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Abstract

CrossMark

We consider an out-of-equilibrium one-dimensional model for two electrical double-layers.
With a combination of exact calculations and Brownian dynamics simulations, we compute
the relaxation time (7) for an electroneutral salt-free suspension, made up of two fixed
colloids, with N neutralizing mobile counterions. For N odd, the two double-layers never

decouple, irrespective of their separation L; this is the regime of like-charge attraction, where
7 exhibits a diffusive scaling in L? for large L. On the other hand, for even N, L no longer is the
relevant length scale for setting the relaxation time; this role is played by the Bjerrum length.
This leads to distinctly different dynamics: for N even, thermal effects are detrimental to
relaxation, increasing 7, while they accelerate relaxation for N odd. Finally, we also show that

the mean-field theory is recovered for large N and moreover, that it remains an operational

treatment down to relatively small values of N (N > 3).
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1. Introduction

The contact between a charged surface or colloid particle with
an ionic solution is known to create an electrical double-
layer: a diffuse counterion cloud around the charged inter-
face which extends a distance typically in the colloidal range,
from molecular dimensions to the micrometer scale [1, 2]. The
study of electric double-layers is an active research topic due
to their importance to understand phenomena such as like-
charge attraction [3, 4], ion transport in biological membranes
[5] or nanofluidics [6—8]. Furthermore, they play a signifi-
cant role in the design and development of bio-chemical sen-
sors [9], super capacitors [10—13], electric-double-layer-gated
transistors [14], water treatment [15], etc.
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Electrical double-layers have been studied extensively [1,
16—18]. They were first introduced in 1897 by Helmholtz
while investigating electrodes in electrolytes subject to an
external potential [19]. In this model, the counterions form
a single layer close to the electrode. Then, Gouy [20] and
Chapman [21] introduced the concept of a diffuse layer, where
the counterion typical position results from the competition
between entropic and electrostatic effects. This model was
further improved by Stern [22], by assuming that the elec-
trolyte system is made up of two parts: first comes a layer
that is strongly bound to the electrode surface (practically
immobile) and then follows the diffuse part, where counteri-
ons are loosely bound. The study of electrical double-layers
displays numerous approaches that quickly increase in dif-
ficulty as the model restrictions are relaxed and ingredients
are added. The Gouy—Chapman model resorts to a mean-field
treatment that assumes weak electrostatic interactions and con-
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Figure 1. Sketch of an electroneutral system consisting of two
interacting electric double-layers, each made of a colloid (rectangle)
and 4 counterions (circles). The distance between colloids is L. The
interaction between particles is mediated by the 1D Coulomb
potential, linear in separation. The dynamics of the counterions is
considered and the colloids are treated as static since their time scale
is assumed to be much larger than that of the counterions. All
particles are point-like and they can ‘cross over’ each other.

siders the ionic fluid as a continuum, discarding discreteness
effects. The latter shortcoming can be partly addressed includ-
ing ionic size effects within a mean-field framework [23-27]
(see [28] for a criticism on these approaches, and [29] for a
review on mean-field electric double-layers). Using mean-field
models is convenient since they may yield analytic expres-
sions. Interestingly, while mean-field techniques fail when
the electrostatic coupling increases [30—-35], strongly-coupled
systems lend themselves to analytical progress [36, 37]. The
remaining intermediate regime between weak and strong cou-
pling is mostly accessible through numerics. So far, equi-
librium properties mostly have been studied, and results are
scarce for time dependent phenomena. The physics of out-
of-equilibrium electrical double-layers is primarily described
via mean-field and numerical approaches [1, 38—46], with few
beyond mean-field contributions [45, 47, 48].

Herein are reported exact and numerical results, within all
coupling regimes, for the relaxation time toward equilibrium
of two interacting double-layers in one dimension, at a distance
L. Such systems have been studied at equilibrium [49-52]. We
consider the dynamics of an electroneutral system made of two
symmetrically-placed, permeable like-charged colloids and N
counterions as shown in figure 1. Due to their larger mass,
the colloids are assumed to exhibit a very large time scale for
displacement compared to the counterions, hence we consider
them to be fixed, and address the dynamics of the diffuse layer.
The single counterion case (N = 1) allows an analytical solu-
tion for the particle density and relaxation time. This subsumes
the essential features of the dynamics for any odd number of
counterions. Indeed, the parity of N plays an important role,
for both static and dynamics properties: if N is even, the large
L regime features decoupled neutral entities, with N/2 coun-
terions neutralizing each colloid. This is no longer possible
for N odd, for which there is always a misfit counterion [51,
53], that plays an important role in what follows. The misfit
effect is accurately described by the mean passage of a free
diffusing particle in a reduced length approximately given by
the colloid separation minus the space taken by the double-
layers between the colloids. For even N, the two double-layers
form and completely neutralize each colloid. The decoupling
between the two moieties, made possible for even N, explains
why the relaxation process becomes L independent for large L,
in contrast with the odd case.

It is worth pointing out that one-dimensional approaches
may be insightful for more realistic systems. As an

illustration, we mention the question of the origin of cement
cohesion. In brief, cement, a key binding agent in concrete,
is made of layers of calcium-silicate-hydrates (C—H-S) that
trap between them a solution made of water and ions [54—-56].
While the physical chemistry of cement is complex [54, 55],
a simple model for this system is provided by two symmet-
ric uniformly charged plates with counterions between them,
where these charges interact pairwise via the 3D Coulomb
potential, 1/r. The fact that counterions are multivalent, and
the plates highly charged, brings the cement system in the
strong-coupling regime. This triggers like-charge attraction,
that is at the origin of cement cohesion. In the strong-coupling
regime, when the distance between plates is small enough, all
counterions are approximately in the same plane parallel to the
plates, so that the dominant force acting on them stems from
the plates’ potential. For like-charged plates, this force van-
ishes, which leads to a uniform density profile, from which the
pressure can be readily computed. In this limit, the N = 1 ion
problem in one dimension exhibits the same equation of state
as its three dimensional counterpart [33, 36, 53, 57, 58]. We
will begin our discussion with the out of equilibrium analysis
for the single counterion case.

The paper is structured as follows. The time evolution of
the probability density for one counterion (N = 1) is computed
analytically in section 2, parameterized by the colloid distance
L. The density displays an exponential decay toward equilib-
rium, which naturally introduces a relaxation time. Then, a
scheme is introduced to determine this quantity, from a sim-
ulation based on the corresponding Langevin dynamics. The
results are in good agreement with exact values. In section 3,
the numerical study of the relaxation time is generalized for
the many-counterion case, N > 1. The role of the parity of N
and the symmetry of the initial condition (IC) is discussed,
with the former leading to two different behaviors for the
relaxation time. In section 4, we study the analytic mean-
field treatment of a system at zero colloid separation. We find
that this solution serves as a good approximation for the dis-
crete charge system, for a large number of counterions as
expected, but more surprisingly already for N as small as 3.
Treating the counterions as discrete charges results in expo-
nential relaxation dynamics. This is in contrast to mean-field
theory, that features a slower, algebraic decay [1]. We explain
below how the two regimes are matched, and show explic-
itly how mean-field’s accuracy improves, upon increasing the
number of counter-ions N. Finally, we investigate numerically
in section 5 the first passage time of the middle/misfit counte-
rion between the two double-layers when N is odd, to ratio-
nalize the behavior of the relaxation time. We conclude in
section 6.

2. One counterion (N=1)

In this section, we consider an electroneutral system made of a
single counter-ion (N = 1), of charge e and two colloids, each
with charge —e/2. The colloids have fixed positions: —L/2
and L/2. These charges interact via the 1D Coulomb poten-
tial energy, which for two charges ¢, and g, at x; and x; is
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given by
Vip(xi, x2) = _Mm — X2, (h

where € is the dielectric constant of the medium. This potential
leads to a force that does not depend on the inter-charge dis-
tance, unlike the two- or three-dimensional result. This can be
understood with a three dimensional detour, working out the
potential between two infinite uniformly charged plates: each
of the plates creates a uniform electric field, and hence a locally
linear potential. As a result, the inter-plate potential is exactly
of the 1D form [59] of equation (1).

The counterion’s position x is ruled by the following over-
damped Langevin equation:

d dd
' = - dix) + vk Toan€ (D), 5

where +y is the damping coefficient, Ty, the temperature, m
the counterion mass, and ®(x) = Vp(x,L/2) + Vip(x, —L/2)
is the electrostatic potential energy due to the colloids. The
stochastic Langevin force £(¢) is a Gaussian white noise char-
acterized by zero mean (£(r)) = 0, and delta time correlation
(§(1)E(t)) = 26(t; — 1a).

There is an important length scale related to the electro-
static interaction, namely the Bjerrum length, which in this
one-dimensional context is defined as Iy = kg Thane/ ¢?. When
two e-charges are pushed closer to one another, an energy
budget of kg Th,n corresponds to a relative displacement over
a distance /g. Note that /g is exactly the inverse of its three
dimensional counterpart: this stems from the fact that the 1D
Coulomb potential is linear in distance between charges, while
it goes like the inverse distance in 3D. Associated to the diffu-
sive dynamics we consider here, we can define a characteristic
time scale 75 = I3 /D where D = kg Tyun /(ym) is the diffusion
coefficient. In the following, it will prove useful to work with
the rescaled units: X = x/Ig, f = t/7 and ® = ®/(kgToan);
the length and time scales are such that the diffusion coefficient
is set to unity in the dimensionless units.

Since the dynamics are given by a Markov process, the
time evolution for the probability density function starting at
any given time #y can be determined with the transition prob-
ability p(x, t|xo, to), where p(x, to|xo, 70) = d(x — x¢), without
knowledge of the preceding time evolution. In the following
we will set 7o = 0 and avoid writing it explicitly, p(x, t|x¢) =
p(x,t]x0,0). Equation (2) has an associated Fokker—Planck
equation that governs the transition probability p (also known
as the propagator, which is nothing but the density of ions):

opEDH 0 [ - 0BE.L)\ | PpE.D
o = , = Y3
g o \M e |t e )
where the rescaled 1D Coulomb potential P is given by
o L/2 if[x] <L/2
O(x,L) = : 4)

x| if[x] > L/2

Note that when L = 0, equation (3) is formally the same
Fokker—Planck equation that describes a Brownian motion

with dry friction [60, 61]. We review in appendix A the cor-
responding solution, which will be relevant in the following
sections as a limiting case.

Equation (3) is a forward Fokker—Planck equation that fea-
tures a piece-wise constant force. It is equipped with bound-
ary condition p(X — 00, |Xy) = 0. It can therefore be solved
analytically using an eigenvalue expansion [62]:

P, 1[%0) = ps®) + Z Zuk (X)Vk (xo)

a=o0,e k

n Z/ G (. A) U (x, v (xo, A)

a=o0,e ZQ(A) e , (5)

where u;! and u® are the eigenfunctions of the Fokker—Planck
operator (rhs of equation (3)), v;* and v are their adjoint eigen-

functions, and Z;' and Z® the normalization constants. The
equilibrium distribution p_ is given by:
& e ®® o~ P®FL/2 ©
oo (X) = = — .
Do Z T2

The superscript o in equation (5) indicates the parity of the
eigenfunctions, which will be discussed in upcoming sections.
The explicit expression of the functions and their derivation
can be found in appendix B. Note that equation (5) features
two different types of terms, corresponding either to discrete
eigenvalues (with subscript ;) or to a continuous spectrum
(the integral terms, involving functions of \). This aspect will
play a key role in the subsequent treatment.

2.1. Analytic dynamics

We investigate here the dynamics of the counterion density
p(x, 1), given that it starts with initial position Xo. There are
two different possibilities for this IC: in the interstitial region
between the colloids (|¥o| < L/2) or outside (|%o| > L/2).

Let us start with the counterion in the space between the two
colloids. The initial dynamics is that of a particle in free diffu-
sion, lasting approximately until spread of the density (increas-
ing in V/27) reaches the nearest colloid. This behavior can be
seen directly in figure 2 where we observe that the density
remains left—right symmetric with respect to the counterion’s
initial position and it starts to become skewed once the near-
est colloid is ‘hit’ (located at X = 5). This is corroborated in
figure 3, which features the dynamics of the average posi-
tion (x) (inset) and the position’s variance o2: the former is
constant, and the latter increases linearly with time until the
density ‘hits’ the colloid.

On the other hand, when the counterion starts outside the
interstitial region (|Xo| > L/2) it initially experiences a con-
stant drift toward the colloids. This causes the particle to move
toward the colloids, with a mean position that travels at con-
stant speed. This is seen in the inset of figure 3, where for
small times the mean position is a linear function of time when
Xo > L. Besides, there is a constant diffusion which is man-
ifested in a linear growth of the position variance (02 ~ 21,
see figure 3). The time during which the drift diffusion occurs
lasts approximately until the mean position of the counterion
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Figure 2. Time evolution of the density p(%,Z) for a single
counterion (N = 1), with colloid separation L = 10 and localized
initial distribution centered at X, (red arrows): (a) xo = 2, and (b)
Xo = 20. The equilibrium state (f — 0o) is given by the dashed lines.
In panel (b), the cusp formed at X = 5 for 7 = 20 is understood in
terms of the wedge potential: to the right of the colloid there is a
constant force causing a greater probability flow than from the left
side where the counterion undergoes free diffusion.

/' i ST
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Figure 3. Position variance o2(7) of a single counterion N = 1 with
a localized IC Xy = 0, 2,22 and colloid separation L = 10. Note that
for short times Jf(?) is linear in time af(?) ~ 2t. For Xy = 22 the
variance is not monotonous, which happens because the initial
position is large enough to allow the regime of linear expansion to
overshoot the equilibrium variance. The inset is for the
corresponding average position (¥(7)) for each IC. For large times
the average position decays exponentially toward 0, except for the
case Xo = 0 where it identically vanishes.

and its nearest colloid are one standard deviation apart. Upon
reaching the central region, it has to ultimately accommodate
to the asymptotic steady state given by equation (6); hence the
non-monotonic behavior of the position variance in figure 3.
We now turn to the asymptotic equilibrium distribution;
there is a closed form for the counterion position’s average

and variance:

lim (D) = 0, )
1—00

I L 4 4
li g 1) = — — — —. 8
mos =5 3 3 3@ 0 ®

Averages are taken here with respect to the equilibrium distri-
bution Peo (equation (6)). Note that for large Z, the dominant
term is L? /12 which recovers the result of a Brownian particle
inside a 1D box of length L.

2.2. Eigenvalues and relaxation time

Equation (5) shows that there is an exponential relaxation
toward the equilibrium distribution p_ . Therefore, the relax-
ation time 7 can be defined as the inverse of the decay rate
associated to the dominant term in equation (5) for large times.
To determine this rate, it is necessary to know the eigenvalue
structure of the Fokker—Planck equation (equation (3)) and
more precisely the spectral gap (first non-vanishing eigen-
valu~e), which is the inverse of 7. In this section, we explore
the L-dependence of the spectrum and consequently of 7.

The spectrum is made of two parts, one discrete and one
continuous, which stem from enforcing vanishing bound-
ary conditions at infinity to the eigenfunctions of the
Fokker—Planck operator (more details are presented in
appendix B). Since the Fokker—Planck equation is formally
equivalent to a Schrédinger equation [62], we can also under-
stand the spectrum in terms of quantum mechanics: the dis-
crete and continuous parts correspond to the bounded and
unbounded equilibrium states of a single nonrelativistic par-
ticle in one dimension, subject to a square well-like poten-
tial [63]. The discrete set of eigenvalues {\i}i € [0,1/4)
is Z-dependent, while the continuous spectrum is the inter-
val [1/4,00). The discrete eigenvalues are obtained from
solving the following equations subject to the restriction
o< < 1/ 4.

(1= VT=2%)an (LVR2) =2V/X. O
(VI=3% = 1) cot (Ly/3/2) =2/,

where equations (9) and (10) are for odd and even eigen-
functions respectively. Note that the discrete set is non-empty
because Ao = 0 is always a solution to equation (10). From
equations (9) and (10), it follows that the number of odd (N o)
and even (N)e) discrete eigenvalues for a given length are:

(10)

i_
Ny = { ”J +1, (11)
47
.
Ny = { +7TJ 1. (12)
47

From N). and N)e we see that discrete eigenvalues emerge
as L increases: odd and even ei genvalues appear in an alternat-
ing sequence as a function of L with period 27, such that the
second eigenvalue )\ is odd and present for L > 37, and so on,
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Figure 4. Spectrum of the Fokker—Planck operator as a function of
the system size L. The continuous spectrum’s range is

1/4 < A < oo, regardless of L. On t~he other hand, the number of
discrete eigenvalues increases with L in a sequence that alternates
odd (A7) and even eigenvalues (A?). The equilibrium eigenvalue

Ao = 0 is always present.

as sketched in figure 4. There is no degeneracy in the discrete
spectrum; an eigenvalue cannot solve equations (9) and (10)
simultaneously. This allows a strict ordering: Ao < A} < A] <
A <

Further analysis of equations (9) and (10) yields the large L
behavior for the discrete eigenvalues:

42 1\?
P VIR RN S I 1 <k < Ny, 13
7 ( 2) A (13)
4 2
XS~ g2, 0<k<Nye — 1. (14)
I>1 L

This implies that for large colloid separations the relaxation
time is quadratic in L, regardless of Xy. In other words, the large
L limit yields, quite expectedly, the same spectrum as a free
diffusion in a box of size L.

We conclude with the explicit expression for the relax-
ation time. For this purpose, we identify the dominant term
of equation (5) at large times, which is associated to the min-
imum nonzero eigenvalue among the non-vanishing projec-
tion of the ionic density onto the eigenbasis. This means that,
unlike the spectrum, the relaxation time does depend on the
ICs. Indeed, there are two distinct behaviors depending on the
symmetry of the IC: Xy = 0 (symmetric) and xo # 0 (asym-
metric). For the former, we have (0) = 0 and therefore only
the even branches in figure 4 do matter in equation (5). Then,
the relaxation time is given by

1 ~
max{4,>\o}, X0 # 0,
~ 1

T= ) (15)
4, — 5, xo = 0.
max{ )‘T} X0

2.3. Simulations

This section introduces a method to estimate the relaxation
time using the counterion density. The scheme is tested on
the exact density and approximation obtained from a com-
puter simulation. Then, these results are compared to the the-
oretical spectral gap. In this way, the single counter-ion case,
which provides us with reference analytic results, is used as a
test bench for the method which is later employed for N > 1
counterions.

2.3.1. Relaxation time estimation scheme. First, the Kull-
back-Leibler divergence (KLD) [64] is introduced, as it will
be used in the relaxation time estimation scheme. Also known
as relative entropy and widely used in information theory, this
function is defined as:

p1(x)
Pz(x)’

Dxi(pi]|p2) = / dxpi(x) log (16)
R

where p; and p, are probability densities and Dky.(p;||p,) is
defined as the KLD from p, to p,. The discrete definition of
the KLD follows from replacing probability densities for prob-
abilities, and performing a summation instead of integrating.
The relative entropy is bounded from below Dy (p;]|p,) = 0,
with equality satisfied when p; = p,, provided that p, and
p, are both normalized. The KLD is not a metric because it
is neither symmetric nor does it obey the triangular inequal-
ity. Nonetheless, it is conveniently related to the relaxation
time when used with the appropriate distributions: p(x, |o)
and p. ().

For large times, the KLD of the equilibrium distribution p__
to the instantaneous density p decreases exponentially to zero.
To see this, consider the ionic density; from (5) it follows that

PE,1[X0) = poc(®) + Op(X, 1, %0), (17)
where dp(X,1,X0)/pso(X) < 1 at long times. Then, the KLD
from p_, to p has the following large time behavior:

Dm(p\lpoo)~/5pdf+/
R R

(6p)? 2
~ o dx+(9<(6p/poo) ),

((;1:0)2 dx + O ((5p/poo)2)

(18)

where the integral of §p vanishes in view of equation (17)
and the fact that both p and p, are normalized. Like-
wise, the associated divergence with transposed arguments
(Dk1L(p||p)) exhibits the same asymptotic behavior as that
given by equation (18). From equation (18) we observe that
the KLD has an exponential decay constant 2 /7, which is twice
the value for the ionic density itself.

The term (dp)> induces two distinct behaviors for
Dx1.(p||p.,) depending on the symmetry of the IC: X =0
(symmetric) or Xy # 0 (asymmetric). In the former case, the
projection of the ionic density onto odd eigenfuctions vanishes
and therefore only the even branches of the spectrum in figure 4
do matter. We next describe the asymmetric case, which in
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Figure 5. KLD for one counterion N = 1 with various colloid
separations L = 0,2, 3,4 and initial counterion position ¥y = L/4.
Note that for L < 7, the log KLD is still convex-up for Dgp > 1074
due to the subdominant power law 7~* in equation (19). Contrarily,
for L > 7 the curvature vanishes quickly since the subdominant
term decreases exponentially. The inset is a sketch of the scheme to
estimate the relaxation time 7 for a given L. Each same color set of
points is the numerical derivative of the logarithm of
Dx1(p(X, 1]X0)|| po(¥)) as a function of the inverse time. The dashed
lines are the corresponding minimum square regressions, used to
extrapolate the behavior of the dots to 1/ = 0. According to
equation (19), this yields twice the decay rate, 2/7.

appendix C is found to be:

’les 672t/4 :’i’fs 6721/'7:, Z <

Dxr(p|| pso) ~ (19)

e TN = /7, >
where 1/2 < s < 5/2. Although for very large times the alge-
braic term 7 is negligible, this is not the case for the times
available in the simulations, which may cause a difficulty in
extracting the decay rate. Take for example the case Xxo = L /4
(figure 5): notice the curve’s concavity for L < 7, which stems
from the subleading term of order log 7 in the logarithm of the
KLD. On the contrary, for L > 7 this term is always negli-
gible. The symmetric case xo = 0 is similar to equation (19),
provided the substitutions A} — A{ and m — 3 are performed.
The inset of figure 5 presents the method used for extracting
the decay rate 7 from the dynamical data.

2.3.2. Numerical integration. We now proceed to introduce
the simulation used to compute the numeric density profiles.
We integrate the following stochastic Langevin equation

X=F@&L) + &0, (20)
where F(L) = —09 /Ox is the dimensionless force.
Equation (20) is equation (2) in rescaled units. We record 10%
positions per time. Each temporal step was set to 4 x 10~
and a histogram was recorded every 200 time steps, using bins
of size 0.2. These histograms give the numeric estimation of
the ionic density, p(X, 7).

10
~ _?exact
.’L‘o?éo o ?sim
8
T9=0
U=
6
o
&
45 . D g °o @ 8 _

0 2 4 6 8 10 12 14

Figure 6. Relaxation time for a system made of two colloidal
particles at a distance L and one counterion (N = 1), from the exact
calculation (solid) given by equation (15) and an estimation using a
simulation (squares). Two cases for the localized initial distribution
should be distinguished: asymmetric (xy # 0) and symmetric

(X0 = 0).

Then, the discrete KLD Dgp(p(X, 1)|| p (X)) is calculated.
The relaxation times follow from the long-time behavior of
Dx1,, as explained above; the results are shown in figure 6,
where the numerical scheme is seen to be in agreement
with the analytical curve. Finally, note that the relaxation
time T extracted from the simulations for a symmetric IC
(SIC) exhibits a slight non-monotonous behavior in the vicin-
ity of L =9. This non-monotonicity appears to be an arti-
fact of the numerical procedure used. We come back to this
in section 3.

We conclude with some additional remarks on our numeri-
cal study. It is based on simulations of the Brownian dynamics
that describe the time evolution of the system. For our pur-
poses, the Euler—Maruyama method [65] is both the simplest
and most efficient technique to simulate the counterions’ paths.
The reason for this is that the coefficients of the white noise
terms in the Langevin equations (defining the diffusion coef-
ficients) are all constant in time and the electrostatic force is
bounded; these are sufficient conditions for numerical conver-
gence of weak order 1.0 [66, 67]. Higher-order methods do not
provide any computational advantages, as they usually rely on
derivatives of the white noise term coefficients [68], so the only
real improvement in this direction is the use of computation in
parallel. As itis necessary to collect n samples to obtain results
with a precision of order n~!/2 from simulations, computation
in parallel provides a way to obtain results with high precision
at a reasonable computation cost.

2.4. First passage time

At equilibrium, the counterion plays an important role in
the pressure: the colloids share this particle, which for large
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enough L, induces them to attract each other [51]. It is of inter-
est to investigate how the counterion is shared, and how much
time it spends in the vicinity of one colloid before reaching the
other.

The first passage time T, with initial and final position on
each colloid, is an appropriate quantity to measure the crossing
time between colloids. Due to the symmetry of the system we
can choose the particle starting on either side and ending in the
opposite side. Taking the initial position of the counterion to
be at the left colloid —Z/ 2 and the final position at the right
colloid L/2, the first passage time distribution wi(T) follows
from:

_ L2 g .
== [ SrGI-LpaE o en

where P, (%, T|X,) is the probability density function of an ini-
tially localized counterion at X, with an absorbing wall at L/2
(see [62]). Since P, follows from solving equation (3) with dif-
ferent boundary conditions than those for p (equation (5)), the
Fokker—Planck operator for P, features a different spectrum.
It has both a continuous and a discrete part, and their bound-
aries are: A’ € (1/4,00) and 0 < A{ < 1/4 respectively. The
discrete part of the spectrum follows from solving

1— /T =4\ =2/ cot(+/ND),

which has no solutions for L < 7 /2. Therefore, the spectrum
is completely continuous when L < /2, leaving aside the
gapped steady-state eigenvalue A = 0.

In a similar fashion as for P, we obtain the analytic solution
for P, and consequently for the first passage time distribution
wy(T):

(22)

R VAN =T sin (VL)
wi(T) :/ e -
1/4 27V — 7 sin (2\/ A“L)

efAZT [1 +2,/A{ tan (—%) — /1 —4)\2’}
+>

T 2(1 — 4\ % + Lese2(y/AL) — cot(y/AL)/ /X
(23)

—\T a

where A\{ < 1/4 is a solution of equation (22). From the spec-
trum follows the asymptotic behavior which decays as e /4
for L < 7/2 and as e i’ for L> /2 where A{ is the smallest
discrete eigenvalue.

The previous behavior bears a resemblance to the first pas-
sage time distribution of a free diffusing particle in a box of
length L. This situation consists of a free Brownian motion
X(#) with diffusion constant equal to one and started at the ori-
gin. We place a pair of fixed walls, a reflecting one at the origin
and an absorbing one at a distance [ > 0.~Then, we define the
transport time as the first hitting time of /, that is,

7 =inf{i > 0:X@1) >1}. (24)
We derive the distribution ql~(7) of 7, in appendix D:

U LT (2n+1) 722+ 1)%2
g => (-1 — e (—472;> . (25)

n=0

0.8
: —w;g
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Figure 7. First passage distribution for a single counter-ion traveling
between the colloids (wy, solid) and a free diffusing particle in a box
(g7, dashed) with a colloid/box length of L = 1.5 and 3. The former
is seen to have a larger mean first passage time and variance: in that
case the counter-ion has the possibility to make excursions with

X < 0 outside the region delimited by the colloids unlike the box
situation where it is limited to a finite space.

The confined Brownian particle exhibits a smaller average
first passage time and variance than the one counter-ion col-
loid (see figure 7). This is expected since it does not have an
infinite region available to wander off. In the following section
the boxed particle model will allow us to understand the behav-
ior of the crossing time of the Mth particle when N = 2M — 1
(the middle/misfit counter-ion), from one colloid double-layer
to another. In this sense, the case N = 1 is different from all
the odd N > 1 where the colloids have screening particles
that prevent the middle counter-ion from scouting the exte-
rior regions. In fact, we will see that the effective length [ is
smaller than L.

3. Relaxation time for multiple counterions

We move on to describe the relaxation time for the multi-
ple counterion case, N > 1. Each counterion has fixed charge
e, and the colloid charge —Ne/2 ensures electroneutrality.
An analytical or numerical solution of the Fokker—Planck
equation is impractical since it involves a partial differential
equation in N + 1 dimensions. Instead, we perform simula-
tions of the corresponding Langevin equation to compute the
time evolution of the density profile n(x, 1, N). To obtain the
relaxation time, we analyze the evolution of the KLD between
the density at time 7 and the equilibrium one by extending the
scheme introduced in section 2.3. This is done by replacing the
single particle counterion density with the normalized counte-
rion density profile n/N. This normalization is necessary to use
the KLD, which is defined for probability density functions.
Besides from the time evolution, we require the equilibrium
density profile n.,(x; N), which has the following analytical
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expression:

N —Ny ~
N, L L -~
-> 3 by (i), e

where Z(N,L) = ZN; OZM Uzv,n(N,L). The functions

N (N, L) refer to partition functions of a system with a
fixed number of particles at the left (N,) and right (N;)
sides and are given in [52] (equations (52)—(55)), and ny, v,
are the density functions with fixed number of particles at
each side and are given by equations (59)—(61) of refer-
ence [52]. Those results are for a system of two symmet-
ric impermeable colloids and N counterions distributed in
the three possible reglons Ny, N; and N — N, — N, are in
the regions x < 0, x > L and 0 < x < L respectively. These
results must be translated to coincide with the present situation
X — X + L/2, and then the sum over all the possible imperme-
able configurations weighted by zy, v, (N, L)/Z(N, L) yields the
permeable result.

The time evolution of the density profile n(x,1;N) is com-
puted using a numerical simulation of the Langevin equation.
The advantage of this scheme is that it is easily extended to an
N counter-ion system. The system of Langevin equations to be
simulated is

Xj=FiG,. .30 + & (1), 27)

where  (&(1)E,(D) = 20,,6G —T7), (&) =0 and F;=
FjekT /e* is the dimensionless Coulomb force on the particle
atx;:

= . _ L
Fi(xi,...,xn) = ngn(x]—x)——sgn (xﬁ— 2)
17&/

N _ L
“aee(ng )
(28)

where sgn(x) is the sign function. Equation (27) with a
force given by equation (28) is very close to a one-
dimensional Brownian particle system with rank-dependent
drifts [69], with the difference that the fixed colloids dis-
able the rank-dependence because the drift of the counte-
rion also depends on its position relative to the fixed points
—L/2 and L/2. With these two ingredients, we can compute
Do (p(X.7:N)||psc (35 N)), where p(E,7:N) = n(@, 5 N)/N is
the normalized density profile and p..(X; N) the corresponding
equilibrium state (equation (26)).

The simulations for the many counterions case use the same
time and position discretization as for N = 1. The number of
positions recorded per particle is of order 10’. For N =1, a
SIC annihilates the projection of the ionic density onto the first
non-zero eigenvalue (), and therefore changes the relaxation
time. In view of this phenomenon, we implement two IC with

(a)
[

(b)
@ O 6OE

| I I I
—L/2 0 L4 L/2

- -+

]y

Figure 8. Sketch of ICs (equation (29) used for the colloid
simulation (here N = 3): (a) SIC and (b) AIC.
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Figure 9. Time evolution of the normalized density profile p(x,1;N)
for N = 4 counterions and colloids at distance L = 6. The red
arrows represent the localized ICs: (a) symmetric and (b)
asymmetric. The solid line is the exact equilibrium distribution.
Note that for 7 = 4 the density has almost reached its steady state.

different parity, as presented in figure 8 and specified by

L 2%k—-1-NL L
Symmetric IC = {—— @k—1-ME —}

27777 2N—=1) T2
k—1)L L
Asymmetric IC = {0"”’5(1\7—)1)"”’2 s

(29)
where k € {1,...,N}.

The dynamics in the many counterion case is determined
by two parameters: colloid separation and number of counte-
rions. However, there are a few general properties that we pro-
ceed to describe using a concrete example: N = 4 and L=6
which is plotted in figure 9. As a consistency check, note
that the simulation approaches the exact equilibrium result
(solid line). From p..(x; N) we know that the first moment
vanishes at infinite times, which is readily seen from the
figure 9 at 7 =~ 4. The position variance is seen to be mono-
tonic as the density profile expands to its equilibrium state,
just as for N = 1 with the counterion initially in the region
between the colloids. Both the first moment and the vari-
ance decay exponentially to their respective terminal val-
ues. The following part of the paper moves on to describe
this process.
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Figure 10. Numeric KLD for N = 15 in the AIC case. Note the
strong positive concavity for L = 4 in the vertical range between
1073 and 107*.

3.1. Odd number of counterions

Let us begin this part with the asymmetric IC (AIC) case.
Figure 10 shows the time evolution of the KLD obtained from
simulations with N = 15 counterions. In order to carry out the
extrapolation scheme described in section 2.3.1, we take the
data points where the KLD lies between 10~ and 1074, It
is clear from figure 10 that the log KLDs for 1 < L < 4 are
convex-up in this region, but no concavity is visible for L>6.
In the following discussion, it will appear that the behavior for
odd N > 1 can be mapped onto the N = 1 case; the middle
particle indeed acts as for N = 1, but in a reduced length: the
whole colloid—colloid length L is no longer accessible, given
the presence of the ions localized in the vicinity of the colloids.
An effective length, L minus the two double-layer sizes, turns
out to make the above mapping operational. We come back
to this question in section 5. In the one-counterion case with
AIC, the first nonzero discrete eigenvalue appears when L>n
according to equation (11);in the present situation with N > 1,
taking into account the double-layer size of the ion clouds, we
may surmise that this eigenvalue appears at a slightly larger L.
Indeed, this is confirmed in figure 11, where the characteristic
time seems to be close to 7 = 4 for L < 4, and increases for
L>6.

When imposing the SIC, the projection of p onto any
odd eigenfunction vanishes. Therefore, the dominating term
becomes A{, which for N = 1 separates from the continuum
at L > 3, according to equation (12). If we take the double-
layer size into account, we expect the separation of this eigen-
value to occur at around L = 10. The corresponding dynamics
of the KLDs for N = 15 are very similar in shape to those
shown in figure 10, in that the log KLDs show a noticeable
convex behavior in the range between 10~ and 10~* for small
L. This convexity disappears for large L a phenomenon that
seems to occur at L > 10, and that is reflected in figure 11.
As expected from our considerations in the single counterion

2 4 6 8 10 12 14 16

Figure 11. Numerical estimation of the relaxation time 7 as a
function of L for N = 5,9, 15 with AIC and SIC initial conditions
(equation (29)). The straight lines are guides to the eye. Note the
overall resemblance with the case N = 1 (figure (6)): a constant
region at short colloid separations is followed by a quadratic increase
of 7 ~ L% at large L. The error bars denote one standard deviation,
obtained from the spread in the linear fits outlined in section 2.3.1
performed over a moving window of 30 consecutive data points.

case, we observe that the characteristic time is compatible with
T~ dforlL < 6, and that it increases for L > 10.

While the diffusive behavior of the relaxation time for N
odd is due to the misfit, one may wonder how fast all other
ions do relax, and surmise that they presumably do so on
a much smaller time scale than 7. We show now that this
indeed is the case and examine the effect of the middle parti-
cle in the double-layer relaxation. To this end, we have con-
sidered the density of the counterions discarding the misfit,
and investigated how it departs from its equilibrium distribu-
tion, through the corresponding KLD. In figure 12, the result-
ing dashed curve, for N = 15, does not exhibit a pure expo-
nential behavior, but its slope yields a relaxation time close
to 1.3, which is significantly smaller than the 7 value, here
close to 6.0, and given by the large time slope of the con-
tinuous N = 15 curve. For completeness, we also report a
benchmark calculation for N = 14. There is then no misfit,
but this calculation allows to estimate the effect of remov-
ing ions for the KLLD considered. We note that the two curves
for N = 14 quickly become parallel, and thus yield the same
decay rate. This is at variance with the situation at N = 15.
In the following section, the case where N is even is explored
in detail.

3.2. Even number of counterions

We now consider an even number of counterions. For this case
we do not posses any analytical results. However, we expect
that for two counterions (N = 2) and L > 1, there is corre-
spondence to the system with a single counterion (N = 1) and
zero colloid separation (L = 0). The rationale behind this argu-
ment is that at large colloid separations, the N counterions split
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Figure 12. KLD of a modified ionic density (dashed) at a given time
and its equilibrium distribution, for L = 9. For N = 15, the
simulation does not record the misfit’s position (xg). Likewise, for
N = 14 the middle particles x7, xg are not recorded. The solid
curves correspond to the case where the true counterion density
profile is used.

into two groups of N/2 particles which completely screen each
colloid. In other words, two neutral subsystems are formed.
Moreover, the screened colloids do not exert any force onto
each other. Hence, there is an effective decoupling of the whole
system into two non-interacting screened colloids, with N /2
counterions each. Consequently, we expect the case N = 1 and
L = 0to have the same relaxation toward equilibriumas N = 2
and large L. In figure 13, we see that both systems share the
same KLD. Note that the mapping (N, L > 1) — (N/2,L = 0)
holds for any even N, as seen in figure 13 for a couple of cases
(N =2,6,8).

Figure 14 shows the simulation based estimation for the
relaxation time as a function of Z, for several even N. The
results for N > 2 give evidence that the relaxation time has
constant value 7 =4 for any L. This is seen for both ICs
(equation (29)) and suggests that 7 is independent of both N
and L. Additionally, physical arguments lead to the same con-
clusion in limiting cases, such as the aforementioned mapping
(N,L>> 1) — (N/2,L = 0). In figures 11 and 14 we observe
that for every N considered, the relaxation time is 7 = 4 when
the colloids are together (Z = 0). Therefore, it is plausible that
when N is even and the colloids are sufficiently separated, the
relaxation time is also 4. B

An argument to understand the L independence phe-
nomenon goes as follows: for even N, the left and right moi-
eties of the system, each being neutral, are decoupled. The
only L dependence in the problem therefore arises through
the IC, that does not affect the relaxation rate measured. Of
course, ICs with counterions more distant from their native
colloid will collectively take longer to relax than if all ions
would start, say, from a typical equilibrium double-layer dis-
tance from the colloid. Yet, this difference will manifest itself
in the short time evolution, and leave unaffected the large-time
decay rate. Indeed, ions starting far away from their native

N=1,L=0
— 10"t 8 N=2L=20| |
= —N=31=0
?% A N=6,L=20
= —N=4,L=0
= 10 °o N=8 1 =20
ey
s
£
-
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Figure 13. KLD for one counter-ion (analytic) and for N = 2, 3,4, 8
counter-ions (numerical). Solid lines have L = 0 and marks L = 20
(large colloid separation). Data for N/2 and N counterions do
overlap. The agreement of each pair of curves shows that at large
distances, a system with even N counterions effectively behaves as
two decoupled neutral subsystems of N/2 counterions.
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Figure 14. Relaxation time 7 estimation for N = 2,4, 8 counterions
as a function of colloid distance L for two ICs (equation (29)): (a)
symmetric and (b) asymmetric. The straight lines are guides to the
eye.

colloid will undergo a ballistic motion on average. Such behav-
ior occurs in a finite time, whereas the equilibration of the
double-layer is an exponential decay. The N independence is
traced to the double-layer’s length, which is practically con-
stant in N when expressed in units of /g, as done here [51].
Then, for any number of counterions, the space to be probed
is the same.

Our results are limited by the minimum value obtained for
D1, which is mainly determined by the binning of positions
used to compute the histograms at each time. As 7 increases,
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so does the number of simulations needed. This especially
affects the AIC that requires a larger 7 to be in the regime
where log Dxy is ruled by a linear term in time and with
a subdominant (yet relevant) term log 7. In that regime the
method for determining the relaxation time is very effective,
as previously seen in N odd and for the analytic solution
when N = 1.

To summarize, two essentially different scenarios are iden-
tified depending on the parity of N. The odd N case has a
qualitative behavior identical to the single counter-ion case.
When L < Z*(N) then 7 = 4, where Z*(N) > mis some length
dependent on N. For large L the relaxation time is quadratic
on the distance: 7 o< L%, showing typical diffusive behav-
ior. On the other hand, when N is even, we gave evidence
that the relaxation time is both N- and Z-independent. In all
cases, the relaxation dynamics follow the exponential decay
outlined in equation (19), which is fundamentally differ-
ent from the long-time behavior shown by similar systems
with weak-coupling, that are amenable to a mean-field treat-
ment. We now establish the connection between these two
behaviors.

4. Mean-field dynamics

In this section, we consider the dynamics within a mean-
field treatment. This approach is justified in the weak-coupling
regime; in our case, this corresponds to taking the limit e — 0
and N — oo while keeping Ne fixed (i.e. the colloids charge).
This was shown analytically using different formulations in
[50, 51], for an equilibrium system with counterions limited
to remain in the inter-colloidal space. We generalize here to
the dynamics.

To keep the discussion within reasonable bounds, we focus
on the case L = 0, which can alternatively be seen as a single
colloid with charge 2Q. Yet, we expect the general conclusions
to extend to L # 0. The mean-field problem then admits a sim-
ple exact solution, be it at equilibrium or out of equilibrium,
that allows to draw conclusions from analytic expressions and
to assess how a discrete system approaches the mean-field
regime. We will now treat the counterions as a continuous
charge distribution rather than a discrete set of point-particles.
We consider a system made of two colloids at the origin, each
of charge Qe, together with the counterion distribution. The top
illustration in figure 15 envisions the mean-field system, were
we take the distance between colloids to be zero. Although
our discussion is centered in a 1D Coulomb gas, the mean-
field results in this section also describe systems in 2D and
3D, as depicted in figure 15. Since our system is symmetric
with respect to the origin, we restrict to x > 0. First, we ana-
lyze the equilibrium behavior, which follows from solving the
Poisson—Boltzmann (PB) equation [70]:

2
B (x) = % exp{eBops(x)}, (30)

where ny is a normalization constant. The previous
equation is complemented with the boundary condition
¢;B(0+) = —2Qe/e, which accounts for the colloidal charge.
Equation (30) is obtained by assuming the counterions

1

Figure 15. Sketch for three mean-field systems described by the
same equation: a point charge in 1D (top), a uniformly charged line
in 2D (bottom left) and a uniformly charged plate in 3D (bottom
right). In red are the colloids (point/line/plate) and in blue the
counterions which have a continuous charge distribution. At
equilibrium, exactly half of the distribution lies within a
Gouy—Chapman length from its colloid. Under the appropriate time
and length rescaling, the equations in (PB) and out of equilibrium
(PNP) are identical for these three systems. In 1D, this system is the
mean-field counterpart of the point-particle case envisioned by
figure 1, at L = 0.

have a Boltzmann distribution nexp(—efS¢pg) and then
inserting this density into Poisson equation. The solution to
equation (30) is

Q

b(1 + x/b)*’ (31

npp(x) =

where b = ¢/ BQe” is the Gouy—Chapman length. In 1D, this
quantity is proportional to the Bjerrum length b = Iz /Q.

In order to discuss the mean-field results, we rescale the
position by the b length: X = x/b and introduce the reduced
density 7 = (b/Q)n. Figure 16 features the PB density and
three exact profiles for N = 1,5 and 20, computed using
equation (26). The plot shows that by increasing N, the dis-
crete result approaches the PB density. Beyond a few parti-
cles (e.g. 5), the effect of increasing N mostly affects the tail
behavior.

We now turn to the mean-field dynamics. For this purpose,
we solve the dynamical generalization of the PB equation, the
Poisson—Nernst—Planck (PNP) equations [1]:

—02ppnp = —2 e nprp /e,
) (32)
Ompnp = D O;npnp — 11 Ox (npnp OxPpNp) 5

where D is the diffusion constant and p the electric mobility
of the counterions. These constants are related by the Einstein
relation D = (1/€)kp Tram- Again, we account for the colloidal
particle by fixing the electric field at the origin for all times:

O, dpnp(0F, 1) = —2Qe /€. (33)

We proceed to use the ‘hat’ rescaling, which was already
defined for position and ionic density. The remaining time and
potential units are given by 7 = ¢/(b>/D) and ¢pxp = e[dpnp
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Figure 16. Equilibrium density profile 72, (X) (equation (26)) with
L =0for N = 1,5,20. The solid line is for the PB solution 7pg.
Note that for as few as N = 5 counterions, the mean-field theory
(i.e. 71pp) is a good approximation, except in the tail. The inset shows
the same plot in logarithmic scale to emphasize the tails: increasing
N (while keeping Ne fixed) augments the region of overlap between
the discrete and mean-field models.

respectively. In [38] it was shown that integrating twice the
second equality in equation (32) and assuming a symmetric
initial condition, the electrokinetic equations become

-~ ~ -~ N 27 N
Orppnp(00, 1) — Orppnp(X, 1) = Oz dpnp (X, 1)

n [3£¢A5PN2P@,7)]2

In [38] a Cole—Hopf transformation was used. It amounts to
introducing W such that:

(34)

donp(E, ) — derp(00,D) = =2 In WX, (35)

which brings interesting 51mp11ﬁcat10ns see below Note
that up to a constant, we have d)pr(x T— 00) = d)pB(x)
2 In(1 +X). As a result, ¢pr(oo 7 is divergent for T— .
This nevertheless does not lead to any physical difficulty nor
any ill-posedness in (35): an additive x-independent term in
the potential ¢pyp does not change the charge density. What
we may gather from the above remark is that

lim W&, 1) =1

X—00

while lim W(x,7) = 0.

1—00

(36)

We then substitute the Cole—Hopf transformation into
equation (34), and it doing so it becomes

W = 2W, (37)
which is equipped with the following Robin boundary condi-
tion:

KW, 1) — W(O,7) =0, (38)

as follows from equation (33).
In order to find W, we can use the reflection method where
we introduce a function Wy, defined from a modification of the

IC W(x,0). The idea is to restrict to X > 0, and to continual-
ize W to X < 0 in a convenient fashion. In order to satisty the
Robin boundary condition, the function Wy, is taken such that
=Wy(x) — Wo(X) is an odd function, and consequently van-
ishes at the origin. We also require Wy, to coincide the IC for

X > 0. The function that satisfies the previous requirements is

given by:

A
Wo(x < 0) = Wo(0)e" +e* /0 e’ [Wo(») — Wo(y)] dy, (39)

where  Wp(Xx > 0) = W(x,0). Then, the solution to
equation (37) reads
SR 1 @—yf}
W&, 1) = | dy W, X —— exp{ — ;o (40
(x, 1) /]R y Wo(y) i p { n (40)

this expression is used for X > 0. Once we have computed W,
we obtain the ionic density through

fpxp(X, 1) = 0% [~ In W(R,7)], (41)
which follows from the Cole—Hopf transformation and
Poisson’s equation. The asymptotic behavior as 7 — oo of the
PNP density profile is given by the PB solution: 7ipxp(X, 7 —
00) = npp(X).

We now focus on an initially localized density profile

npnp(X, 0) = 0(X), which leads to the following W function:

N x e 43
W&, 1) = erf () — e erf(
Wi Wi

The previous expression has to be handled with caution since
in general spatial and time limits cannot be exchanged, see
equation (36). We can then analyze the asymptotic time behav-
ior of equation (42) by computing the large time expansion:

) +etT (42)

WED ~ —= + 0. (43)
1—00 Tt
The mean-field density profile follows, as
Tipnp(3.7) c
npnp(X, 1) =
v {erf(z\ﬁ) + el erfc ( ) )}
(44)
et erf( ) erfc ( )
{erf(z\/;) + e ¥ erfc ( 2\/5)}
which admits the following expansion at large times
- 1 L+?+3#+3§+3 oL
e (14737 6G + Lt GE

(45)
where the equilibrium distribution 7pg(X) is ultimately
reached, as anticipated. The next leading order decays as
inverse time, and reveals that the corrections to PB are of
order ~ X2 ﬁ at large distances; this indicates that the tails take
longer to converge toward equilibrium. Furthermore, it implies
that it takes a time 7 ~ X for the distribution to reach equilib-
rium at distance x from the colloid. Figure 17 shows how the
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Figure 17. Ionic density at times 7 = 0.1, 0.6, 5 for the PNP
mean-field dynamics (markers) and the equilibrium PB solution
(solid). The IC is 7ipxp(X, 0) = §(X). For 7 = 5, the dynamical PNP
solution is close to its equilibrium counterpart. The inset shows the
same plot in linear—log scale to emphasize the tails of the
distributions, where lies the largest difference between PB and PNP
at large times.

PNP solution approaches the equilibrium distribution: starting
by the region close to the colloid and then spreading outwards.
Equation (44) also admits an expansion when X — oo:

—?2/11\ 2/\

~ e t 1

npNp_~ = {1 -=+0 <A2>] , (46)
X—00 Tt X X

which shows that for a finite time, the distribution has Gaus-
sian tails. Then, the algebraic decay is featured exclusively at
equilibrium.

We move on to compare the dynamics of the discrete coun-
terion model and the PNP solution. In figures 18 and 19, the
exact discrete results are plotted at different times. For as few
as N = 3 counterions, the mean-field theory becomes opera-
tional, if we exclude the tail. Besides, the larger N, the closer
to mean-field the tail behaves.

Finally, we discuss the characteristic relaxation time. The
absence of an exponential decay means, that the PNP dynam-
ics is ruled by an infinite characteristic time. To see how
this matches with the finite N exact results, we examine how
the characteristic time 7 behaves when N increases while
keeping the colloid charge Ne (2Q = N in the discrete case)
fixed. For L = 0, we have found T ~ 4, for even and odd val-
ues of N. This means that 7 ~ N2. Therefore, in the mean-
field limit N — oo and e — 0 with fixed Ne, the characteristic
time diverges, to yield the PNP result of a diverging scale.
Figure 20 illustrates how an observable, the KLLD, approaches
the mean-field as N increases while keeping Ne fixed.

5. Misfit counterion transport time

We have seen that the relaxation dynamics depends on whether
the number of ions is even or odd, with the slowest relaxation

(<

Figure 18. Ionic density at time7 = 1.5, for the PNP mean-field
dynamics (dashed) and the discrete N counterion simulation with
N =1, 3,6 (markers). The IC for the different cases consists of all
the particles localized at X = 0. The equilibrium PB mean-field
solution 7pg (solid) is given for reference. The insets show the ionic
density in logarithmic scale to magnify the behavior on the tails,
where the discrete case departs from the PNP solution.

10°

(<

Figure 19. Same as figure 18 with7 = 5.

occurring in the odd case. In order to investigate this further,
let us revisit the case where we have an odd number of coun-
terions N = 2M — 1 with M > 1, and focus on the misfit ion.
This misfit ion already plays an important role in the thermal
equilibrium properties in 3D systems [58], therefore it is inter-
esting to understand also its role in the dynamical properties.
If we label the ions from 1 to N according to their increasing
position, the misfit ion is the middle one or Mth ion. Due to
the nature of 1D Coulomb interactions and the charge neutral-
ity of the system, there is no net drift force acting on the Mth
ion whenever it lies between the two colloids. As a result, it
undergoes free Brownian motion until it collides with either
of its neighbors.
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10°

10—1 !

Figure 20. KL.D for N = 1,5, 20 (marks) and for the PNP
mean-field dynamical solution (dashdotted). The KLD is taken
between the dynamical distribution and its corresponding
equilibrium state. Note how this observable converges to the PNP
curve as the number of counterions increases.

5.1. Transport time distribution

We consider the time and distance between collisions of the
Mth ion with its neighbors as follows. Suppose that the sys-
tem is in equilibrium and that the misfit ion collides with,
say, the (M — 1)th ion (its left neighbor). We record the time
and position of this collision and let the system evolve until
the Mth ion collides with its right neighbor (the (M + 1)th
ion). We then calculate the time interval and distance between
collisions. Finally, we record the position and time of this
new collision and repeat the process for the next collision
with the (M — D)th ion. In this manner, we record 10° sam-
ples of times and distances, obtaining the corresponding sam-
ple averages and standard deviations. Note that we do not
record data from successive collisions with the same neighbor.
For example, after recording a collision with the left neigh-
bor, we do not record any new collisions with the left neigh-
bor until a collision with the right neighbor has occurred. In
doing so, we define the transport time distribution between
double-layers.

With N = 25, the time between collisiqgls is distributed as
shown in figure 21. We observe that for L = 3 the collision
times take mostly small values, while for L > 7 the distribu-
tions show noticeably longer tails, indicating that the Mth ion
requires a much longer time to go from one of its neighbors
to the other. Besides, it is seen in figure 21 that the short-time
collision probability diminishes as L increases. This is due to
the minimum distance the counterion needs to find another
particle: at large L, all ions except the misfit are located in
the vicinity of the colloids. The misfit thus needs to travel a
distance of order L to collide with a new partner (see more
details below). We then calculate the average transport time;
the results, shown in figure 22(a) do exhibit the expected
diffusive L? scaling for large L.

0.09 = —
L=5: lg=3.072

—L =T lag =4.795
—L =9 lg=6.764

0.03

12 15 18

t

Figure 21. Transport time distribution for the mis~ﬁt ion (solid lines)
and fitted fixed wall model time distribution ¢; ff(t) (dashed lines),
for N = 25.
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Figure 22. (a) Average transport time as a function of 2. The lines
are guides to the eye. (b) Difference L — [ 4y, for N = 5,9 and 15.
The lines are guides to the eye and the horizontal dashed lines show
the asymptotic value as L — co. The equivalent plot for L — /¢ (not
shown) yields a similar behavior: a bounded monotonic increase to a
slightly different terminal value, yet reaching it nearly for the same
L.

5.2. Effective model for the misfit’s free space

We are interested in estimating the length of the available free
space for the misfit. This is expected to be given by L minus
two double-layer sizes (one on the right, another on the left-
hand side). While we do not have the explicit form of the col-
lision time distribution as a function of L, we can resort to the
boxed particle model introduced in section 2.4. We then esti-
mate the transport time as a function of the distance between
walls /, namely 77, as given in (24). We present a derivation of
its distribution in appendix D. Using this object, we can inves-
tigate the effective size of the system between the ion clouds
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using the Mth ion as a probe. We perform a parameter fit to
find the value of / for which q,~(7), which is the transport dis-
tribution (equation (25)) for a Brownian particle in a 1D box
of length [, reproduces the collision time distributions most
closely, and we denote it by / .. The result of the parameter fit
is shown in figure 21; as expected, the fixed wall model time
distribution seems to reproduce the transport time distribution
more closely as L grows.

The first observation to be made about q;(?) as expressed in
equation (25) is that it obeys the scaling relation

G0 =120 (é) , @7)

where Q(7) is a scaling function. This means time scales like

/2. Indeed,
oo~ o 72
tg-(t)ydt = —.
/0 g di =

For large enough L, this quadratic behavior is observed in
figure 22(a). B

For smaller values of L, the boxed particle model fails to
describe the situation. The behavior of L — [ as a function
of L, resembles the one featured for I, avg (figure 22(b)). After
calculating the coefficient of determination R? of each fit, we
find that its value is quite low (less than 0.5 in several cases)
for L < 5, while it lies consistently between 0.75 and 1 and
shows a monotonically increasing behavior when L > 5, that
is, the fits b~ecgme~more reliable as L grows. Moreover, with
increasing L, L — [ tends to a value that depends only on
N, and as N grows this value converges to a limit close to 2;
this limit is roughly twice the double-layer size, which in the
non -permeable case is exactly 1[5 1]. To see this, we examined

—lerasa functlon of N°U. The L — 1, off behaves as a linear
functlon of N~! as N — oo, which allows to extrapolate the
asymptotic behavior

(48)

lim (L — I o) = 2.46 £ 0.01. (49)
N—00
Finally, let us analyze directly the distribution of distances
traveled by the misfit ion between collisions. In figure 23, we
show the results for a system of 25 counterions. When L=3,
a large fraction of the collisions occur at very small distances
(less than 0.5) which results in a peak at the origin. For L > 7,
the distribution has no such peak. We also observe that that as
L increases, the distribution shifts to the right without signifi-
cant changes in the shape. We define [ ,,, as the average of the
collision distance data, that is, the mean of the collision dis-
tance distributions depicted in figure 23. Performing a similar
analysis as for Lest yields similar asymptotic results for grow-
ing L, see figure 22(b). By considering the difference L—1 avg
for L = 5 as a function of 1/N, we observe that lavg converges
to a well-defined value, as N tends to infinity. Similar to the
behav1or of L — leff, we see that I — lZlvg is a linear function of
N~!as N — oco. From the fit we obtain

hm[ — lavg(N L)] = 3.05+0.01. (50)

As before, we expect this value to only vary slightly and
converge as L — oo in the same way as L — [ .

B L=6_ L=8 _
0.5 L=3 L\ 7 LJQ
0.4 ]
= 0.3
Y
0.2
0.1
0
0 1 2 3 4 5 6 7 8

Figure 23. Distribution of distances traveled by the misfit ion
between the double-layers, for N = 25 and various L.

5.3. Misfit’s role in the relaxation time

In view of the analysis in section 2, we expect the character-
istic time to be a quadratic function of L when the latter is
sufficiently large. In addition, equation (11) indicates that the
smallest discrete eigenvalue appears when L>nforN =1.In
the present case, we may expect a similar behavior, whenever
the free space available to the Mth counterion exceeds 7; this
length can be estimated by /... As can be seen in figure 24,
the behavior of 7 in /2

ave 18 well obeyed. More specifically, we
get for AICs

F(N,L) = A + Bl g(N, L)?, 51)
with A = 1.47 +0.18, B = 0.107 + 0.005, and L > 7. Note
that the coefficient B is very close to the value predicted by
equation (13), which is 1 /72 ~ 0.101. The curves in figure 11
plotted as functions of Tavg are also shown in figure 24, and we
see that the characteristic time follows a single curve that does
not depend on the number of counterions, provided it is odd.
We observe that with the AICs, for all curves, the characteris-
tic time is close to 4 when /,,, < 7 — 1, and that 7 follows a
quadratic growth when 7avg >m+ 1.

We perform the same analysis for the SIC, reaching similar
conclusions, see figure 24 [71]. Equation (51) is still obeyed,
with A = 0.89 £0.18 and B = 0.0252 4+ 0.0012. Again, the
coefficient B is consistent with the asymptotics given by
equation (14), which indicate a value of 1/(47%) ~ 0.0253.
Assuming in addition that the single counterion situation
subsumes the key effects, we expect from equation (12) an
increasing behavior when [, > 37; this is confirmed by
the figure. Moreover, when Tavg < 3 the characteristic times
seem to be independent of the number of ions, and very
close to the completely-continuous spectrum value of 4 found
forN = 1.

The non-monotonicity of the characteristic time shown in
figure 24 for AIC with 2 < [, < 4, and for SIC with 3 <
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Figure 24. Characteristic time for the AIC and SIC initial
conditions as a function of /,,,. The straight lines are guides to the
eye, and the error bars denote one standard deviation. In the inset,
we plot the characteristic time as a function of /,,; the dashed lines

correspond to linear fits.

2 .
avg>

[ avg < 9 may be the consequence of the finite number of sam-
ples taken during our simulations as well as the finite simula-
tion time. As seen in figure 6, the characteristic time estimated
from simulations is quite close to the exact curves when N = 1,
but it can be observed that 7 is underestimated at small Z;
also, estimations made for N = 1 in a time interval and a noise
level close to those used for N > 1 reveal a similarly non-
monotonic behavior in the intermediate L region, which we
know is nonexistent in the exact N = 1 results. We conclude
that these non-monotonicities are numerical artifacts, see also
the end of appendix C.

6. Conclusion

We have determined the relaxation time 7 of an overdamped
electroneutral two-colloid system as a function of the col-
loid separation L and the number of counterion N. The parity
of N determines whether 7 depends on the distance between
colloids. For N odd, we found a behavior that mirrors the
single counterion case: 7 L? /D, where D is the diffusion
coefficient. From the Stokes—Einstein relation, D grows lin-
early with temperature (74 ), SO that here, 7 decreases upon
increasing Tham. On the other hand, for N even, 7 1}23 /D
where lg is the Bjerrum length, which provides a measure of
the extension of the equilibrium double-layerin 1D [51]. Since
Ig o< T, we conclude that 7 increases when increasing 7'pym:
this is due to the enhancement of the double-layer size, under
the influence of thermal agitation. The quasi-independence
of double-layer size on N—ionic charges being fixed, and
therefore at varying colloidal charge—is at the root of the
rather striking independence of 7 on the number of counte-
rions, when this quantity is an even integer. The irrelevance of
N, interestingly, is also observed for N odd, stemming from

a distinct mechanism. There, what matters is the presence of
a misfit counterion, that will be, by and large, the dynam-
ical limiting factor. By symmetry, this central ion does not
experience any force, while all other ions are subject to a
non-vanishing electric field. For large L, this ion diffuses in a
domain of size L; hence the scaling in ? /D for the character-
istic time. Leaving aside the misfit ion, odd-N systems behave
much like even ones, and equilibrate over a common time
scale I3 /D.

We showed that the analytical solution for the mean-field
dynamics (namely, the PNP electrokinetic equations) provides
areasonable approximation for a system with as few as N = 3
counterions (see figures 18 and 19). We can surmise that the
mean-field framework becomes exact in the limit N — oco.
While the exact equilibrium density profiles at finite-N fea-
ture an exponential tail at large distances, their mean-field
expressions are longer range, with an algebraic decay. This
translates into an infinite characteristic time for equilibration
at mean-field level. We have shown that the finite-N finite-7
results did approach this limit as 7 oc 3 /D o< e~> where e is
the charge of the counterions. Since the mean-field limit, for
a colloidal object of charge Q, is met for N — oo, electroneu-
trality Q = 2Ne requires that ¢ — 0. Thus, 7 o< e~2 becomes
infinite in the mean-field limit.
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Appendix A. Dry friction in a wedge potential

This section deals with the limit L — 0, where the system is
described by the same equation as that ruling the velocity dis-
tribution of Brownian motion with dry friction [60, 61]. The
latter describes a particle under the influence of a Langevin
force £(r) with Gaussian distribution characterized by (£()) =
0 and (£()€(0)) = m?T'6(2). There is also a dry friction force
term of magnitude Ag. For our purpose, we only mention the
results obtained in the ‘partly stuck’ regime, in which the fric-
tion coefficient is small enough to avoid getting stuck but large
enough to differ from free Brownian motion. The equation of
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motion in that case is given by:

mo + myv = —Ag sgn(v) + £(2). (A1)
If the viscous damping is neglected (v — 0), this equation
becomes:

(A2)

~Asgn(v) + &0,
m

where A = Ag/m and sgn(x) is the sign function. The pre-
vious equation has an associated Fokker—Planck formulation,
which we write in terms of the dimensionless variables X =
2Av/T and 7 = 2A%¢/T:

0

Ip(x, 1] X0, 0) (
o

ot

0’ p(x. 1%, 0)
X2 ’
(A3)
where p(x,7|Xo,0) is the propagator for the velocity distri-
bution with initial dimensionless velocity X, at a time 1o =
0. Note that the analogy with equation (3) for L = 0. This
Fokker—Planck equation has been solved using an eigenfunc-
tion expansion in [61], which is the same treatment we used
for an arbitrary L. Simplifications ensue for L = 0andaclosed
form expression is available:

(X, 1|X0,0) sgn(x)) +

p(x, 1%0,0) = e e (FI-RD/2 o~ G0)? /47
Tt
- - e
¢ 1 — [x] — %o
o e (5|

(A4)

where erf(x) is the error function. This density distribution
explicitly shows the time scale 7 = 2m>T'/A% (or T = 4 in
dimensionless units).

The constant drift diffusion described in previous sections

is observed directly from the average position:
ol -7\, (T
T) erfe ( P )

(D) = sen(o) K'
+ el (@) erfc <t+ }"')] . (AS)

271/2
where erfc(x) is the complementary error function. The pre-
vious expression can be shown to follow a ballistic behavior
(X(1)) ~ Xo —  sgn(Xo) during the period 7 < Xo (t < vo/A).
After this, the average velocity decays exponentially to O.

1 — [%o|

Appendix B. Fokker—Planck equation for N =1

The eigenfunctions u of the Fokker—Planck operator follow
from solving:

d*u(z, )\)

B B

+ = (cp uGEN) ) + AuE A) = 0
where the eigenvalue A is real and positive. This result stems
from the fact that the 1D Fokker—Planck equation can be trans-
formed to a Schrodinger equation, which involves a Hermitian
operator and therefore a real spectrum [62, 63]. Furthermore,

the potential is confining enough to allow for a localized steady
state.

The elgenproblem equatlon (equatlon (B1))is plece wise in
three regions: X < —L/2, —L/2 < ¥ < L/2and ¥ > L/2. For
that reason, equation (B1) is solved for each region, with

u(L/2)T, ) = u(L/2)", N,  (B2)

WL/ N +u(@/DT N =d (L[N, (BI)
where these equations express the continuity of the eigenfunc-
tion and of the probability current j(x, \) = ®'(X)u(x, \) +
W(x,\) at x = 2/2, respectively. The interface conditions

—Z/ 2 are analogous. Equations (B2) and (B3) only have
non-trivial solutions for a discrete set of eigenvalues {\; }; in
the domain [0, 1/4). This set is L-dependent and non-empty
since the equilibrium distribution, given by Ay = 0, is always
present. On the other hand, the spectrum is continuous in
[1/4,00), independent of L. We use the notation u (%) and
u(x, \) for the eigenfunctions of each case respectively. The
eigenfunctions of the adjoint problem v(x, \) follow from
v, \) = u(x, \)e®®, where the discrete case is obtained by
adding the corresponding subscripts. Due to the symmetry
of equation (B1), it is convenient to solve it using a linear
combination of odd and even functions:

WO(|X| < L/2,\) = A° sin(vV/AX) (B4a)
(7] > L/2,0) = e 3 [BS sinGiBy)

+ B sgn(X)cos(x3))]  (B4b)
u(|X| < L/2,)) = A® cos(VAX) (B4c)

(7 > L/2,0) = e [BS sgn(®)sin(Z5)
+ BS cos(xB\)1, (B4d)

and for the discrete spectrum:

ul(|%] < L/2) = C° sin(X\/A)) (B5a)
u(|x| > L/2) = D° sgn(?c“)ef“’a(1+ ) /2 (B5b)
uSe (3] < L/2) = C® cos(F/X;) (B5¢)
uy(|x] > Z/2) =D° ef‘}a(lJr 1*4/\2)/2, (B5d)

where 5\, = /A — 1/4. The continuous eigenvalues are \ >
1/4 and the discrete ones are 0 < A < 1/4. The superscripts
‘o’ and ‘e’ give the parity of the eigenfunctions. The con-
stants are found at the end of this appendix. The eigen-
value A\ belongs either to an odd (cv = 0) or even (a =€)
eigenfunction, and it is a solution to equation (9) (if odd)
or equation (10) (if even) in the domain [0, 1/4). These
equations result from imposing a vanishing determinant of
the linear system made by equations (B2) and (B3) for the
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eigenfunctions (equations (B5a)—(B5d)). This ensures a non-
trivial solution for the discrete family of constants (C¢, C°, D°
and D°).

The normalization constants Z%(\) and Z' are defined by
the relations:

ZUNSO — N = / dx u* G MY (% \)  (B6)
R

Z{5, = / dx uf @)vg (), (B7)
T
which yield the following expressions:
Z°(\) = 27 B\(BS* + BY?) (B8a)
Z5(\) = 2mB\(BS + BSY) (B8b)
g . _ o —if\oL
7= o2 L sm(\/)\—ZZ) of D Z.e A
2 2N iBxo
(B8c¢)
~ —iByeL
sin(y/XL)\ 7  D%e X
= I+ (B8d
(2 + 3 ) ez + iﬁ/\i ( )
= (L+2)e L2 (BSe)

where i), = +/1/4 — A, and Z, is the partition function
for the equilibrium distribution (\y = 0), which is given by
equation (6).

Finally, the following constants are determined by the van-
ishing boundary conditions at infinity and equations (B2) and
(B3). Additionally, for the discrete case, the determinant for
the linear system that rules the family of constants must vanish
(equations (9) and (10))

B 28\ + tan (%ﬁ ) :1 —2v/X cot (%\/X) B9
B_g - 23, tan (%BA) +2v/X cot (%\/X) -1 B
B 26, + tan (%BA) 2\/X tan (%\/X) + 1:
BS 32X tan @\/X) — 24, tan (%m) 1

(B10)
A 2By e L4 csc (% )\) sec (%BA) -
B? - 23, tan (%BA) +2V/X cot (%\/X) —1 BID
o 2By e L/ sec (%\/X) sec (% A) -
B 2 (W) +1- 2 (351)
2—: = e(zi“%g-&_l)z/4 sin (Z\/A_;?/Z) (B13)
g—: = I o (ZvX/2). (B14)

Appendix C. Asymptotic Kullback-Leibler
divergence for N=1

This appendix computes the asymptotic behavior of the KLD
when N = 1 (equation (18)). For this purpose it will be useful
to realize that dp is the sum of a term that comes from the
continuous spectrum (g,) and another from the discrete one

(Za,ksz\;j):
Sp(x,1,%0) = e\ + Zﬂg,

o,k

(ChH

where €, and }° ,e) are the terms of the ionic den-
sity (equation (5)) associated to the continuous (A > 1/4)
and non-zero discrete (0 < A} < 1/4) parts of the spec-
trum respectively. The contribution of €, is always non-
zero, while Za,kEA‘k’ can vanish completely depending on
Z and ’)Zo.

We start by analyzing the large time behavior of the KLD
when the only contribution is due to the continuous spectrum
term ) and therefore we have:

Z

2 L

~ & ez . ~

Q: = I('xO’L’t)a
s

Dir(p|| pso) ~ /dx
R

(€2

o0

where I is the following integral:

1= [

k3

(4\/X — 2 sin (\/XZ) cos (2&%0)) e 2N

A — 1) 2V (SA + cos (NXZ) - 1)
(C3)
This term is obtained by exchanging the integration order of
A and X, and then calculating the spatial integral. After some
algebra, the remaining expression is I, which unfortunately
has no closed form. However, it is possible to find lower
and upper bounds. Since / is an integral of a positive func-
tion, the integral of a function that bounds the integrand is a
bound of /. Following this reasoning we find the following

inequality
i1 \/’1 7 1
I =40 el | +0(= )|
¢ [7%+ ( ﬂ VA Lﬁ (7”
(C4)

This implies that the KLD is dominantly of the form exp(—7/2)
for asymptotically long times. This behavior is not a surprise,
since I has an integrand dominated by exp(—2\f) when 7 —
00, which is maximum when A takes its minimum value 1/4.
The next order correction is a power function term 75, where
1/2<s<5/2. For L = 0, the explicit calculation is possible,
which yields s = 3/2. The subdominant term 7 * is relevant
in practice, due to the limited time domain accessible in the
simulations.

We now focus on the situation where }_, ;&)e is non-zero.
Discrete branches, featuring smaller eigenvalues, do domi-
nate at long times over their continuous counterpart. Which
eigenvalue it is depends on L (as seen in figure 4) and also
on the symmetry of the ICs. We summarize all the possi-
ble cases, including the previous continuous result, in the
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following relation:

Zw[V?(fo)]z e72/\(177
Z‘l)~ .
Zoo[V7(X0)] 2T
Zy
37, el?
4+/2m ©5)

We conclude this appendix with a note on the behavior of
these asymptotic relations when used on time domains which
do not take large enough values. In this situation it can hap-
pen that some subdominant terms are not negligible, as previ-
ously stated for the continuous spectrum term €. It can also
lead to problems in the scheme described in section 2.3.1, for
the cross-over regions where the dominant term in ¢ p changes
fromey to ), ;ex.

L>m % #0
DxL(p||px) ~ L>3m X =0

e elsewhere.

—1/ 277 s

Appendix D. Derivation of the simplified transport
time distribution

The distribution of 7, as defined in equation (24) can be derived
following the ideas in [72, ch XII], and we summarize the
method here. The probability density function p;(z, x) for the
free Brownian motion we consider, obeys the Fokker—Planck

equation
2

0 0
EP[(L x) = wl’l(ﬁ x). (D1)

The boundary conditions of the problem are that of a reflecting
wall at the origin and an absorbing wall at x = [/, but because
Brownian motion has left—right symmetry, we can replace the
reflecting wall by a second absorbing wall at x = —/. Then, we
have

Initial condition: p;(0, x) = §(x),

(D2)
Boundary condition: p,(t, —I) = p,(t,1) = 0.

The total (integrated) probability is not conserved, and the rate
at which it decreases due to adsorption gives the transport time
distribution,

o x=I
q(t) = — afpz(t, X) (D3)
X x=—
To solve (D1), we introduce the Laplace transforms
wi(s, x) = / e pi(t, x)dt
- (D4)
Gi(s) = / e gi(ndt,
0
with Re(s) > 0. Then, the transform of (D3) reads
o x=I
i(s) = — a—%’[(f, x) (D5)
X x=-—

Now, the transform of (D1) becomes an ordinary differential
equation, which is solved using (D2) to obtain

_tanh(y/s]) cosh(y/sx) — | sinh(,/sx)]
= NG ,

©i(s, x) (D6)

and due to (D5) we get
#i(s) = 1/ cosh(v/sl).

This transform is inverted using the Mittag—Leffler expansion
of cosh,

(D7)

47(2n+ 1)
Qn+ 1272 + 4 512’

Gi(s) =Y _(=1)" (D8)
n=0

and (25) follows from tables of Laplace transforms.
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