk electroneutrality condition becomes

�
j=�

� jzje
−�qzj�	 − Zback�o = 0, �3�

where �	 is the Donnan potential which ensures the overall
electroneutrality. In the canonical ensemble, we can take
�	=0. For a given set of parameters �including the back-
ground charge Zback�, Eq. �2� can be solved numerically. As-
ymptotically, its solution has the form

�as�r� = �	 −
Zeffq

�

e−��r−a�

r�1 + �a�
. �4�

In the semigrand canonical ensemble20 �q�	

=−arcsinh�Zeff�o /2cs� and the inverse Debye length is

�=�8��bcs cosh��q�	�. In the canonical ensemble, �	=0

and �=�4��b��−+�+�. Equation �4� allows us to calculate
the effective charge Zeff as a function of Zo and Zback. The
self-consistency condition is imposed by requiring that Zeff

=Zback, which determines the physical value of the effective
colloidal charge. It is important to note that unlike the cell
model for which there is no pairwise interaction between the
colloids, the macroion-macroion potential of the renormal-
ized jellium model is precisely of the DLVO form.

To extend the renormalized jellium model to larger con-
centrations, Castañeda-Priego et al.24 proposed modifying
the uniform background density �back�r�=�o, to account for
the correlation hole around each macroion. These authors
observed that, for salt-free suspensions, simulations find that
the colloid-colloid correlation function has the first maxi-
mum at r	�−1/3. They then suggested that this distance can
be used to fix the size of the correlation hole between the
macroions in salt-free suspensions.24 Castañeda-Priego et al.
suggested that around each macroion there is an effective
exclusion zone of radius rh=1 /2�1/3, devoid of the back-
ground charge. The factor of 2 is included in order to account
for the fact that the exclusion zone is divided equally be-
tween the two macroions, see Fig. 1. The exclusion zone
around each colloid is then taken into account by replacing
the usual uniform jellium background density by a step func-
tion �back�r�=�o
�r−rh� in Eq. �2�. Such procedure, how-
ever, still lacks the self-consistency, since the resulting effec-

tive charge cannot be directly related with the correlation
function, which is implicit in the form of �back�r�. Further-
more, it is not clear how one can extend the above procedure
to define the radius of the correlation hole for suspensions
containing additional 1:1 electrolyte.

III. THE SELF-CONSISTENT JELLIUM MODEL

Although the renormalized jellium model and its modi-
fied versions allow us to calculate the effective charges, both
theories lack internal self-consistency. In order to correct
this, it is necessary to find a way to calculate the effective
charge and the correlation function goo�r� simultaneously. To
achieve this, we observe that the background charge in Eq.
�2� should be related in some way to the colloid-colloid cor-
relation function. Unfortunately, as discussed above, within
the renormalized jellium model, one cannot identify the spa-
tial variation of the background charge directly with the
goo�r�. We note, however, that goo�r� does carry the informa-
tion about the size of the exclusion zone, which is approxi-
mately half the distance to the first peak of goo�r�. In view of
this observation, we will make the ansatz of identifying the
background density variation with the rescaled colloid-
colloid correlation function �back�r�=�ogoo�2r�. This choice
leads to a uniform background far from colloid �back�r�	�o,
while at the same time produces a correlation hole of appro-
priate size, �back�r�	0 for r�rh.

With this modification, the fully self-consistent jellium
�sc-jellium� equation becomes

�2��r̃� = − 4��ba2��+e−��r̃� − �−e��r̃�� + 3Z̃backgoo�2r̃� ,

�5�

where we defined the dimensionless quantities r̃
r /a,

��r�
�q��r�, Z̃back
Zback�b /a, and 
4�a3�o /3. As be-
fore, the effective charge is determined by the requirement
that Zeff=Zback. Equation �5� is solved by an iterative proce-
dure. We start with colloid-colloid pair correlation goo

�1��r�
=1 and use this in Eq. �5� to extract the corresponding effec-
tive and background charge Zeff

�1�=Zback
�1� . The system is then

considered in the OCM approach, with the interaction poten-
tial between the colloids given by

FIG. 1. Two macroions of radius a separated by a distance r=2x, at which
the macroion-macroion correlation function has the first maximum. By sym-
metry, we can define around each macroion an effective exclusion zone of
radius x.
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�u�r̃� =
1

�
� Z̃eff

�1 + �a�
�2

e−�a�r̃−2�

r̃
, �6�

where �=�b /a. In the semigrand canonical ensemble,

��a�2= ��1a�2�1+ ��res /�1�4�1/2, ��1a�2=3Z̃eff, and ��resa�2

=8��bcsa
2. We then numerically solve the one component

OZ integral equation with the Rogers–Young �RY� closure to
determine the new pair correlation function goo

�2��r�. This
function is then used as a new input in Eq. �5� to calculate
the new effective charge Zeff

�2�. The procedure is iterated until
the convergence is achieved, goo

�i��r�=goo
�i−1��r�. In practice,

only a few iterations are necessary to fulfill this condition.
The RY closure is an interpolation between the hypernet-

ted chain approximation �HNC� and the Percus–Yevick rela-
tion, with an adjustable parameter � chosen so as to satisfy
the thermodynamic self-consistency in the calculation of the
isothermal compressibility.25 In the salt-free case, the major
contribution to the osmotic pressure comes from counterions,
so that � is determined by imposing the requirement that

���P�
��

= 1 + �ĥoo�0� 	
Z̃eff

�
, �7�

where ĥoo is the Fourier transform of the total correlation
function. The first equality is the Kirkwood–Buff relation,26

while the second one comes from approximating the micro-
ion pressure by the jellium equation of state,19,20 �P=Zeff�,
and disregarding the weak dependence of the effective
charge on the macroion density.

For the case of large salt concentrations and moderate
volume fractions—when the density dependence of the ef-
fective pair potential is weak—the pressure is given by that
of the OCM,27,28 and the last equality in Eq. �7� is replaced
by the OCM inverse compressibility,

1 + �ĥoo�0� =
���POCM�

��
. �8�

The OCM pressure POCM can be calculated from the pair
correlation function using the well known virial equation. It
is important to note that, in calculating the right hand side of
Eq. �8�, the interaction potential must be kept constant.27 We
use Eq. �8� to determine � in the RY closure when dealing
with suspensions in contact with a salt reservoir at large con-
centration.

In practice, due to finite discretization, the calculated
correlation function is not equal to 1 for large distances.
Instead, it oscillates around 1 with a small amplitude. This
creates difficulty for the numerical solution of the PB equa-
tion. In order to ensure the correct long-distance behavior of
��r�, we set a cutoff distance r̃c, beyond which we force
goo�r̃�=1. The value of r̃c is chosen such that �goo�r̃�−1�
�0.0025 for r̃� r̃c.

IV. RESULTS

In Fig. 2 we plot the macroion-macroion correlation
functions calculated using the sc-jellium model developed
above and compare it with the results of the modified jellium
�m-jellium� approximation of Castañeda-Priego et al. and

with the MC simulations performed by Linse29 for aqueous
de-ionized suspension, �b	7.2 Å, �res=0 and colloidal vol-
ume fraction =0.01. Three systems with coupling param-
eters �=0.3558 �a�, 0.1779 �b�, and 0.0445 �c�, correspond-
ing to particles of radius a	160, 40, and 20 Å, respectively,
were studied. All the calculations were performed in the
saturation limit �very large bare charge�. The corresponding
effective charges are displayed in the graphs. As can be seen,
both the sc-jellium approach and the m-jellium show good
agreement with the MC simulations for �=0.3558 and �
=0.1779, while for the lowest value �=0.0445 the m-jellium
model seems to strongly overestimate the colloidal structure.

In Fig. 3 we compare the correlation functions calculated
using the sc-jellium with the MC simulations for various
colloidal volume fractions at fixed coupling parameter �
=0.3558 in the no-salt regime. Again, a good agreement with
the MC simulations is found for all the macroion concentra-
tions. Surprisingly, this agreement seems to be better at
higher volume fractions, diminishing as the concentration
becomes very low. Figure 4 shows the behavior of the effec-
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FIG. 2. Macroion-macroion correlation functions calculated using the sc-
jellium �dashed lines�, m-jellium �dotted lines�, and MC simulations �Ref.
29� �solid lines� for a de-ionized colloidal suspensions at volume fraction
=0.01. The coupling parameters are �a� �=0.3558, �b� �=0.1779, and �c�
�=0.0445.
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tive charge as a function of the colloidal volume fraction for
the sc-jellium �dashed curve�, m-jellium �dotted curve�, and
the original renormalized jellium model of Trizac and Levin
�solid curve�. Although the qualitative behavior is the same
for all three models, there is a significant quantitative varia-
tion in the value of the effective charge. The effective
charges predicted by the sc-jellium lie between those of the
m-jellium and the renormalized jellium models.

The real advantage of the sc-jellium over the m-jellium
is that it allows us to accurately calculate the effective
charges and structures for suspensions containing 1:1 elec-
trolyte. At the moment this is the only theory capable of
doing this for strongly charged colloidal particles. The ef-
fects of nonzero salt concentration on the macroion structure
can be seen in Fig. 5, where the correlation functions for
reservoir salt concentrations corresponding to �resa=1.0 and
�resa=1.5 are displayed for various volume fractions. In Fig.
6, the predictions of the theory are compared with the results
of MC simulations performed by Lobaskin and Qamhieh30

for aqueous suspensions containing monovalent salt. Once
again, the calculated correlation functions are found to be in
good agreement with MC simulations.

In the case of suspensions containing 1:1 electrolyte, we
see some very general trends. As expected, increase in salt
concentration leads to larger screening and loss of colloidal
structure. In the salt dominated regime, the correlation func-
tions become nearly independent of the macroion concentra-

tion. For these cases, both the effective potential and the
effective colloidal charge show very slow variation with the
colloidal volume fraction; this also explains the weak varia-
tion of the correlation functions. Another remarkable feature
is that, at high salt concentrations, the colloidal structure is
no longer important for the computation of the effective
charge, Fig. 7. The effective charge calculated using the
original renormalized jellium model with a uniform back-
ground and the sc-jellium are practically the same.

V. SUMMARY AND CONCLUSIONS

We developed a theory that allows us to self-consistently
calculate both the thermodynamic and structural properties
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FIG. 3. Macroion-macroion correlation functions calculated using the sc-
jellium �dashed lines� and MC simulations �Ref. 29� �solid lines� for a de-
ionized colloidal suspension with coupling parameter �=0.3558. From left
to right, the volume fractions are =0.08, =0.04, =0.02, =0.01, and
=0.005.
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FIG. 4. Reduced effective charge as a function of volume fraction for a
de-ionized colloidal suspension with �=0.3558, as predicted by the renor-
malized jellium model �solid curve�, m-jellium �dotted curve� and the fully
self-consistent approach developed in this paper �dashed curve�.
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FIG. 5. Macroion-macroion correlation functions calculated using the sc-
jellium, for suspension with �=0.3558 in contact with a salt reservoir at
�resa=1.0 in �a� and �resa=1.5 in �b�. From left to right, colloidal volume
fractions are =0.08, =0.04, =0.02, =0.01, =0.005, =0.001, and
=0.0005. As the volume fraction decreases, the correlation functions be-
come nearly independent on the macroion concentration and the curves start
to overlap.
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FIG. 6. Colloid-colloid pair correlation functions for an aqueous suspension
with added 1:1 electrolyte at room temperature and volume fraction 
=0.0084. Colloidal radius is a=20 Å. The continuous line are from MC
simulations �Ref. 30�, while the dashed lines are the predictions of the
sc-jellium model. From left to right, the reservoir screening lengths are
given by �resa=3.28, �resa=1.04, and �resa=0. The corresponding effective

charges predicted by the sc-jellium approach are Z̃eff=19.5, Z̃eff=9.22, and

Z̃eff=6.05, respectively.
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of aqueous colloidal suspensions containing 1:1 electrolyte.
The theory is based on coupling of the OZ equation with RY
closure to the PB equation with the renormalized jellium
approximation. The predictions of the theory were compared
to the MC simulations and were found to be in good agree-
ment. Finally, it is important to stress that the theory devel-
oped above applies only to aqueous suspensions containing
monovalent counterions. In this case the correlations be-
tween the microions are small and the interaction potential
between the colloidal particles is well approximated by the
DLVO potential. This will no longer be the case for suspen-
sions containing multivalent counterions or in solvents of
low dielectric constant. Under these conditions one finds
many other interesting effects, such as like-charge attraction
and the reversal of the electrophoretic mobility. There is an
extensive literature dealing with these fascinating
phenomena.1,31
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FIG. 7. Reduced effective charge as a function of the volume fraction as
predicted by the renormalized jellium and the sc-jellium models.
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