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Abstract
We propose a simple approximation scheme for computing the effective charges
of highly charged colloids (spherical or cylindrical with infinite length). Within
non-linear Poisson–Boltzmann theory, we start from an expression for the
effective charge in the infinite-dilution limit which is asymptotically valid
for large salt concentrations; this result is then extended to finite colloidal
concentration, approximating the salt partitioning effect which relates the salt
content in the suspension to that of a dialysing reservoir. This leads to an
analytical expression for the effective charge as a function of colloid volume
fraction and salt concentration. These results compare favourably with the
effective charges at saturation (i.e. in the limit of large bare charge) computed
numerically following the standard prescription proposed by Alexander et al
within the cell model.

1. Introduction

In colloidal suspensions, the charge ratio between the poly-ions (colloids) and the counter-
ions or salt ions may be larger than 104. This considerable asymmetry invalidates most
of standard liquid state theories. The concept of charge renormalization, however, allows
one to significantly simplify the description of such systems: the electrostatic coupling
between the poly-ions and oppositely charged micro-species induces a strong accumulation
(or ‘condensation’) near the poly-ion surface. The idea is then to consider a colloid plus its
‘captive’ micro-ions as an entity carrying an effective (or renormalized) charge Zeff , a priori
much smaller than the bare charge Zbare. Consequently, except in the immediate vicinity of the
colloids where linearization schemes fail, the interactions in the suspension are well described
by Debye–Hückel-like linearized theories, provided that the bare charge is replaced by the
renormalized one Zeff . Schematically, the linear effects of screening by an electrolyte induce
a dressing of the bare Coulomb potential (Zbare/r → Zbare exp(−κr)/r where κ−1 is the

0953-8984/03/010291+06$30.00 © 2003 IOP Publishing Ltd Printed in the UK S291

stacks.iop.org/JPhysCM/15/S291


S292 E Trizac et al

Debye length; see below), while the non-linear effects of screening imply the identification
Zbare exp(−κr)/r → Zeff exp(−κ ′r)/r (with possibly κ ′ �= κ [1]).

Several reviews discussing the notion of charge renormalization have appeared recently [1–
4]. In the colloid science field this concept has been introduced by Alexander et al [5] in the
context of the Poisson–Boltzmann (PB) cell model, but it had been widely accepted since the
1950s in the field of linear polyelectrolytes [6, 7]. The definition of an effective charge from the
far-field potential created by an isolated macro-ion in an electrolyte is unambiguous [2, 8a, 9a],
at least for the simple cases of spherical or infinitely long cylindrical macro-ions that we
shall consider here, even if the case of less symmetric poly-ions deserves more attention (see
e.g. [10]). Within a cell model, introduced to replace the complicated many-body problem
of colloids in solution by a simpler one-particle system [11–14], the definition of an effective
charge is more elusive, but the celebrated proposal made by Alexander et al amounts to
finding the optimal linearized PB potential matching the non-linear one at the cell boundary.
The cell approach, whose validity has been assessed by several studies [16–21], appears to
provide a reasonable description of solutions containing monovalent counter-ions [22–24].
The effective charge is obtained by integrating the charge density deduced from the linearized
potential over the region accessible to micro-ions, or equivalently from Gauss’s theorem at
the colloid’s surface. Note that a renormalization of Z also implies a renormalization of the
screening constant κ . For low poly-ion bare charges Zbare, linearizing the PB equation is a
valid approximation, so Zeff � Zbare—whereas in the opposite limit of high bare charges, Zeff

was found numerically to saturate to a value independent of Zbare: Zeff � Zsat. The saturation
value Zsat depends on the geometry of the colloid, and the temperature or the quantity of added
salt. Unfortunately, no analytical prediction is available for these dependences.

In this paper, we propose an approximate analytical expression for the effective charge
of spherical or rod-like macro-ions, as a function of macro-ion density or salt content. Our
approach starts with an estimation of the saturation value of the effective charge in the infinite-
dilution limit, as deduced from recent analytical results [25]. In the case of finite colloidal
dilution, the osmotic equilibrium of the suspension with a salt reservoir is modelled using a
Donnan equilibrium approximation. This allows us to derive a simple polynomial equation
of degree 4 fulfilled by the saturation value Zsat of the effective charge Zeff , in the case of a
symmetric 1:1 electrolyte. In the limiting case of no added salt, the above equation is easily
solved analytically and provides results in quantitative agreement with the saturation effective
charges following Alexander’s prescription.

2. General framework and method

We consider first the situation of an isolated macro-ion of given surface charge density in a
electrolyte of bulk density n0 (no confinement). The solvent is considered as a medium of
uniform dielectric (CGS) permittivity ε. Within PB theory, the electrostatic potential, when
assumed to vanish far from the macro-ion, obeys the equation

∇2φ = κ2
0 sinh φ, (1)

where the screening factor κ0 is defined as κ2
0 = 8π�Bn0 and the Bjerrum length quantifies

the strength of electrostatic coupling: �B = e2/(εkT ) (e > 0 denotes the elementary charge
and kT is the thermal energy). A complete asymptotic solution of equation (1) has been
obtained recently by Shkel et al [25] in spherical and cylindrical geometries. From the far-
field behaviour of the corresponding solutions, one obtains after some algebra the effective
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charges at saturation:

Zsat
�B

a
= 4κ0a + 6 + O

(
1

κ0a

)
for spheres (2)

λsat�B = 2κ0a +
3

2
+ O

(
1

κ0a

)
for cylinders. (3)

In these equations, a denotes the radius of the macro-ion under consideration, Ze the total
charge in the case of spheres, and λe the line charge density in the case of cylinders (with
infinite length). Expressions (2) and (3) are the exact expansions of the saturation charges in
the limit of large κ0a but are in practice accurate as soon as κ0a > 1 (not shown).

Our goal is to translate these relations into expressions that would approximate the effective
charges in confined geometry, where the macro-ion is enclosed in a cell [5]. To this end, we first
find an approximation for the relevant screening factor κ� before inserting it into (2) and (3),
making the substitution κ� ↔ κ0. The implicit assumption is that the mean salt density in the
cell is related to the effective charge in a similar manner to in the infinite-dilution limit.

In confined geometry, the PB equation still takes the form (1), where κ0 = (8π�Bn0)
1/2

should now be considered as the inverse screening length in a (neutral) salt reservoir in osmotic
equilibrium with the solution, through a membrane permeable to micro-species (n0 is thus now
the salt density in the reservoir). It may be shown that the relevant screening factor in the cell
is related to the micro-ion density at the cell boundary [8]:

κ2
� = 4π�B [ρ+(RW S) + ρ−(RW S)]. (4)

In this equation RW S is the radius of the Wigner–Seitz (WS) confining cell. We have recently
proposed an efficient prescription for computing κ� without solving the complicated non-
linear problem [8]. It is however impossible to deduce an analytical expression for κ� from
this approach and we resort to the following approximation. We assume that the micro-ion
densities are slowly varying in the WS cell so that the mean densities n± provide a reasonable
estimation of the boundary densities ρ±(RW S). We thus write

κ2
� = 4π�B(n+ + n−) = 4π�B(2n+ + Zsatρ), (5)

where the last equality follows from the electroneutrality constraint (ρ is the density of colloids,
assumed positively charged without loss of generality). Note that at the level of a linear theory,
the effective charge Zsat and not the bare one Zbare enters this expression.

We now need to relate the mean densities n± to n0, the concentration in the reservoir
(the so-called Donnan effect; see e.g. [14, 26]). Chemical equilibrium imposes ρ+ρ− = n2

0
at any point in the cell. We again assume this relation to hold for the mean densities, so that
n+n− = n2

0. This leads to

κ4
� = κ4

0 + (4π�B Zsatρ)2. (6)

Up to now the reasoning has been quite general and independent of the geometry. For spheres
with radius a and packing fraction η = 4πρa3/3 = (a/RW S)

3, and for rods with packing
fraction η = (a/RW S)

2, we obtain

(κ�a)4 =
{

(κ0a)4 + (3ηZsat�B/a)2 (spheres)
(κ0a)4 + (4ηλsat�B)2 (cylinders).

(7)

Supplementing these equations with the κ-dependence of Zsat obtained in equation (2)
for spheres and (3) for cylinders, leads to an equation of degree 4 satisfied by κ� (or
equivalently Zsat).
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Figure 1. Effective charge at saturation Zsat (in units of the radius over the Bjerrum length �B )
as a function of packing fraction for a spherical macro-ion of radius a enclosed in a concentric
spherical cell of radius aη−1/3. The situation is without added salt. The analytical expression (8)
is shown by the continuous curve while the non-linear PB values computed numerically following
Alexander et al [5] are represented with circles. Inset: the same, but with added salt for κ0a = 2.6.
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Figure 2. Effective line charge density at saturation λsat (in units of 1/�B ) as a function of packing
fraction for a cylindrical macro-ion of radius a enclosed in a concentric cylindrical cell of radius
aη−1/2 (no added salt). The analytical expression (9) is shown by the continuous curve while the
non-linear PB values computed numerically following Alexander et al [5] are represented with
circles. The inset shows the same quantity, but with added electrolyte (κ0a = 3.0).

This equation can be solved analytically. We give the general solution in the appendix.
However, without added salt (formally κ0 = 0), the solutions of these equations take a
particularly simple form:

Zsat
�B

a
= 6 + 24η + 12

√
2η + 4η2 (8)

λsat�B = 3
2 + 8η + 2

√
6η + 16η2. (9)

We compare in figures 1 and 2 the results obtained following this route with the full PB
estimate following Alexander’s prescription. The latter involves a numerical resolution of the
PB equation. Both the no-salt and the finite-ionic-strength case are considered. The agreement
is seen to be quite good in view of the minimum number of ingredients involved in the present
approach.
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3. Conclusions

In this contribution, we propose a simple approximation scheme for computing the saturation
value of the effective charge in concentrated suspensions of highly charged colloidal particles.
Our estimation starts with an asymptotic expression of the effective charge in the infinite-
dilution limit, obtained from recent analytical results [25]. The case of finite colloidal dilution
is described using a Donnan equilibrium approximation for the osmotic equilibrium of the
suspension with a salt reservoir. This calculation leads to an analytical estimate of Zsat,
the saturation value of the effective charge, as a function of the density of colloids and salt
concentration. Our starting points (equations (2) and (3)) neglect contributions of order (κ0a)−1

and become inaccurate for κa < 1. This implies that our effective charges at finite density
becomes less reliable in the salt-free case for small packing fractions η. However, this is seen
to occur for very small η only (see e.g. figure 1).

These results are obtained at the level of the mean-field PB theory. We note however that
the existence of a saturation value of the effective charge, Zsat, independent of the bare charge,
is indeed confirmed in more refined approaches in the colloidal limit a � �B , with a the
colloid size and �B the Bjerrum length (see e.g. Groot [22], using the primitive model). These
results show moreover that PB theory becomes successful in the aforementioned colloidal limit,
a � �B [20, 22]. Eventually the saturation picture within PB theory becomes in quantitative
agreement with experimental data for the osmotic pressure [8, 27, 28].

It is finally instructive to reconsider the results reported by Alexander et al [5] in their
original paper. At a packing fraction η = 0.125, they find numerically a saturation value for
Zeff of the order of 15, in units of a/�B (spherical colloid). On the other hand,our expression (8)
for the same η gives Zsat�B/a = 9+3

√
5 � 15.7, i.e. very close to the value found in [5]. Note

that this number, 15, has subsequently been often quoted in the literature as a ‘standard’ value
of the effective charge. The saturation value of the effective charge however crucially depends
on the colloid volume fraction, and the full density dependence of Zsat should be taken into
account in finite-concentration cases.
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Appendix. Analytical expression for the effective charge

We give here the explicit expression for the effective charge as a function of the colloid packing
fraction η and salt concentration in the reservoir, n0 = κ2

0 /8π�B .
Inserting equation (2) or (3) into (7), one gets the quartic equation for X = κ�a:

X4 = X4
0 + η2(α + β X)2 (A.1)

with X0 = κ0a. The values for α, β are respectively α = 12 and β = 18 for spheres, and
α = 8 and β = 6 for cylinders.

Let us introduce the following quantities:

� = −12X4
0 − 12β2η2 + α4η4

 = 108α2β2η4 − 2α6η6 − 72α2η2(X4
0 + β2η2)

� = −72X4
0α

2η2 + 36α2β2η4 − 2α6η6

� = 1

3 21/3

(
� +

√
2 − 4�3

)1/3

� = �

9�
+ �.

(A.2)
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The solution X = κ�a is then found as

κ�a = 1

2

√
2α2η2

3
+ � +

1

2

(
4α2η2

3
− � +

4αβη2√
2α2η2

3 + �

)1/2

. (A.3)

The effective charge is then obtained by replacing this value for κ� in equation (2) for
spherical macro-ions, and in equation (3) for rod-like macro-ions.

In the no-added-salt case, these expressions reduce to equations (8) and (9), as indicated
in the text.
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