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We put forward a simple procedure for extracting dynamical information from Monte Carlo sim-
ulations, by appropriate matching of the short-time diffusion tensor with its infinite-dilution limit
counterpart, which is supposed to be known. This approach – discarding hydrodynamics interactions
– first allows us to improve the efficiency of previous dynamic Monte Carlo algorithms for spherical
Brownian particles. In the second step, we address the case of anisotropic colloids with orientational
degrees of freedom. As an illustration, we present a detailed study of the dynamics of thin platelets,
with emphasis on long-time diffusion and orientational correlations. © 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4737928]

I. INTRODUCTION

Monte Carlo (MC) simulations provide a powerful
method for calculating the thermodynamical averages of
physical quantities of many-body systems and have been em-
ployed to study the equilibrium properties and phases of a
large variety of physical systems. Such approaches rely on
the generation of a Markov chain – a stochastic set of con-
figurations – with appropriate sampling of phase space. In
the most common variants of MC, such as Metropolis al-
gorithms, trial moves are accepted with a certain probabil-
ity that satisfies detailed balance with respect to the desired
Boltzmann distribution.1, 2 This method is frequently used to
obtain average values of macroscopic quantities in equilib-
rium thermodynamic ensembles. Also, other variants of MC
such as hybrid MC (Ref. 3) based on evolution of Hamiltonian
have been devised that allow for global moves such as clus-
ter moves to speed up the equilibration of the system. Thus,
such schemes are more efficient for obtaining the ensemble
averages of desirable quantities.

Although MC methods were initially devised to study
static properties. In some cases though, where mesoscopic de-
grees of freedom interact with microscopic ones, the ensuing
separation of time scales allows to replace the microscopic
details by a noise, in the spirit of a Langevin equation. A suit-
ably chosen MC scheme – stochastic in nature – then allows to
study dynamical features of the mesoscopic degrees of free-
dom, meaning that correlations between successive configu-
rations in the Markov chain of the MC simulation can be in-
terpreted in terms of the dynamic correlation functions. The
legitimacy of this approach stems from the coincidence of the
Fokker-Planck equations of the original system governed by
the aforementioned Langevin-type dynamics, and of the ficti-
tious MC dynamics.4–6

Recently, there has been a rise of interest to em-
ploy MC simulations to study the dynamics of colloidal
suspensions.5, 7, 8 On the time scale that momenta correlations
have decayed, colloids undergo diffusive motion as a result
of collisions with solvent molecules. Therefore, at these time
scales the stochastic dynamics generated by MC algorithm
seems to be more appropriate compared to the determinis-

tic Newtonian dynamics where solvent is omitted. Dynamic
(sometimes known as Brownian) Monte Carlo (DMC) algo-
rithms in which only single particle moves with sufficiently
small displacements are allowed, excluding MC variants such
as hybrid MC schemes, reproduce the real dynamics for times
larger than the time scale of momenta relaxation. In such a
case MC schemes with physically meaningful moves become
equivalent to Brownian dynamics (BD) simulations:4–13 a BD
algorithm is also stochastic, with integrated out momenta and
positions evolving with overdamped Langevin dynamics.1

The advantage of DMC over BD is that it is easily adapt-
able to systems with non-differentiable (hard) potentials. Al-
though an “event-driven” variant of BD technique has been
developed14 to deal with such types of interactions, the im-
plementation of MC scheme is simpler. Furthermore, for the
case of interacting particles, in BD simulations forces in each
direction should be calculated while in MC simulation only
energy needs to be computed. Hence, studying the dynam-
ics of hard particles with the DMC scheme seems to be an
efficient route, provided that an accurate mapping between
the Monte Carlo time step and the physical time is worked
out. Achieving this goal is the main motivation of the present
work.

The significance of establishing the matching of time
scales is justified by the recent increasing use of DMC for
studying dynamics of various systems.15–18 Recently, it has
been proposed that equating the square of amplitude of MC
displacement scaled with acceptance probability with infinite-
dilution limit diffusion coefficient provides a good estimate of
the physical time for spherical particles.7 The applicability of
this proposition is justified through agreement of BD simula-
tions results with those of DMC.7, 8 Furthermore, these studies
show that scaling the Monte Carlo time step with acceptance
probability allows one to extend the limit of validity of DMC
to relatively larger displacement amplitudes corresponding to
acceptance probabilities – the fraction of accepted MC at-
tempted moves – significantly smaller than 1. Here, we pro-
pose an alternative physically motivated approach for map-
ping the MC time to physical time. It allows us to push the
limit of applicability of DMC to even larger displacement
amplitudes (smaller acceptance probabilities). Our scheme is
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based on equating the short-time self-diffusion extracted from
simulations directly with the infinite-dilution diffusion coef-
ficient. Particular attention is paid to anisotropic particles. At
variance with previous approaches that did not consider the
anisotropy of the short-time diffusion tensor,8 we have taken
into account the important coupling between orientational and
translational degrees of freedom. In all what follows, the var-
ious short-time diffusion constants are supposed to be known,
and implicitly account for the presence of an underlying
solvent.

The rest of the paper is organized as follows. In Sec. II,
the method is presented, for both spherical and anisotropic
particles. In particular, we discuss the relation between the
amplitudes of translational and rotational moves, essential to
achieve a physically consistent diffusive process. In Sec. III,
we study the convergence and self-consistency of DMC sim-
ulations as a function of displacement amplitude for both
spherical and disk-shaped particles, and compare our ap-
proach with previous investigations. As an illustration, the
method is employed in Sec. IV to explore the development of
long-time translational diffusion of infinitely thin hard disks
(platelets) as a function of density. We find that upon increas-
ing the density deep in the nematic phase, the long-time diffu-
sion becomes anisotropic, and that in contrast to an impeded
diffusion in the nematic direction, the transverse diffusion of
disks is enhanced. Concluding remarks close the paper with
Sec. V.

II. METHODOLOGY

We start by describing the dynamic Monte Carlo algo-
rithms used for both spherical and anisotropic particles. In
each case, we discuss the procedure for matching of the time
scales. We then introduce the model systems and provide the
simulation details.

A. DMC algorithm for spherical particles

Colloids suspended in a solvent undergo overdamped
Brownian motion with diffusive behavior, for large enough
times compared to the momentum relaxation time τ t

M . The lat-
ter quantity is set by the colloids mass M and the translational
friction coefficient γ t that depends on the particle size and
shape, its value being 3πησ for spherical objects of diameter
σ with stick boundary conditions: τ t

M ≡ M/γt . The resulting
mean-squared displacement (MSD) of non-interacting col-
loids varies linearly with time for t � τ t

M , with a slope given
by the infinite-dilution diffusion coefficient Dt

0 = kBT /γt .
However, for interacting colloids in non-dilute suspensions,
different diffusion processes should be distinguished, namely,
short-time Dt

S and long-time Dt
L diffusion. The distinction re-

quires the introduction of the Brownian time scale τB defined
as the time required for an isolated colloid to diffuse over its
diameter σ , i.e., τB ≡ σ 2/(6Dt

0). For relatively short times,
larger than τ t

M but smaller than the Brownian time scale, the
colloids influence each others motions indirectly through the
solvent flow field in which they move. These solvent me-
diated hydrodynamic interactions may affect the short-time
diffusion. If one ignores the hydrodynamic interactions, as

in the subsequent analysis, the short-time diffusion is that
of infinite-dilution diffusion coefficient Dt

s = Dt
0.19, 20 On the

contrary, the long-time diffusion Dt
L that is defined for t

� τB is mainly determined by the direct interactions between
colloids.19, 21 For typical colloids with diameters in the range
10 nm–1 μm, we have τB/τ t

M � 1 with well separated diffu-
sive regimes.

Now, consider a MC procedure discarding hydrodynamic
interactions, where each of N interacting spherical particles
in the simulation box is shifted by a random displacement
chosen in the interval [−δl, δl] along each Cartesian coor-
dinate. The moves are accepted according to the Metropolis
algorithm.2 Such a simulation mimics the Brownian motion
of the colloids for time scales t � τ t

M . One expects that the
MSD of a particle after n cycles 〈�r2(n)〉 = 1/N

∑N
i=1〈|�ri(n)

− �ri(0)|2〉 varies linearly with the number n of MC cycles, for
both small values of n corresponding to the short-time regime,
and large n, albeit with a different slope. The MSD for suffi-
ciently small n is governed by the infinite-dilution diffusion
coefficient Dt

0, i.e., 〈�r2(n)〉 ≈ 6Dt
0(nδt), provided that the

amplitude of MC move δl is chosen sufficiently small, i.e., δl
� σ where δt is the physical time interval that each MC cycle
corresponds to. As a result, we impose that the relation be-
tween the MC clock and the real time δt can be obtained from
the slope of MSD in the small n limit, i.e., the short-time dif-
fusion of MC simulation

δt

τB

= lim
n→0

〈�r2(n)〉
nσ 2

, (1)

where limn→0 with n an integer refers to the limiting behav-
ior of the MSD slope at small n. It has been noted that for
sufficiently small δl, 〈�r2(1)〉 = Aδl2, where A is the accep-
tance probability of the MC scheme.7 It was therefore sug-
gested that the time scale corresponding to a MC cycle can
be obtained as: δt = Aδl2/6Dt

0 . Scaled in terms of Brownian
time, this equation can be written as

δt

τB

= A
δl2

σ 2
, (2)

which provides an alternative route against which our ap-
proach will be tested in Sec. III. In the following, we will
denote this A-rescaling procedure as the variant VA, while the
diffusion matching will be referred to as variant VD . We will
show that, quite expectedly, both methods become equivalent,
for sufficiently small δl. However, enforcing (1) instead of (2)
allows us to extend the limit of applicability of DMC towards
larger values of δl.

B. DMC algorithm for anisotropic particles

For anisotropic particles with orientational degrees of
freedom and depending on the shape, the diffusion in some
directions is favored over some others, leading to the cou-
pling of translational and rotational motions.22 Henceforth,
for a meaningful dynamics, due account should be taken of
the anisotropy of diffusion in the body frame. Similar to the
translation-only case, simulations based on DMC can produce
the correct dynamics of the rotational degree of freedom for
time scales larger than the damping time of angular velocity
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τ r
M = Ir/γr , where Ir is the moment of inertia and γ r is

the rotational friction coefficient. The exact value of τ r
M de-

pends on the size, shape of the particle, and the axis of ro-
tation under consideration, but its order of magnitude is the
same as τ t

M . On the other hand, the time scale for orienta-
tional relaxation τ r is given by the inverse of the infinite-
dilution rotational diffusion coefficient Dr

0 = kBT /γr leading
to τr/τ

r
M = kBT /Ir � 1 for sufficiently large colloids.

To illustrate the DMC implementation for anisotropic
colloids, we focus here on axially symmetric particles, al-
though the generalization of our method to less symmetric ob-
jects is straightforward. We consider a system of N thin disks.
Each of them can be identified by its center of mass position
�ri and its orientation unit vector ûi that is taken along the sym-
metry axis. The translational (resp. rotational) diffusion tensor
in the body frame is diagonal and consists of one coefficient
Dt

0|| (resp. Dr
0||) for the direction parallel to ûi and two identi-

cal coefficients Dt
0⊥ (resp. Dr

0⊥) for perpendicular directions.
In the following, we describe two variants of the same MC
algorithm that consists of simultaneous translational and ro-
tational displacements enforcing proper symmetry of the dif-
fusion tensors. We ignore the rotations around the symme-
try axis of the particle, as they cannot be detected in most
of experiments; only rotations around axes perpendicular to
symmetry axis are considered, i.e., rotations of the orienta-
tion vector, characterized by the same coefficient Dr

0⊥ which
for simplicity we denote as Dr

0. The first variant, VA, bears
similarities with the approach presented in Ref. 8 but differs
in two respects: first, no fine tuning of translational and ori-
entational moves are required here; second, we fully resolve
the anisotropic dynamics at short times, which is an essential
prerequisite for the study of phases with orientational order,
such as nematic phases. The second variant is reminiscent of
the method put forward above for spherical particles.

We start by considering the limit of small MC incre-
ments, for which acceptance probability of the move is close
to unity. A general attempted translational move can be de-
scribed by δ�ri = δx n̂x i + δy n̂y i + δz ûi , where n̂x i and n̂y i

are two mutually perpendicular arbitrary unit vectors that are
normal to ûi as well, δz is a random number in the interval
[−δl, δl], and δx, δy are random numbers in the interval [−δl′,
δl′]. For sufficiently small δl and δl′, the average MSD in the
direction parallel to ûi is 〈δz2〉 � δl2/3 and along perpendicu-
lar directions is 〈δx2〉 = 〈δy2〉 � δl′2/3. Imposing the symme-
try of the diffusion tensor provides us with a relation between
δl′ and δl , i .e.,

δl′

δl
≈

√
Dt

0⊥
Dt

0||
. (3)

In addition, in the short-time diffusion regime, we should have
〈δz2〉 = 2D0||t, so that the time increment corresponding to
one single MC cycle reads

δt = 〈δz2(1)〉
2Dt

0||
. (4)

If the orientation distribution for the ensemble of disks is
isotropic, a restrictive assumption, we have 〈δr2〉 = 2D0⊥δl′2

+ D0||δl2. Defining the average translational diffusion as

Dt
0 = (2Dt

0⊥ + Dt
0||)/3, the MSD can then be simplified to

〈δr2〉 ≈ Dt
0

Dt
0||

δl2.

The change of orientation can be seen as a random rota-
tional displacement with an angle δθ in the interval [0, δα],
such that ûnew

i .̂ui = cos δθ , see Fig. 1(b) for an illustration.
Such a rotation can be achieved as follows:2, 23 we generate a
unit vector û′

i with an isotropic random orientation and obtain
the new orientation vector as

ûnew
i = N [(1 − δα)̂ui + δαû′

i], (5)

where N ensures proper normalization. From this, one can
calculate the correlation between the new and initial orienta-
tion vector in terms of δα,

〈̂unew
i .̂ui〉 = F (δα) ≡ 6 + 4(−3 + δα)δα

6(−1 + δα)2
δα < 0.5

� 1 − δα2/3 + 2/3δα3 δα � 1, (6)

where the average is taken over all the possible orientations
of the random vector û′

i . Then the function F(δα) is obtained
as 1/2

∫ π

0 N (δα, cos θ )[(1 − δα) + δα cos θ ] sin θdθ . In ad-
dition, for the physical Brownian system under study, we have
〈̂u(t).̂u(0)〉 = exp(−2Dr

0t),
24 so that we get from Eq. (6)

δt = − ln(F (δα))

2Dr
0

. (7)

In the limit of small δα, the mean-squared angular displace-
ment for diffusion of orientational vector can be obtained
from Eq. (6): |〈̂u(δα) − û(0)〉|2 ≡ 〈δθ2〉 � 2δα2/3 (for δα

� 1) that should be equal to 4Dr
0Aδt . The last step is to en-

force consistency of time scales, equating the two relations
for δt, i.e., Eqs. (4) and (7). Doing so, we obtain

δt = δl2

6Dt
0||

(8)

and the following constraint between the amplitudes of trans-
lational and rotational moves:

δl =
√

−3 ln(F (δα))

√
Dr

0

Dt
0||

. (9)

FIG. 1. A schematic drawing presenting (a) an example of an axially sym-
metric object with its orientation vector ûi together with its body frame de-
fined by ûi and two mutually perpendicular vectors n̂x i and n̂y i . (b) Rotation
of orientation vector with an angle δθ .
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In the limit of smaller δα, this simplifies into

δα

δl
�

√
Dr

0

Dt
0||

. (10)

We should now take due account of the fact that A = 1.
In the first variant of the approach, VA, it is assumed that the
physical time increment is slowed down by rejected moves,
so that the generalized Eqs. (7) and (8) read

δt = A
δl2

6Dt
0||

(11)

δt = −A
ln(F (δα))

2Dr
0

. (12)

Therefore, once the amplitude of orientational moves δα has
been chosen, the amplitudes of translational moves δl and δl′

follow from Eqs. (3) and (9). Physical time is given by (11) or
equivalently (12), where the acceptance probability A is com-
puted on the fly in the simulation. Alternatively, for variant
VD , we again impose (3) and (9), but determine the physical
time scale by imposing that 〈δz2(1)〉 computed in the simula-
tion coincides with 2Dt

0||t .
Before illustrating the applicability of our DMC algo-

rithm, we provide in the following section some details con-
cerning the systems simulated.

C. Model systems and simulation details

In the remainder, we investigate the dynamics of two
model systems by means of DMC simulations: hard sphere
colloids (system A) and infinitely thin disks (system B) with
diameters σ . We take into account the direct hard-core inter-
actions by choosing at random a particle and generating a ran-
dom trial MC move (including the rotational move for disks)
and rejecting the displacements that lead to an overlap with
neighbors.23

The first system consists of N spheres in a cubic box
of length L, with periodic boundary conditions. We took N
= 1024 and the simulations were performed for volume frac-
tions � ≡ πσ 3/(6NL3) in the range 0.05–0.5. The starting
configuration was that of a Body-Centered Cubic (BCC) crys-
tal melted by an equilibration run of 2 × 105 MC cycles (one
trial move per particle). The production runs for calculating
the mean-squared displacements consisted of 1 − 5 × 106 cy-
cles, depending on the volume fraction and the amplitude of
translational displacements 0.01 ≤ δl/σ ≤ 0.1.

The second system consists of N = 500 disks again in a
cubic simulation box with periodic boundary conditions. For
each reduced density ρ* = Nσ 3/L3, first an equilibration run
of 5 − 10 × 104 MC cycles was performed starting with an
initial configuration of disks on an FCC crystal with parallel
orientations. The production runs for calculating the transla-
tional mean-squared displacements and orientational correla-
tions were in the range of 106–107 cycles, depending on the
density. The displacements amplitudes were in the range 2
× 10−4 ≤ δl/σ ≤ 0.2 and 0.005 ≤ δα ≤ 0.324. The infinite-
dilution translational and rotational diffusion coefficients of

disks used in the simulations are

D0|| = kBT

8ησ
and D0⊥ = 3kBT

16ησ
, (13)

giving an average diffusion coefficient of Dt
0 = kBT

6ησ
. On the

other hand, we have for the rotational diffusion

D0r = 3kT

4ησ 3
. (14)

These results are obtained from the general formula of diffu-
sion coefficients of oblate spheroids25, 26 in the limit of vanish-
ing length of semi-minor axis. Having described the method-
ology and simulation details, we present below the results of
our DMC simulations.

III. ASSESSMENT OF THE DYNAMIC MONTE CARLO
SCHEME

In this section, we present our DMC results for hard
sphere self-diffusion, and then turn to thin disks. We compare
and discuss the two different procedures for mapping MC
time, i.e., rescaling with acceptance probability or directly
matching short-time dynamics with infinite-dilution diffusion
tensor.

A. Dynamics of spherical colloids

We start by discussing the time-scale matching in a col-
loidal suspension of hard spheres. Figure 2 shows the time
dependence of the mean square displacement at a relatively
high volume fraction � = 0.5, for different values of MC dis-
placement amplitude δ = δl/σ . In Fig. 2(a), the physical time
is obtained from δ2 scaled with acceptance probability, i.e.,
t/τB = nAδ2 as suggested in Ref. 7. As reported in Ref. 7 such
a procedure leads to a decent data collapse, the goal being
to obtain results that do not depend on δ. In this respect, the
collapse is only partial, see, e.g., the δ = 0.1 data that do not
completely superimpose to those for δ = 0.01.

In Fig. 2(b), we have obtained the physical time from the
alternative method leading to Eq. (1). The graph shows that
equating the short-time diffusion from MC with Dt

0 directly,
allows a better collapse of MSDs for larger values of δ (where
acceptance probabilities are smaller). We emphasize that for
the small δ = 0.01, the two approaches yield the same results.
However, with the present proposal, we can employ the DMC
algorithm for relatively larger values of the increment δ. As
discussed in Sec. II, the rationale behind our method is the
fact that at short times (t � τB), the particles diffuse freely
with diffusion coefficient Dt

0, while for long enough times
(t � τB), the MSD crosses over from free diffusion to a
slowed-down motion characterized by long-time diffusion
Dt

L. This is illustrated in Fig. 3(a), for � = 0.5, where the re-
duction of diffusion coefficients is ten-fold. These results pro-
vide us with a guideline for obtaining the optimal value of dis-
placement for an efficient DMC scheme. It is the largest dis-
placement δ for which we can still resolve the Brownian time
scale, i.e., the short-time diffusion, where the corresponding
mean-square displacement should correspond to that obtained
for DMC of smaller amplitude (or BD if available).
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(a) (b)

FIG. 2. Mean-squared displacement obtained from DMC simulations for a hard sphere system of volume fraction � = 0.5, as a function of time. The curves
correspond to three different values of displacement amplitude δ = δl/σ = 0.01, 0.07, and 0.1. The corresponding acceptance probabilities A are: 0.84, 0.317,
and 0.202, respectively. (a) t/τB is obtained by scaling with acceptance probability A using Eq. (2). The lower dashed curve shows the MSD data for δ = 0.1
without A-rescaling. (b) t/τB is obtained from Eq. (1) by matching the MC short-time diffusion coefficient to Dt

0. For comparison, the curve with δ = 0.01 and
A-rescaling [i.e., the one shown in panel a)] is also plotted.

To further test the reliability of our method, we have plot-
ted in Fig. 3(b) the long-time diffusion coefficient, extracted
from the slope of the MSD curve at long times, as a function
of volume fraction � for different sampling amplitudes. For
comparison, we have also included the results obtained from
scaling with A for δ = 0.1 and Brownian dynamics results
taken from Ref. 27. The simulation data from event-driven
BD (Ref. 14) are fully consistent with our DMC results (not
shown). While for δ = 0.01 the two approaches are equivalent
(as illustrated in Fig. 2(b)), some discrepancy is visible for δ

= 0.1 and � > 0.35. We conclude here that the A-rescaling
fares somewhat worse. For completeness, we also have dis-
played the theoretical results of Tokuyama and Oppenheim
for the ratio of long-time to short-time diffusion Dt

L/Dt
S ob-

tained for spherical particles when hydrodynamic interactions

are accounted for. Good agreement is found with the present
simulation data that discard such interactions, consistently
with the findings of Ref. 21.

B. Dynamics of thin colloidal disks

We now turn to the DMC simulations of thin disks. First,
we investigate the time behavior of MSD and orientational
correlations for a low density system, and compare these re-
sults with the theoretical expectations for a freely diffusive
particle. As can be seen in Fig. 4(a), the particles diffuse,
as they should, with the same diffusion coefficient at short
and long times. To quantify orientational dynamics, it is cus-
tomary to define the correlation functions 〈Pl (̂ui(t) · ûi(0))〉,

(a)
(b)

FIG. 3. (a) The mean square displacement obtained for � = 0.5 and δ = 0.002 clearly demonstrates a short-time slope of 6Dt
0 (unity in scaled units) while at

long time, the MSD grows with a reduced slope given by Dt
L. (b) Long-time diffusion coefficient of hard sphere colloids without hydrodynamic interactions,

obtained from DMC simulations with two DMC variants: VD (solid squares, δ = 0.01, and triangle, δ = 0.1) and VA (open triangles, δ = 0.1). Also shown are
hard sphere BD results from Ref. 27 (open circles). The short-dashed curve is for the Tokuyama and Oppenheim formula,28 that is used in Ref. 27 to obtain the
ratio of long- to short-time diffusion.
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(a) (b)

FIG. 4. DMC simulations results of thin platelets at a low density of ρ* = 0.1, obtained for a displacement amplitude of δ = δl/σ = 0.005, for which the
acceptance probability is 0.9988. (a) The MSD as a function of t/τB = nδl2 agrees well with the line of slope unity. (b) The first- and second-order time
orientational correlations versus t/τ 0r

1 = 2nDr
0δα

2/3 show a good agreement with exp(−t/τ 0r
l ).

where Pl is the lth order Legendre polynomial. For a col-
loid in diluted conditions, these orientational time correla-
tion functions decay exponentially with a relaxation time τ 0r

l

= 1/(Dr
0l(l + 1)).24, 26 Of particular interest among the corre-

lation functions are those associated with P1 and P2, that are
related to the dielectric properties of polar liquids and to the
scattering of depolarized light, respectively.26 In panel (b) of
Fig. 4, we have plotted both the first- and the second-order ori-
entational correlation functions versus time. These functions
show a very good agreement with their analytical infinite-
dilution counterparts. It should be noted that with the param-
eters chosen in Fig. 4 where the acceptance ratio is close to
unity, variants VA and VD coincide.

The next step is to explore the self-consistency of our two
variants, where the time behavior generated should be inde-
pendent of the auxiliary parameters chosen for MC sampling.
We have one such parameter, say δα, from which the other

relevant increments δl and δl′ follow, see Eqs. (3) and (9). We
first analyze the behavior of the translational self-diffusion. In
Fig. 5, we have plotted the MSD of disks at a density ρ* = 2,
that is below the density of the isotropic-nematic transition
ρ∗

IN � 4,23 as a function of physical time t/τB, for different
MC sampling amplitudes. As discussed in Sec. II, we perform
simultaneous translational and rotational moves. It appears
that both variants VA [with results shown in panel (a)] and VD

[results in panel (b)] are satisfactorily self-consistent, with a
proper collapse of data. Nevertheless, it can be seen that vari-
ant VA shows a somewhat smaller dispersion of results than
that of VD . Relatively large values of the sampling parameter
are therefore acceptable, and provide results of a comparable
accuracy as more demanding simulation with finer resolution.
The analysis of orientational time correlations corroborates
this conclusion, see Fig. 6. These conclusive tests allow us
to study the density dependence of long-time diffusion in a

(a) (b)

FIG. 5. Mean-squared displacement obtained from DMC simulations for infinitely thin platelets of reduced density ρ* = 2, as a function of physical time.
Different values of sampling amplitudes were used: δ = δl/σ = 0.01, 0.05, 0.1, and 0.2 corresponding to δα = 0.0225, 0.109, 0.196, and 0.324, respectively,
and to the following acceptance probabilities: 0.93, 0.68, 0.48, and 0.25. (a) t/τB is given by variant VA. (b) Results of variant VD .
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(a) (b)

FIG. 6. Same as Fig. 5, for orientational correlations. In both cases, the results are reasonably independent of the sampling parameters.

system of disks, and in particular the effect of a phase transi-
tion crossing.

IV. ANOMALOUS DIFFUSION IN THE NEMATIC
PHASE OF THIN DISKS

Thin platelets undergo an isotropic-nematic transition
upon increasing the density,23 and it is interesting to see
how the long-time translational diffusion and orientational
relaxation are affected. To this end, we have performed
systematic DMC simulations with sufficiently small displace-
ment amplitudes and have obtained both long-time transla-
tional self-diffusion coefficient and orientational relaxation
time as a function of density. Figure 7(a) depicts the long-
time translation self-diffusion coefficient Dt

L. We find that in-
creasing the density, Dt

L decreases up to the transition point.
However, in the nematic phase not only the short-time dif-
fusion is anisotropic, but also the long-time diffusion be-
comes anisotropic with respect to the nematic director. Upon
further increasing the density, we observe that the diffusion

FIG. 8. Ratio Dt
L⊥/Dt

L|| for hard disks as a function of density. DMC data
are compared with their MD counterpart of Ref. 29.

(a) (b)

FIG. 7. (a) Long-time average diffusion coefficient Dt
L (in both isotropic and nematic phases) and long-time diffusion coefficients in directions parallel Dt

L||
and perpendicular Dt

L⊥ to the nematic director for densities ρ* ≥ 4. (b) Dt
L⊥ as a function of nematic order parameter.
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(a) (b)

FIG. 9. (a) The second-order orientational correlation function for different densities of disks. (b) The first- and second-order rotational relaxation times in the
isotropic phase, as a function of density.

coefficient in the direction perpendicular to nematic axis Dt
L⊥

grows while the parallel component Dt
L|| decreases signif-

icantly. As can be seen from Fig. 7(a), Dt
L⊥ approaches

the free diffusion coefficient of disks Dt
0⊥/Dt

0 = 9/8
= 1.125 [see Eq. (13)] in the limit of very high densities. In
Fig. 7(b), we have plotted Dt

L⊥ versus nematic order param-
eter S. As demonstrated by this figure the more the disks
become aligned, the larger is the perpendicular component
of the diffusion in contrast to Dt

L|| that becomes very small:
topological constraints due to the excluded volume constrain
the disks to move in a caging slab of parallel neighboring
particles. We also emphasize that for all results presented
in this section, variants VA and VD provide strictly identical
results.

At this point it is interesting to compare our DMC results
with molecular dynamics (MD) simulations of thin disks,29

where an anisotropic diffusion in the nematic phase has also
been observed.29 However, one should keep in mind that the
model in this work is not equivalent to ours. In our DMC
simulations, we mimic the presence of an underlying sol-
vent through the stochastic nature of MC moves. On the
other hand, there is no solvent and hence the short-time diffu-
sion is replaced by a ballistic regime in the MD approach of
Ref. 29. For a quantitative comparison, Fig. 8 shows the ratio
Dt

L⊥/Dt
L|| as a function of density. It seems that the two mod-

els have a different limiting behavior at high densities, where
the MD data exhibit enhanced anisotropy.

We also have investigated the evolution of orientational
time correlations with density, see Fig. 9(a). We observe that
the orientational time correlations decay exponentially in the
isotropic phase, while they become non-ergodic in the ne-
matic phase and develop a plateau at long times whose value
is equal to the square of nematic order parameter S. To quan-
tify the development of relaxation time with density, we have
fitted the orientational correlation functions in the isotropic
phase with an exponential, and obtained the corresponding
relaxation time for the first- and the second-order correla-
tions as depicted in Fig. 8(b). As expected, relaxation times
grow with density upon approaching the isotropic-nematic
transition.

V. SUMMARY AND CONCLUSIONS

To summarize, we have presented a DMC algorithm for
both spherical and anisotropic colloids. In each case, we have
discussed the procedure for matching the Monte Carlo time
scale with its physical counterpart. In the case of spherical
particles, we found that matching the short-time diffusion
from DMC to the infinite-dilution diffusion coefficient leads
to a better convergence of results than acceptance rate based
schemes, for relatively large values of displacement ampli-
tude. A slightly better agreement of the long-time diffusion
coefficient with Brownian dynamics data available in the lit-
erature was thereby achieved.

For anisotropic colloids, we presented two variants of
the DMC algorithm that takes into account the anisotropy of
short-time diffusion. As for spheres, one is acceptance-rate
based (VA), and one relies on short-time diffusion matching
(VD). Both routes are new in their present formulation, al-
though variant VA shares common features with the approach
of Refs. 7 and 8. A key point is that the appropriate ratio
of translational and rotational move amplitudes is enforced,
which leads to the proper short-time diffusive behavior. We
have tested the self-consistency of both variants that give sim-
ilar results for a system of thin platelets in three dimensional
space. The method was finally employed to investigate the
evolution of the long-time diffusion coefficient and orienta-
tional correlation functions with density. The anisotropy of
the long-time translational diffusion tensor was characterized
in the nematic phase. While diffusion along the nematic axis
becomes small when nematic ordering is more pronounced, it
is enhanced in the perpendicular direction.

We also compared our results of anisotropic diffu-
sion with previous MD simulations for platelets where an
anisotropic long-time diffusion was observed as well.29 Al-
though the two sets of results agree qualitatively, a quanti-
tative comparison is not possible as in this MD study the
solvent-mediated Brownian effects were ignored. Therefore,
it would be interesting to extend this study to systems such as
soft disks where both BD and DMC simulations can be per-
formed rather easily. Such a comparative study will provide
an unambiguous validation of our proposed DMC method for
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the anisotropic colloids. Another issue that deserves to be dis-
cussed at this point is the omission of hydrodynamic interac-
tions in our DMC approach. In principle, our proposed DMC
scheme can be modified to take into account hydrodynamic
interactions as it is discussed for spherical particles by K.
Kikuchi et al.30
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NOMENCLATURE

N Number of particles in the simulation box
of size L

M Mass of particles
σ = 2R Sphere or disk diameter
n Number of Monte Carlo cycles, where

a cycle is defined as one MC move per
particle

� ≡ πσ 3/(6NL3) Volume fraction of spheres
ρ ≡ N/L3 Number density of thin disks
ρ* = ρσ 3 Dimensionless number density of thin

disks
γ t(r) Translational (rotational) friction

coefficient
τ t
M = M/γt Time scale for which momenta of Brow-

nian particles have relaxed
τ r
M = Ir/γr Damping time of angular velocity for ro-

tational Brownian particles
Dt

0 = kBT /γt Infinite-dilution translational diffusion
coefficient of spheres or average transla-
tional diffusion coefficient of anisotropic
particles; for disks, we have Dt

0
= 2Dt

0⊥/3 + Dt
0||/3

Dt
S Short-time translational diffusion

coefficient
Dt

L Long-time translational diffusion
coefficient

τB ≡ σ 2/(6Dt
0) Brownian time scale, required for diffus-

ing over a distance equal to the particle
size

Dt
0⊥ = kBT /γ ⊥

t Infinite-dilution translational diffusion of
an axially symmetric particle in the direc-
tion perpendicular to the symmetry axis

Dt
0|| = kBT /γ

||
t Infinite-dilution translational diffusion of

an axially symmetric particle in the direc-
tion parallel to the symmetry axis

Dt
L⊥ Long-time translational self-diffusion of

axially symmetric particles in the direc-
tion perpendicular to the nematic axis

Dt
|| Long-time translational self-diffusion of

axially symmetric particles in the direc-
tion parallel to the nematic axis

Dr
0⊥ ≡ Dr

0 Infinite-dilution rotational diffusion of
axially symmetric particle in the direc-

tion perpendicular to the symmetry axis;
τr = 1/(2Dr

0) time scale for relaxation of
orientation vector

Dr
0|| = kBT /

γ
||
r = kBT /γ ⊥

r

Infinite-dilution rotational diffusion of
axially symmetric particle in the direc-
tion parallel to the symmetry axis.

〈�r2〉 Mean-square displacement (MSD)
〈δr2〉 ≡ 〈�r2(1)〉 Mean-square displacement after one MC

step
〈δθ2〉 Angular mean-square displacement
A Acceptance probability
δl Amplitude of the translational displace-

ment
δ = δl/σ
δα Maximal amplitude of the rotational dis-

placement δθ

δt Physical time interval corresponding to
one MC cycle

τ r
l The relaxation time of the orien-

tational time correlation functions
〈Pl (̂u(t) · û(0))〉

τ 0r
l = 1/

(l(l + 1)Dr
0)

The lth order orientational relaxation
time of an isolated particle

S Nematic order parameter
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