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Abstract We study the effective interactions between a test charge Q and a one-component
plasma, i.e. a complex made up of mobile point particles with charge q, and a uniform
oppositely charged background. The background has the form of a flat disk, in which the
mobile charges can move. The test particle is approached perpendicularly to the disk, along
its axis of symmetry. All particles interact by a logarithmic potential. The long and short
distance features of the effective potential—the free energy of the system for a given distance
between Q and the disk—are worked out analytically in detail. They crucially depend on the
sign of Q/q, and on the global charge borne by the discotic complex, that can vanish. While
most results are obtained at the intermediate coupling � ≡ βq2 = 2 (β being the inverse
temperature), we have also investigated situations with stronger couplings: � = 4 and 6. We
have found that at large distances, the sign of the effective force reflects subtle details of the
charge distribution on the disk, whereas at short distances, polarization effects invariably
lead to effective attractions.

Keywords Coulomb systems · Colloids · Overcharging · Polarization

1 Introduction

Electric charges are ubiquitous in the colloidal domain, and often a major player shaping the
behaviour of soft matter systems. Counter-intuitive phenomena often ensue, such as over-
charging (charge inversion) or effective attraction between like-charged macro-ions [1–7].
To rationalize such observations that are the fingerprints of correlation effects, simplified
models are welcome, that should furthermore be treated beyond the mean-field level [8]. In-
terestingly, the physics of strongly coupled charged systems has witnessed relevant progress
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Fig. 1 Definition of the system under consideration: a disk D with fixed and uniform background charge
(hatched area), in which N mobile oppositely charged particles, shown by the bullets, are free to move
(N = 4 in the figure). The total charge of the background is −Nbq , while each mobile ion bears a charge q .
The total charge on the disk (background plus free ions) is therefore (N − Nb)q . A test ion with charge Q

approaches the disk along the symmetry axis shown, defining x-coordinate (x = 0 when the test charge lies
on the disk, at the center)

in the last 15 years [4, 9–13], while the study in the weak coupling limit where mean-field
arguments hold, started about 100 years ago [14, 15]. The study of intermediate Coulombic
couplings, though, appears more elusive [16–19] and will be the focus of our interest in the
present paper.

The system under scrutiny here is a variant of Thomson’s plum pudding model (see
[20–22] and references therein), also referred to as the One Component Plasma [4, 23, 24].
Point particles with charge q are embedded in a two-dimensional flat disk D of radius R. In
addition, a uniformly charged background is present in the disk region (see Fig. 1). While
the charged background is fixed, the particles are free to move in D. They interact through
a log potential, the form taken by Coulomb law in two dimensions. The relevant coupling
parameter is � = βq2, where β is the inverse temperature. At small � (formally � → 0),
the Poisson-Boltzmann mean-field description holds [25].1

As is often the case for 2D Coulombic problems, the coupling parameter � = 2 lends
itself to an exact analytical treatment, see Refs. [24, 26, 27]. The goal is here to extend the
exact analysis at � = 2 to investigate the interactions between the disk bearing the mobile
charges, and a test charge Q that is approached perpendicularly to the disk, along the axis of
symmetry (see Fig. 1). We shall assume that Q and all other charges (mobile + background)
interact through a log potential. Since Q explores a third additional direction compared to
those in which the point q-charges and the background disk are confined, the choice of such
a potential can be questioned: it does not correspond to the solution of Poisson’s equation
in three dimensions. This is however the price for obtaining analytical results, that shed
light on phenomena at work in more realistic systems. In particular, we will be interested
in the effective interactions between the fixed charge Q and other charges, that can be seen
as mimicking a colloid (the uniform background), dressed by a double-layer of counterions
(the mobile q-charges).

The model will be defined in Sect. 2, where the theoretical tools will also be introduced.
In Sect. 3, the features of the effective potential at large distances will be addressed. While
most of the present analysis pertains to the � = 2 case, other couplings will be addressed

1It is straightforward to check that in the globally neutral case N = Nb , the mean-field solution is trivial, with
a vanishing electrostatic potential, and a particle density that compensates for that of the background. This is
a consequence of the confinement in D imposed to the charges. If the mobile charges are allowed to leave the
uniformly charged disk and explore the whole 2D plane, the mean-field solution becomes non trivial—the
constant electrostatic potential can by no means provide a solution to the problem—and has been studied in
[42, 49]. We come back to this modified “unbounded” model in our concluding section.
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(namely � = 4 and 6, corresponding to smaller temperatures). Then, the emphasis will be in
Sect. 4 on short range correlations that, through polarization effects, rule the short distance
behaviour of the effective potential. Conclusions will be drawn in Sect. 5.

2 Model and General Formalism

The system is a one-component plasma [23, 24, 26, 28] on a disk D of radius R with N

mobile point charges q , and a fixed background charge density ρb = −qnb . The system
can be globally charged, since Nb = πR2nb can be different from N . The charged particles
interact with the two-dimensional logarithmic Coulomb potential,

vc(ri , rj ) = − ln
|ri − rj |

�
, (1)

for two particles located at ri and rj on the disk (� is an arbitrary length). The interaction
potential between a charge q located at r and the background consequently reads

vb(r) =
∫

D
qρbvc(r, r′) d2r′ = πnbq

2

2

[
r2 − R2

(
1 − 2 ln

R

�

)]
, (2)

where r = |r|. The disk is in thermal equilibrium with a heat bath at an inverse temperature
β = 1/kBT . We consider now that a particle with charge Q approaches the disk from the
axis normal to the disk that passes through its center, see Fig. 1. The charge Q is held fixed
at a distance x from the disk. The interaction potential between this charged particle and a
charge from the disk located at r, will also be taken logarithmic:

vQ(x, r) = − ln

√
x2 + r2

�
. (3)

It will be convenient to use rescaled lengths r̃ = √
πnbr , x̃ = √

πnbx, �̃ = √
πnb�, etc. With

such a choice, the rescaled disk radius is R̃ = √
Nb . The interaction potential between the

background and the approaching particle is

VQb(x) =
∫

D
QρbvQ(x, r) d2r

= Qq

2

[
(Nb + x̃2) ln(Nb + x̃2) − Nb − x̃2 ln x̃2

]
, (4)

where we have chosen the arbitrary constant � such that �̃ = 1.

2.1 The Special Coupling � = 2

Since the one-component plasma on the disk is two-dimensional with log-potential, one can
use the special techniques developed for two-dimensional Coulomb systems [24, 26] and
random matrices [29] to compute exactly the effective interaction potential between the disk
and the approaching charge, for a special value of the Coulomb coupling � = βq2 = 2.

Let ri be the position of the i-th particle on the disk, in polar coordinates ri = (ri, ϕi). It
is convenient to define zi = rie

iϕi and z̃i = r̃ie
iϕi . The total potential energy of the system

can be written, up to an irrelevant constant

H = Qq

N∑
i=1

vQ(x, ri) + VQb(x) + q2

2

N∑
i=1

r̃2
i − q2

∑
1≤i<j≤N

ln |̃zi − z̃j |, (5)
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where the first two terms on the right hand side account for the test charge—mobile charge
and test charge—background interactions respectively, while the last two terms are for the
mobile charge—background and mobile charge—mobile charge energies. When βq2 = 2,
up to a multiplicative constant, the Boltzmann factor reads

e−βH = e−βVQb(x)

N∏
i=1

e
−2 Q

q vQ(x,ri )−r̃2
i

∏
1≤i<j≤N

|̃zi − z̃j |2. (6)

The product
∏

1≤i<j≤N (̃zi − z̃j ) is a Vandermonde determinant det(̃zj−1
i ). Defining

ψj(r) = e
− Q

q vQ(x,r)− r̃2
2 z̃j , (7)

the Boltzmann factor can be written as

e−βH = e−βVQb(x)
∣∣det(ψj−1(ri ))1≤i,j≤N

∣∣2
. (8)

The functions ψj are orthogonal∫
D

ψj(r)ψk(r) d2r = 0 if j �= k, (9)

with norm

‖ψj‖2 =
∫

D
|ψj(r)|2 d2r = 1

nb

∫ Nb

0
t j (̃x2 + t)Q/qe−t dt. (10)

If Q/q is a positive integer, this can be expressed in terms of incomplete gamma functions
γ (k,Nb) = ∫ Nb

0 tk−1e−t dt . For instance, when Q = q ,

‖ψj‖2 = 1

nb

[̃
x2γ (j + 1,Nb) + γ (j + 2,Nb)

]
. (11)

The configurational canonical partition function is

Z = 1

N !
∫

DN

e−βH

N∏
i=1

d2ri

= 1

N !e
−βVQb(x)

∫
DN

∣∣det
(
ψj−1(ri)

)
1≤i,j≤N

∣∣2
N∏

i=1

d2ri . (12)

If the determinant is explicitly expanded, and the integrals performed, the result simpli-
fies [26, 29], due to the orthogonality of the functions ψj

Z = e−βVQb(x)

N−1∏
j=0

‖ψj‖2. (13)

Up to an additive constant, the effective interaction potential, Veff(x), between the disk and
the approaching charge Q, is given by [30] e−βVeff(x) ∝ Z, and more specifically, we choose

e−βVeff(x) = Z

Z0
, (14)

where Z0 is the x-independent partition function when Q = 0. The above definition ensures
that for N = Nb , Veff(x) → 0 when x → ∞. On the other hand, for N �= Nb , Veff(x) di-
verges for x → ∞, see below. The physical meaning of Veff is clear: −∂Veff(x)/∂x provides
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the mean force experienced by Q, averaged over all possible fluctuations of charge config-
urations on the disk. The function Veff is precisely the free energy of the system, for a given
test charge—disk distance x. Therefore,

βVeff(x) = Q

q

[
(Nb + x̃2) ln(Nb + x̃2) − Nb − x̃2 ln x̃2

]

−
N∑

j=1

[
ln

∫ Nb

0
t j−1(̃x2 + t)Q/qe−t dt − lnγ (j,Nb)

]
. (15)

In the special case Q = q , we obtain

βVeff(x) = (Nb + x̃2) ln(Nb + x̃2) − Nb − x̃2 ln x̃2

−
N∑

j=1

ln

[
x̃2 + γ (j + 1,Nb)

γ (j,Nb)

]
. (16)

The density profile n(r) on the disk can also be obtained explicitly [24, 29], and will be
discussed in some detail below

n(r) =
N−1∑
j=0

|ψj(r)|2
‖ψj‖2

= nb

N−1∑
j=0

r̃2j (̃x2 + r̃2)Q/q e−r̃2

∫ Nb

0 t j (̃x2 + t)Q/q e−t dt
. (17)

It can be checked that the two situations where Q = 0 and x → ∞ are equivalent, since both
decouple the test charge from those on the disk.

2.2 Arbitrary Even Coupling Parameters

For couplings parameters � = βq2 = 2γ , with γ an integer, the partition function of the
system, and the effective potential, can be computed for small enough number of particles
N , by using a method developed in [31, 32], based on techniques used in the study of the
quantum Hall effect [33–35]. We provide here some details on the methods.

Up to a multiplicative constant, the Boltzmann factor of the system reads

e−βH = e−βVQb(x)
∣∣det(ψj−1(ri))1≤i,j≤N

∣∣2γ
. (18)

where, now, the orthogonal functions ψk are

ψk(r) = [w(r)]1/2z̃k (19)

with

w(r) = e
−2γ

Q
q vQ(x,r)−γ r̃2

. (20)

The key idea to compute the partition function is to expand [det(z̃j−1
k )]γ in terms of ap-

propriate orthogonal polynomials [32]. For γ even, the expansion is in terms of symmetric
monomials, whereas for γ odd, it is expanded in terms of antisymmetric polynomials. The
coefficients of the expansion are conveniently indexed by a partition μ = (μ1, . . . ,μN) of
γN(N − 1)/2, for example for γ even,

[
det(z̃j−1

k )
]γ =

∑
μ

cμ Sym(z
μ1
1 . . . z

μN

N ) (21)

with the symmetric monomial

Sym(z
μ1
1 . . . z

μN

N ) = 1∏
i mi !

∑
σ∈SN

z
μ1
σ(1) . . . z

μN

σ(N) (22)
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where SN is the permutation group of N elements and mi is the multiplicity of the integer i

in the partition μ. A similar expression is used for γ odd with antisymmetrized monomials.
Due to the orthogonality of the (anti)symmetric monomials, the partition function is fi-

nally given also as an expansion similar to the one of the power γ of the Vandermonde
determinant, see [32] for details. The final expression for the effective potential is

βVeff(x) = βVQb(x) − ln
Z∗

Z∗
0

(23)

with

Z∗ =
∑

μ

c2
μ∏

i mi !
N∏

k=1

‖ψμk
‖2, (24)

‖ψj‖2 =
∫

D
w(r)r2j dr = 1

nb

∫ Nb

0
e−γ t (x̃2 + t)γQ/q tj dt, (25)

and Z∗
0 is Z∗ evaluated when Q = 0. In the case when γ is odd, the factor

∏
i mi ! = 1, since

due to the antisymmetry, the admitted partitions μ do not have repeated numbers.
This method can equivalently be formulated by transforming the classical problem of the

one-component plasma in a quantum problem of a linear chain of interacting fermions, as
explained in Refs. [27, 36]. The starting point for this method is to write the Vandermonde
determinant as a Gaussian integral over Grassmann variables. The final result is again (23).

For the present work, we did some calculations up to N = 11 particles. The coefficients
cμ needed for the numerical calculations where kindly provided by L. Šamaj for γ = 2
up to N = 10 and for γ = 3 up to N = 9. For γ = 2 and N = 11, and γ = 3 and N = 10
and N = 11, we obtained the coefficients using the algorithm recently proposed by Bernevig
and Regnault [37], and their Jack polynomial generator online code [38]. We now turn to the
results obtained from the previous analysis, starting with the effective potential experienced
by the test charge Q at large distances from the disk.

3 Long Distance Behavior

3.1 General Results at Arbitrary Couplings

As mentioned earlier, the effective interaction potential, also known as potential of mean
force, Veff(x), has the property that −∇Veff is the mean force experienced by Q. It is in-
teresting to introduce another quantity, V (x), the electric potential created by the average
charge density distribution q(n(r) − nb) at the position of the charge Q

V (x) =
∫

D
q(n(r) − nb)vQ(x, r) dr. (26)

Because of the fluctuations and the fact that the presence of Q at position x modifies the
density on the disk, in general Veff(x) �= QV (x), only for a small infinitesimal charge Q the
equality holds. For arbitrary Q, a simple relation can be found between the two, by noticing
that the total potential energy of the system (5) depends linearly on Q, then

∂e−βH

∂Q
= −β

∫
D

q(̂n(r; r1, . . . , rN) − nb)vQ(x, r) dr e−βH (27)
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where n̂(r; r1, . . . , rN) = ∑N

i=1 δ(r − ri ) is the microscopic density. Averaging this relation
over all the configurations of the ions on the disk, we find

∂Veff(x)

∂Q
= V (x). (28)

At large distances from the disk, expanding vQ(x, r) for r � x, one can obtain the multipolar
expansion of the electric potential V

V (x) = −q(N − Nb) ln x̃ − q
Q2

2x2
+ O(1/x̃4) (29)

where the relevant quadrupole moment Q2 results from the second moment of the excess
density [n0(r) − nb]

Q2 =
∫

D
r2[n0(r) − nb]dr (30)

where n0(r) is the density when x → ∞ (or equivalently Q = 0). Since we are computing
the potential on the x-axis, no dipolar contribution remains, while the logarithmic monopole
contribution stems from the global charge of the disk, q(N − Nb). Since up to terms of
higher power than 1/x2, (29) shows that V (x) does not depend on Q, integrating (28) one
finds that (29) also gives the large x expansion of Veff (multiplied by Q).

We also mention here a sum rule that turns out interesting for the following discussion.
The quadrupolar moment Q2 can be shown to be related to the mobile particle density at
contact through [32, 39]

�
nb

2R2
Q2 = nb

(
1 − �

4

)
− n0(R) (31)

for a neutral disk.
For the next order of the expansion, in 1/x4, the situation is more involved. The expansion

of V (x) cannot be obtained only from the next multipole Q4 = ∫
D r4(n0(r) − nb) dr, since

the density n(r) itself depends also on x and one needs to take into account the next-to-
leading order of the large-x expansion of n(r) to compute properly the expansion of V (x)

up to order 1/x4. This next-to-leading order is of order 1/x2 and it is proportional to Q as it
can be checked by expanding e−βH for large x. It has the form

n(r) = n0(r) + βQqd2(r)

x2
+ O(1/x̃4) (32)

where d2(r) is a function only of r and βq2. Using this expansion one can obtain from (26)
the expansion of V (x) up to the order 1/x4

V (x) = −q(N − Nb) ln x̃ − q
Q2

2x2
+ q

(
Q4

4
− βqQ

2

∫
D

r2d2(r) dr
)

1

x4
+ O(1/x6).

(33)

Then integrating with respect to Q one finds

Veff(x) = −qQ(N − Nb) ln x̃ − qQ
Q2

2x2
+ qQ

(
Q4

4
− βqQ

4

∫
D

r2d2(r) dr
)

1

x4

+ O(1/x6). (34)

The term involving the second moment of d2 differs by a factor Q/2 between V (x) and
Veff(x). In the following section we illustrate these considerations on the explicit results
obtained when � = βq2 = 2.
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3.2 Results at � = 2

Unless otherwise specified, the results reported correspond to � = 2. For Q arbitrary, the
long distance behavior of the effective interaction (15), for N and Nb fixed, x̃2 � N and
x̃2 � Nb is

Veff(x) = −Qq(N − Nb) ln x̃ + Qq

2

1

x̃2

[
N2

b

2
−

N∑
j=1

γ (j + 1,Nb)

γ (j,Nb)

]

− Q

4x̃4

N∑
j=1

[
(Q − q)

γ (j + 2,Nb)

γ (j,Nb)
− Q

γ (j + 1,Nb)
2

γ (j,Nb)2

]
+ O(1/x̃6), (35)

the structure of which deserves some comments. Up to order 1/x2, such a series has the
form of a multipolar expansion, in agreement with the discussion from the previous section.
Indeed, the coefficient of 1/x̃2 is precisely −qQQ2/2 as it can be checked by computing
the second moment of the excess density from the explicit expression (17) when Q = 0.
Equation (35) can be compared to the large-x expansion of the electric potential

V (x) = −q(N − Nb) ln x̃ + q

2

1

x̃2

[
N2

b

2
−

N∑
j=1

γ (j + 1,Nb)

γ (j,Nb)

]

− 1

4x̃4

N∑
j=1

[
(2Q − q)

γ (j + 2,Nb)

γ (j,Nb)
− γ (j + 1,Nb)

2

γ (j,Nb)2

]
+ O(1/x̃6), (36)

where one can explicitly check that ∂QVeff = V .
Let us discuss further the expansion of Veff up to order 1/x2. Using the properties of the

incomplete gamma function, that allow us to write the coefficient of the 1/x̃2 term appearing
in (35) as

N2
b

2
−

N∑
j=1

γ (j + 1,Nb)

γ (j,Nb)
= N2

b − N2

2
− N

2
+

N∑
j=1

e−NbN
j

b

γ (j,Nb)

= N2
b − N2

2
− N

2
+ Nbn

0(R)

nb

, (37)

where n0(R) is the density of particles at the edge of the disk in the absence of the charge
Q, i.e. (17) with Q = 0 at r̃ = R̃ = √

Nb . Thus,

Veff(x) = −Qq(N − Nb) ln x̃ + Qq

2

1

x̃2

[
N2

b − N2

2
− N

2
+ Nbn

(0)(R)

nb

]
+ O(1/x̃4).

(38)

For a neutral disk, N = Nb , and

Veff(x) = QqNb

2

1

x̃2

[
n(0)(R)

nb

− 1

2

]
+ O(1/x̃4). (39)

This result is an explicit check, at � = 2, of the multipolar expansion (29) combined with
the sum rule (31). One notice that the Veff is repulsive for Qq > 0. This can be understood
as follows. When x̃ → ∞, the charge density profile n(r) inside the disk is the same one as
for a disk alone (without the approaching charge Q), found in Refs. [24, 40]. The density
n(r) is equal to the background density nb in the bulk of the disk (local neutrality in the
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Fig. 2 Reduced charge density
profile in the disk, for different
neutral situations (N = Nb), and
x → ∞. The arrow on the right
hand side indicates the limiting
value ln 2 � 0.693 that is reached
in the large N limit. The total
charge density profile is
q[n(r) − nb]. For large N , it thus
vanishes except in a small region
of linear size 1/

√
Nb in the

vicinity of the boundary r = R

bulk). Close to the boundary, it raises above the background density, then falls below it [40],
see Fig. 2. Therefore, there are two concentric layers of charges close to the edge: the inner
layer bears a net charge which is of the same sign as q [i.e. n(r) > nb], while the outer
one is opposite, by electroneutrality. This ensures that Q2 is generically negative, so that the
quadrupolar term yields an effective interaction (disk-test charge) that is of the same sign as
Qq , i.e. repulsive for Qq > 0.

When N → ∞, more explicit results can be obtained. In this limit, the density at the edge
of the disk takes a simple form [40], n(0)(R) = nb ln 2, so that

Veff(x) = QqNb

2

1

x̃2

(
ln 2 − 1

2

)
+ O(1/x̃4)

= QqR2

2

1

x2

(
ln 2 − 1

2

)
+ O(1/x4), (40)

with ln 2 − 1
2 � 0.19 > 0, which is consistent with the generic discussion above on the

negative sign of Q2. Again, the effective potential is attractive at large distances for Qq < 0,
repulsive for Qq > 0, for a neutral disk.

The quadrupolar route allows us to obtain results for strongly coupled systems (large �),
making use of the sum rule (31). We note in passing that this general result is compatible
with the value Q2 = −qR2(log 2 − 1/2) that holds at � = 2 when the number of mobile
charges on the disk becomes large, see (40) and (29). When � itself turns large, the system
crystallizes, but the sum rule (31) remains valid, provided n(R) is replaced by the average
of the contact density over the perimeter of the disk [32, 39]. It is physically reasonable to
suppose that the average of n(R)/nb remains bounded in this limit. Actually, for the three-
dimensional analogue of this model, with 1/r interaction, this is the case [41]. Then (31)
becomes Q2 ∼ −R2/2. We consequently have

Veff(x) ∼
�→∞

QqR2

4

1

x2
+ O(1/x4), (41)

which is again repulsive for Qq > 0, attractive otherwise. It can be mentioned here that the
scaling result Q2 ∝ −R2 is readily recovered by the two concentric layers simplified view-
point. For large N , there exists a outermost corona void of charges: particles are depleted
there, as they are in the plum pudding model, see e.g. [21, 22, 41], the width of which is
given by the typical distance between particles δ ∝ R/

√
N (at � = 2, δ is already the typ-

ical distance between the density maximum and the disk radius that can be seen in Fig. 2
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for large N ). The charge in this corona is given by −qnbRδ, which contributes a quantity
−R nb δ R2 to the quadrupole moment. This charge is compensated by an oppositely charged
ring, located at R − δ, which contributes a quantity R δ nb(R − δ)2 to Q2. Summing both
contributions, assuming that the particles and background with r < R − δ do not contribute
to Q2, and remembering that δ � R, we arrive at Q2 ∝ −nbR

2δ2 � −R2. A very similar
argument holds at � = 2, since the two corona approach is also valid.

4 Short Scale Features

We now turn to the study of the phenomenology at shorter distances, which is different
depending on whether the particle approaching the disk has a charge of the same sign of the
mobile particles on the disk (Q/q > 0), or a charge of opposite sign. In addition, the cases
of globally neutral or charged disks should be treated separately, and the different cases are
ruled by different sorts of polarization effects.

4.1 Case Q/q > 0

4.1.1 Neutral Disk

We consider a globally neutral disk N = Nb . We study in this section if it is possible to
overcharge this object, by approaching a particle that has a charge Q with the same sign of
the mobile counterions on the disk. At large distances, we know from (38) that the interaction
is repulsive. We anticipate that this behavior changes when the charge Q is close enough to
the disk, since the intruder Q should then create a correlation hole, pushing mobile charges
closer to the boundary r = R, and thereby gaining Coulombic energy from hole opened.
This is the mechanism behind charge inversion in colloidal systems, that has been reviewed
for situations of strong coupling in Ref. [3].

The short-distance behavior of the effective potential (15) is, when Q/q > 0,

βVeff(x) = Q

q

[
Nb lnNb − Nb + x̃2

(
1 + ln

Nb

x̃2

)]
−

N∑
j=1

ln
γ (j + Q

q
,Nb)

γ (j,Nb)

− Q

q
x̃2

N∑
j=1

γ (j + Q

q
− 1,Nb)

γ (j + Q

q
,Nb)

+ O
(̃
x4, x̃2(1+Q/q)

)
, (42)

which is clearly an increasing function of x when x̃ � 1. Therefore, at close distance from
the disk, the interaction turns out to be attractive. This can be observed in Fig. 3, where
the effective potential indeed increases at short distances, reaches a maximum and then
decreases upon increasing the distance between the test particle and the disk. Note that at
x = 0, the effective potential takes a finite value

βVeff(0) = Q

q
(Nb lnNb − Nb) −

N∑
j=1

ln
γ (j + Q

q
,Nb)

γ (j,Nb)
, (43)

although it is not shown in all figures.
Let x∗ be the distance at which the interaction potential reaches its maximum, and

x̃∗ = √
πnbx

∗. x∗ is the minimum distance that one has to approach the charged particle
in order to overcome the natural repulsion of the disk. The corresponding (free) energy cost
to overcharge the disk is given by V † = Veff(x

∗), and V ∗ = V † − Veff(0) is the binding
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Fig. 3 The effective interaction between the disk and an approaching ion with charge Q = q (left graph)
or Q = 10q (right graph). The disk is globally neutral with Nb = N ions of charge q . The distance x is
expressed in reduced units (̃x), in which the disk radius reads

√
Nb , and therefore takes different values for

the three curves shown

Fig. 4 Left: The binding energy V ∗, the energy cost V † and the distance x∗ to overcharge the globally
neutral disk with an additional particle of charge Q = 10q , as a function of the number of particles N = Nb

on the disk. Right: Same quantities as a function of intruder charge Q, for N = Nb = 22

energy, i.e. the necessary energy to unbind the charged particle from the disk, once it has
been overcharged. More generally, V ∗ can be defined as the energy to overcome to peel off
an ion from the disk. In all the present discussion, the energy costs alluded to correspond
to the work an external operator holding the intruder should perform, and this equals the
corresponding free energy variation of the system as a whole.

Figure 4 shows how x∗/R, V † and V ∗ depend on N for fixed Q/q , and on Q/q at
fixed N , respectively. First of all, it appears that the binding energy V ∗ is several orders
of magnitude larger than the energy cost V †. This means that V ∗ � |Veff(0)|. Second, the
threshold distance x∗ scales like R, when N becomes large enough, a fact that is masked
in Fig. 3 by the choice of units made (tilde variables, for which R̃ = √

Nb). More precisely,
from the numerical data of Fig. 4, we explored how x∗/R depends on the charge Q. We
found, numerically, the approximate relation

x∗

R
= a

√
Q

q
+ O(1/

√
N) (44)

with a = 1.5 + O(1/
√

N). The fact that a is of order one means that the effect of effective
attractions holds up to rather large distances, on the order of the disk radius. Another feature
visible on Fig. 4 is that the energy cost increases with Q/q , but quickly saturates to a finite
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Fig. 5 Left: The binding energy V ∗, the energy cost V † and the distance x∗ to overcharge the globally
neutral disk with an additional particle of charge Q = 10q as a function of the number of particles N = Nb

on the disk, for different values of the Coulombic coupling � = βq2. Right: Same as a function of Q, for a
globally neutral disk with N = Nb = 8

value V sat
eff . On the other hand the binding energy increases as the charge Q increases, as

expected, but it also increases with the number of mobile ions on the disk N . For N →
∞, using Stirling formula for the incomplete gamma functions in (43), one can obtain the
analytical behavior of Veff(0), and therefore the one of the binding energy, remembering that
V ∗ � |Veff(0)|. We find

βVeff(0) = −1

2

(
Q

q

)2

lnN + O(1). (45)

Figure 5 shows how the previous quantities behave under different couplings (� = βq2 =
2,4,6). The qualitative features appear to be robust: The behavior is similar to the one when
� = 2, with changes in the numerical values of x∗, V † and V ∗. As � increases, V † and V ∗
increase, and x∗ decreases slightly: the test ion has to come closer to the disk, and requires
more energy to overcome the long distance repulsion. Once it overcharges the disk it is more
energetically bounded to it.

4.1.2 Charged Disk

If N < Nb , the disk has a charge q(N − Nb) of opposite sign to that of the approaching ion
Q. In this case the effective potential is attractive at all distances. Let us consider the more
interesting case where the disk is already overcharged, with a net charge of the same sign
as Q, i.e. N > Nb . The question is to study the effective potential profile, and the distance
range where it corresponds to an effective attraction.

At large distances, the effective interaction between the ion and the disk is repulsive,
and diverges as −Qq(N − Nb) ln x̃. However, from (42), we find that, at short distances,
the effective potential becomes attractive. Therefore, as in the previous situation, there ex-
ists a distance x∗ below which the test charge will be attracted, which results in a further
charge inversion of the disk. Figure 6 shows the effective potential in this situation for dif-
ferent charges Q and charges of the disk q(N − Nb). Here, one can also define a binding
energy V ∗ = Veff(x

∗) − Veff(0), necessary to pull out the ion from the disk once it has been
“adsorbed”. Figure 7 shows how x∗ and V ∗ depend on the charge Q of the ion and on the
charge of the disk, respectively. It is also useful to emphasize that when the disk complex
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Fig. 6 The effective potential
between the charged disk and the
approaching ion in cases where
Q/q > 0 and where the large
distance behaviour is repulsive
(i.e. N > Nb). The main inset is
for Nb = 15,N = 16,Q/q = 5
while the smaller inset is for
Nb = 10,N = 16,Q/q = 1

Fig. 7 Left: The binding energy V ∗ and the distance x∗ to overcharge the charged disk with Nb = 15 and
N = 16 particles (global charge q) with an additional charged particle with charge Q as a function of Q/q .
Right: Same, as a function of Nb , for N = 16 and Q = q

is not neutral, one cannot define the energy barrier V †. Indeed, this quantity was defined in
the neutral case as the barrier to overcome to approach the test charge from x = ∞, down
to the distance where attraction sets in. When N �= Nb , the large distance effective potential
diverges as (N −Nb) logx, which precludes the definition of V † = Veff(x

∗)−Veff(∞). This
feature is absent in three dimensions, where charges interact though a 1/r potential (hence
the possible definition of V † also for non-neutral complexes). As a consequence, the study
of overcharging is somewhat less rich in the present case than for three dimensional systems
and overcharging is, with a log potential, necessarily a phenomenon of small amplitude (if
not infinitesimal): another way to rephrase previous remarks is that V † diverges as soon as
N �= Nb .

To understand the mechanism behind the attraction at short distances, it is instructive to
study the density distribution of particles in D, as Q approaches the disk. Figure 8 shows
the density profile for different distances x. It can be seen that the correlation hole alluded
to earlier is increasingly marked, when x becomes smaller: the mobile charges q of the disk
feel the repulsion due to the charge Q, and move towards the edge of the disk. This results
in a local negative charge density in the center of the disk, which is finally responsible for
the attractive interaction between the disk and the intruder charge Q.
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Fig. 8 The density profile of
mobile particles in the disk, with
N = 16, Nb = 15, charge of the
disk equal to q and the
approaching ion has charge
Q = 5q . Notice that as the ion
approaches the disk, the charge
density in the center of the disk
becomes negative. This results in
the effective attraction at
short-distances x of the disk and
the ion

Fig. 9 The effective potential
between the globally neutral disk
and the approaching ion, in the
case where the charge of the test
ion and those of the mobile
particles on the disk have
opposite signs: Q/q < 0. Here,
the disk bears N = 10 particles
with charge q

4.2 Case Q/q < 0

We now turn to the case where the test particle and mobile ions on the disk have charges of
opposite signs.

4.2.1 Neutral Disk

For a globally neutral disk (N = Nb), we know from (39) and the analysis of Sect. 3 that the
effective potential is attractive at large-distances. This behavior remains at short-distances,
as illustrated in Fig. 9. Therefore, the neutral disk has a natural tendency to overcharge.

4.2.2 Charged Disk

If N > Nb , the disk has a charge q(N − Nb) of opposite sign as the approaching ion Q.
In this case the effective potential is always attractive, a situation that is not of particular
interest. We concentrate instead on the case where the disk has a net charge of the same sign
as Q, i.e. Nb > N . Due to this excess charge, the effective potential with a charge Q of the
same sign as the disk is expected to be repulsive at large distances, see (38). However, as
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Fig. 10 Density profile of counterions in the disk, in the case Q = −5q , with N = 15 and Nb = 16. The net
charge of the disk is then equal to −q

we shall see below, there is here also a change in the behavior of the effective interaction at
short distances, where the force between the disk and the particle becomes attractive.

The situation seems at first sight similar to the case studied in Sect. 4.1. There are some
notable differences though. If Q/q ≤ −1, the effective potential diverges when x̃ → 0. In-
deed, for Q/q ≤ −1, (42) is no longer valid. The dominant contribution is given by the term
j = 1 in the sum (15). Explicitly, it yields, for Q/q < −1,

Veff(x) ∼ −q(Q + q) ln x̃, x → 0 (46)

and

Veff(x) ∼ −q2

2
ln

(
ln

1

x̃

)
, x → 0, (47)

if Q = −q . In both cases, the small x behaviour is attractive. We note that the divergence
of Veff(x) for x → 0 stems from the fact that the Boltzmann weight exp(βQq log r) =
1/r−�Q/q is non-integrable at r = 0 whenever Q/q < −2/�. As announced earlier, the
effective potential is repulsive at large distances and attractive at short distances. We can
thus again define the distance x∗ at which the potential becomes attractive if we approach
the ion below x∗. However, in the present case, the binding energy V ∗ is infinite because
limx→0 Veff(x) = −∞. Likewise, we cannot define the energy barrier V † since either attrac-
tion applies at all distances (neutral complex on the disk), or the effective potential diverges
at infinity (charged case).

The mechanism behind the attraction between these like-charged objects at short distance
is now due to an accumulation of mobile charges near the center of the disk. This can be
seen in Fig. 10, which shows the density profile of the mobile charges q , i.e. the counterions.
As the charge Q approaches, it strongly attracts the counterions to the disk center, and this
results in an effective attraction, the precise form of which is non-trivial. As seen on Fig. 10,
for small x̃, there is a large density of counterions close to the center of the disk, but which
is concentrated over a disk of radius of order 1 in r̃ units. The precise analytical behavior
of the charge density can be extracted from (17), for x̃ � 1, taking into account that for
Q/q < −1 the first term of the sum is the dominant one

n(r) ∼ −nbe
−r̃2

(
Q

q
+ 1

)(
1 + r̃2

x̃2

)
1

x̃2
. (48)

The total integrated charge of this counterion cloud close to the center plus the background
turns out to be equal to −Q, as one might expect. However, the behaviour of the effective
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potential encoded in (46) and (47) exhibits a different attraction than the bare Coulombic
form −Q2 log x̃, that would be obtained assuming the attracted counterions are located as a
point charge at r = 0. Since they are spread over distances larger than x̃, the behavior of the
potential, although logarithmic, turns out to have a different prefactor, see (46).

The case when −1 < Q/q < 0 is somewhat different. The effective interaction potential
is no longer logarithmic and has a finite value at x = 0. For x → 0,

βVeff(x) = βVeff(0) + x̃2(1+Q/q)

(Q

q
+ 1)γ (1 + Q/q,Nb)

+ O(̃x2) (49)

with Veff(0) given by (43). Notice that since 0 < 1+Q/q < 1, the potential is again attractive
at short distances. Also the power law x̃2(1+Q/q) is different from the one of the case Q/q > 0
where it was x̃2. In this case, −1 < Q/q < 0, it is again possible to define the binding
energy, that diverges when the limit Q/q → −1+ is approached. One can indeed show that
βVeff(0) ∼ ln(1 + Q/q).

5 Conclusion and Discussion

We have introduced a classical system that exhibits some of the phenomenology at work in
more complex colloidal suspensions. An ensemble of N point particles with charge q are
free to move within a disk of radius R, that bears a uniform background charge of surface
density −qNb/(πR2). The corresponding complex (mobile charges and background) forms
a one component plasma, with a global charge (N − Nb)q . A test point charge Q is then
approached to the complex, perpendicularly to the disk plane, along its axis of symmetry (x-
axis, see Fig. 1). All charges were assumed to interact through a log potential, a choice that
is convenient for the derivation of analytical results and for the discussion of the physical
mechanisms, but that we emphasized as somewhat irrealistic for a real Coulombic problem
in three dimensions. We have studied in detail the x-dependent effective potential Veff expe-
rienced by the intruder Q, defined as the free energy of the complete charge distribution for
a given distance x between the test charge and the complex.

At short distances x, Veff is always attractive, with different underlying mechanisms de-
pending on the sign of Q/q . If the intruder and the mobile charges are like-charged, the
intruder creates its own correlation hole as it approaches the disk. The resulting short-range
attraction resulting from this polarization is analogous to its three dimensional counterpart
explaining charge inversion (overcharging, see Ref. [3]). If on the other hand Q/q < 0, the
test particle attracts an excess of mobile charges in the vicinity of the disk center, which
overcomes the background—test charge repulsion. In this case, we found a diverging attrac-
tion for Q/q ≤ −1, which precludes the definition of a binding energy (cost to drag the test
charge away from the disk, starting from x = 0, the point of contact).

The long distance behaviour is also of interest. If the complex has a net charge, the
leading contribution to Veff reads −Qq(N −Nb) ln x̃, which leads to the expected like-charge
repulsion at large x. The neutral case N = Nb is more subtle, and it has been shown that a
key quantity to rationalize Veff is the quadrupolar moment Q2 of the total charge distribution
on the disk. At large x, polarization effects disappear, and the mobile charges adopt a profile
that compensates for the background charge in the bulk of the disk, while they are expelled
from the immediate vicinity of the disk edge r = R, thereby creating a charge imbalance
far from the disk center only. This necessarily leads to a negative value of Q2, and hence
to a repulsive behaviour at large x, when Q/q > 0. Indeed, what matters for large distance
interactions is the charges that are closest to the intruder, and they happen to be the mobile
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Fig. 11 Density profile of counterions in the disk, for the “unbounded” and “bounded” models (counter-ions
are either allowed to explore the region r > R, or not). Here N = Nb = 40 and � = 2. The counter-ion excess
for the bounded model—shown by the arrow, and studied extensively in this paper—leads to a negative
quadrupole moment Q2, see Sect. 3, while in the unbounded case, one mobile ion escapes to infinity, leaving
the complex (disk + ions) with a net charge −q . This results in large distance effective forces on the test
charge that have opposite signs

charges expelled from r = R (see the region where n > nb in Fig. 2, for N = 50 or N = 500,
or equivalently, see the arrow in Fig. 11). The ensuing interaction is repulsive when Q and
q are of the same sign. This leads us to a final remark that illustrates the subtlety of the long
distance effective potential. Consider a variant of the previous model, where the mobile
charges are no longer confined in the disk r < R, but can explore the full disk plane (they
are thus still 2D confined, but unbounded in the plane). The uniform background, as before,
is a disk of radius R. We can repeat the analysis for � = 2, which leads to a profile n(r)

that departs from the one reported above in an essential way: As can be seen in Fig. 11, it is
monotonously decreasing, as happens to be the case at mean-field level [42] (i.e. for � → 0).
For N ≥ Nb , the decay of the density profile n(r) at large distances is algebraic in 1/r4 [43,
44], leading to a divergent quadrupole. Furthermore, the density profile of this “unbounded”
model shows a peculiarity, when N ≥ Nb ,

∫
R2 n(r) d2r = Nb −1. Since there were originally

N mobile particles, this means that N −Nb +1 particles have escaped to infinity. This can be
checked explicitly at � = 2 [43–45], but more generally, it is a manifestation of the Onsager-
Manning-Oosawa condensation phenomenon [46–48]: only a fraction (Nb − 1)/Nb of the
mobile ions are “condensed” inside or in the vicinity of the disk. This is a consequence of
the logarithmic interaction between the ions and the disk when they are outside the disk. As
a consequence, and at variance with the bounded model where the charges stay in the disk,
the global charge of the complex (disk + mobile ions) is −q , whenever N ≥ Nb . Therefore
one expect that the effective interaction of this complex with the charge Q at large x will be
attractive for Q/q > 0. This situation is opposite to the one met with the bounded model.
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