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3 DPM, Université Claude Bernard Lyon 1, 43 bld du 11 Novembre 1918, 69622 Villeurbanne
Cedex, France

Received 11 October 2002
Published 22 May 2003
Online at stacks.iop.org/JPhysA/36/5835

Abstract
We propose an analytical approximation for the dependence of the effective
charge on the bare charge for spherical and cylindrical macro-ions as a function
of the size of the colloid and salt content, for the situation of a unique colloid
immersed in a sea of electrolyte (where the definition of an effective charge
is non-ambiguous). Our approach is based on the Poisson–Boltzmann (PB)
mean-field theory. Mathematically speaking, our estimate is asymptotically
exact in the limit κa � 1, where a is the radius of the colloid and κ is the
inverse screening length. In practice, a careful comparison with effective charge
parameters, obtained by numerically solving the full nonlinear PB theory,
proves that our estimate is good down to κa ∼ 1. This is precisely the limit
appropriate to treat colloidal suspensions. A particular emphasis is put on the
range of parameters suitable to describe both single and double strand DNA
molecules under physiological conditions.

PACS numbers: 82.70.Dd, 82.39.Pj, 05.70.−a

1. Introduction

We know from the work of Debye and Hückel that elementary charges, e, immersed
in an electrolyte solution interact through a screened Coulomb pair potential, V (r) ∼
e2 exp(−κr)/r , where the screening length, κ−1, characterizes the thermodynamics of the
ionic species. For highly charged macro-ions (bare charge Zbaree, where Zbare � 1), the
strong electrostatic coupling between the macro-ion and the micro-ions results in an additional
screening so that the actual Coulomb pair potential still writes V (r) ∼ Z2

effe
2 exp(−κ ′r)/r at

large distances (with possibly κ ′ �= κ [1]), but now Zeff is an effective (also called ‘apparent’
or ‘renormalized’) charge parameter, much smaller in absolute value than Zbare. The idea is
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that the charged colloid retains captive a fraction of the oppositely charged micro-ions in its
immediate vicinity, and therefore apparently behaves as a new entity of lower electric charge.

Because the effective charge is the relevant parameter to compute the electrostatics of
the system at large inter-particle distances, the concept of charge renormalization plays a
central role in the thermodynamics of highly charged colloidal suspensions. Several reviews
have appeared recently which discuss this notion [1–4], see also [5]. In the colloid science
field, this concept has been introduced by Alexander et al [6] in the context of the Poisson–
Boltzmann (PB) cell model, but it has been widely accepted since the 1950s in the field of
linear polyelectrolytes [7, 8]. For an isolated macro-ion on the other hand, the definition of an
effective charge from the far-field potential created in an electrolyte is unambiguous [2, 9–11].

In general, the effective charge depends on the geometry of the particle, the concentration
of macro-ions and the thermodynamics of the electrolyte. Within the nonlinear PB mean-
field theory, Zeff � Zbare for low values of Zbare, and Zeff saturates to a constant, Zsat

eff ,
when Zbare → ∞. Many studies have focused on finding an approximation for Zsat

eff . In
particular, in the limiting case of infinite dilution, we have proposed a matching procedure
for the electrostatic potential such that Zsat

eff may be estimated at the level of the linearized
PB (LPB) theory only (the nonlinearity of the problem occurring only through an effective
boundary condition,see [9, 10]). This approach may be generalized to account for concentrated
suspensions. In contrast, much less is known about the functional dependence of Zeff on Zbare.
This is because finding the exact analytical dependence Zeff(Zbare) involves solving the full
nonlinear PB system of equations, which is generally out of reach.

Here, we propose an analytical approximation for the dependence of Zeff on Zbare for
spherical and cylindrical macro-ions as a function of the size of the colloid and the salt content.
We restrict ourselves to the infinite dilution limit where an exact analytical representation of
the electrostatic potential, ψ , solution of the nonlinear PB theory has been recently obtained
[12]. Our estimate is asymptotically exact in the limiting case when κa � 1. In practice,
however, it is an accurate approximation of the exact solution in the whole colloidal domain,
κa � 1, where a is the typical size of the colloid.

2. Effective charge dependence

We consider the situation of an isolated macro-ion of given bare charge in a symmetrical,
monovalent electrolyte of bulk density n0 (no confinement). The solvent is considered as a
medium of uniform dielectric (CGS) permittivity ε. Within the PB theory, micro-ions/micro-
ions correlations are discarded and the potential of mean force identified with the electrostatic
potential ψ . Accordingly, the reduced electrostatic potential (φ = eψ/kT ), assumed to vanish
far from the macro-ion, obeys the equation

∇2φ = κ2 sinh φ (1)

where the screening factor κ is defined as κ2 = 8π�Bn0 and the Bjerrum length quantifies the
strength of electrostatic coupling: �B = e2/(εkT ) (kT is the thermal energy). Far away from
the colloid, φ obeys the LPB equation ∇2φ = κ2φ. The far field within PB theory is thus the
same as that found within LPB theory, provided the charge is suitably renormalized in this
latter case. In particular, for infinite rods (radius a, bare line charge density λbare e), we have

φ(r)
r→∞∼ A00

(
2

π

)1/2

K0(κr) (2)

where K0 is the zeroth-order modified Bessel function (the symbol ∼ denotes ‘asymptotically
equal’). In equation (2), the pre-factor A00 is a function of both the thermodynamics of the
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electrolyte and the characteristics of the macro-ion: A00(λbare, κa). With these notations, the
effective line charge density, λeff, is such that

2�Bλeff = A00

(
2

π

)1/2

κa K1(κa) (3)

where K1 is the first-order modified Bessel function.
Using the method of multiple scales, Shkel et al [12] were able to propose an approximate

expression for A00(λbare, κa) up to the second order in (κa)−1 	 1. This result can be
translated into an approximate form for the functional dependence of λeff(λbare) through
equation (3). After some algebra, again for cylinders and up to order O(1/(κa)), we find

λeff�B = 2κa tλ +
1

2

(
5 − t4

λ + 3

t2
λ + 1

)
tλ (4)

where

tλ = T

(
λbare�B

κa + 1/2

)
(5)

and the function T, also useful in spherical geometry (see below), is defined as

T (x) =
√

1 + x2 − 1

x
. (6)

In the limit of diverging bare charge λbare → ∞, tλ → 1 so that the saturation value for the
line charge density reads

λsat
eff�B = 2κa +

3

2
+ O

(
1

κa

)
. (7)

In the opposite limit where λbare → 0, equation (4) yields λeff = λbare as expected.
Similarly, for spheres (radius a, bare charge Zbaree) we find that

Zeff
�B

a
= 4κa tz + 2

(
5 − t4

z + 3

t2
z + 1

)
tz (8)

where now

t
Z

= T

(
Zbare�B/a

2κa + 2

)
(9)

and the function T (x) is still defined by equation (6). The corresponding saturation value for
the effective charge is

�B

a
Zsat

eff = 4κa + 6 + O
(

1

κa

)
(10)

while for low bare charges, we have

lim
Zbare→0

Zeff

Zbare
= 1. (11)

Expressions (4)–(7) and (8)–(10) provide the first analytical estimates of the functional
dependence of the effective charge on the bare charge for cylindrical and spherical macro-ions,
respectively, in an electrolyte solution. They are the exact expansions of the correct result in
the limit of large κa. In practice, however, they are accurate as soon as κa � 1, as we now
show.

In figures 1 and 2 we compare the results for the effective charge against the bare charge
obtained using (a) our estimate and (b) the exact solution found by solving the full numerical
PB problem. The results are displayed for two different values of the ionic strength of the
solution. The agreement is seen to be excellent for κa � 5, and reasonable down to κa ≈ 1
(see also below).
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Figure 1. Rescaled effective charge, Zeff�B/a, versus rescaled bare charge, Zbare�B/a, for
isolated spherical macro-ions in a symmetrical, monovalent electrolyte solution (for κa = 5,
where κ−1 is the Debye–Hückel screening length of the electrolyte, and a is the sphere radius).
The solid curve is the analytical estimate of Zeff (see equation (8)), whereas the open circles are
the exact values of Zeff found by numerically solving the full nonlinear PB problem. The dashed
curve has a slope of unity to emphasize the initial linear behaviour. The inset shows Zeff(Zbare)
for κa = 1.
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Figure 2. Effective line charge density, λeff, versus bare line charge density, λbare, for an isolated,
infinitely long cylindrical macro-ion (κa = 5). The solid curve is the analytical estimate of
λeff (see equation (4)), whereas the open circles are the exact values of λeff found by numerically
solving the nonlinear PB theory (the dashed curve has a slope of unity). The inset shows λeff(λbare)
for κa = 2.

3. Cylindrical geometry and DNA

Because DNA (a rod-like polyelectrolyte in first approximation) is of paramount importance in
biology, the cylindrical case deserves special attention. For typical parameters of double strand
DNA (a ∼= 10 Å, λbare�B

∼= 4.2), the domain κa � 1, where we expect our estimate to be good
enough, reads n0 � 0.1 M for a monovalent symmetrical electrolyte. This is experimentally
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Figure 3. Effective line charge density, λeff�B , versus κa for isolated, infinitely long cylindrical
macro-ions of bare charge λbare�B = 2.1 (lower sets) and λbare�B = 4.2 (upper sets). The solid
curve is the analytical estimate of λeff (see equation (4)), whereas the open circles are the exact
values of λeff found by numerically solving the full nonlinear PB theory. In the formal limit
κa → ∞, these two curves would saturate to 2.1 and 4.2.

Table 1. Comparison of the effective charge and the saturation value for single strand DNA at
physiological conditions as found (a) by our analytical estimate and (b) by numerically solving the
PB theory.

λeff�B λsat
eff�B

λbare�B κa (equation (4)) λeff�B (num) (equation (7)) λsat
eff�B (num)

2.1 0.25 1.35 1.20 2.00 1.61
2.1 0.5 1.50 1.40 2.50 2.20
2.1 1 1.69 1.65 3.50 3.27
2.1 1.5 1.81 1.78 4.50 4.32
2.1 2 1.88 1.87 5.50 5.35

Table 2. Same as table 1 for double strand DNA.

λeff�B λsat
eff�B

λbare�B κa (equation (4)) λeff�B (num) (equation (7)) λsat
eff�B (num)

4.2 0.25 1.65 1.41 2.00 1.61
4.2 0.5 1.94 1.78 2.50 2.20
4.2 1 2.40 2.31 3.50 3.27
4.2 1.5 2.76 2.71 4.50 4.32
4.2 2 3.02 2.99 5.50 5.35

relevant. Indeed, physiological conditions are found for n0 = 0.15 M (κ−1 = 8 Å). For simple
strand DNA (a ∼= 7Å, λbare�B

∼= 2.1) the condition κa � 1 is written n0 � 0.2 M . Figure 3
displays the effective charge, λeff�B , against κa for λbare�B = 2.1, and λbare�B = 4.2. We
observe that our estimate remains good down to κa = 0.5, where the error is of the order of
7% (see also tables 1 and 2).
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Note that, for DNA in typical experimental conditions, the parameters are such that we
find ourselves in the crossover regime where both the linear approximation (λeff

∼= λbare) and
the asymptotic approximation

(
λeff

∼=λsat
eff

)
fail to be accurate, as shown in tables 1 and 2. In

other words, both λbare and λsat
eff provide a rather poor approximation for λeff. This justifies

a posteriori our effort to find a good approximation for the full functional dependence of
λeff(λbare).

4. Concluding remarks

In this paper, we have proposed an analytical approximation for the dependence of the effective
charge on the bare charge for spherical and cylindrical macro-ions as a function of the size of
the colloid and salt content. Mathematically speaking, our estimate is asymptotically exact in
the limit κa � 1. In practice, a careful comparison with effective charge parameters obtained
by numerically solving the full nonlinear PB theory proves that our estimate is good down
to κa � 1 (where a is the radius of the macro-ion). This is precisely the relevant range of
parameters for colloidal suspensions.

An important example considered in some detail is the cylindrical geometry. This is
because the infinitely long charged rod provides a simple model for DNA. While the simple
asymptotical approximations fail for DNA in typical physiological conditions, we provide an
estimate for the effective charge line density, which compares well with the numerical results.

We have performed the analysis at the level of the mean-field PB theory. In spite of its
limitations, this picture is excellent for all existing macro-ions in water at room temperature,
when only monovalent micro-ions are present in the electrolyte (see, for example, [4] for
an estimation of a relevant coupling constant quantifying the importance of the micro-ionic
correlations). It may also hold for multivalent counter-ions, provided the surface charge
density of the macro-ion is not too large. In general, for a given total charge of the
macro-ion, micro-ionic correlation become irrelevant in the asymptotic limit where a � �B

[13, 14].
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