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Abstract This work contributes to the problem of determining effective interaction between
asymmetrically (likely or oppositely) charged objects whose total charge is neutralized by
mobile pointlike counter-ions of the same charge, the whole system being in thermal equi-
librium. The problem is formulated in two spatial dimensions with logarithmic Coulomb
interactions. The charged objects correspond to two parallel lines at distance d , with fixed
line charge densities. Two versions of the model are considered: the standard “unconstrained”
one with particles moving freely between the lines and the “constrained” one with particles
confined to the lines. We solve exactly both systems at the free-fermion coupling and com-
pare the results for the pressure (i.e. the force between the lines per unit length of one of
the lines) with the mean-field Poisson-Boltzmann solution. For the unconstrained model, the
large-d asymptotic behaviour of the free-fermion pressure differs from that predicted by the
mean-field theory. For the constrained model, the asymptotic pressure coincides with the
attractive van der Waals-Casimir fluctuational force. For both models, there are fundamental
differences between the cases of likely-charged and oppositely-charged lines, the latter case
corresponding at large distances d to a capacitor.

Keywords Logarithmic Coulomb interaction · Free-fermion point · Exactly solvable
models · van der Waals-Casimir force

1 Introduction

We study classical (i.e. non-quantum) systems of particles interacting pairwisely by the
Coulomb potential, which are in thermal equilibrium. Such systems are of practical interest
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Counter-Ions Between or at Asymmetrically Charged Walls 933

in the “real” three-dimensional (3D) world where the Coulomb potential has the standard
1/r form. One can extend its definition to any dimension ν = 1, 2, . . . in the following way:
the Coulomb potential v at a spatial position r ∈ R

ν , induced by a unit charge at the origin
0, is the solution of the Poisson equation

�v(r) = −sνδ(r), (1)

where sν = 2πν/2/�(ν/2) [�(x) denotes the Gamma function] is the surface area of the
ν-dimensional unit sphere. In particular,

v(r) =

⎧
⎪⎪⎨

⎪⎪⎩

− ln(r/r0) if ν = 2,

r2−ν

ν − 2
otherwise,

(2)

where r ≡ |r| and an arbitrary length scale r0 fixes the zero of the two-dimensional (2D)
Coulomb potential. Such definition implies in the Fourier space the characteristic 1/k2 behav-
iour which maintains many generic properties of 3D Coulomb systems like screening [17].
This is why many important phenomena related to the Coulomb law manifest themselves in
a similar way in various spatial dimensions.

2D one-component (jellium) and symmetric two-component (Coulomb gas) systems with
logarithmic charge interactions are of special importance because they are exactly solvable,
besides the mean-field weak-coupling limit, also at a specific finite temperature. The solvable
cases involve the bulk regime [7,11] as well as inhomogeneous, semi-infinite or fully finite
geometries [8], see reviews [9,12]. This permits us to check basic concepts or ideas on 2D
exact solutions.

One of extensively studied problems in our days is the electromagnetic Casimir effect,
see e.g. [2] and [18]. In its formulation within classical statistical mechanics, two conducting
neutral slabs in thermal equilibrium [at the inverse temperature β = 1/(kBT )], being from
one another at distance d much larger than any microscopic (e.g. Debye-Hückel) length
scale, are attracted by the long-range van der Waals-Casimir force. This force is due to
thermal fluctuations of local charge densities inside globally neutral conductors. In ν spatial
dimensions, the force per unit area of one of the slabs, or equivalently the pressure P , was
obtained in the form [13]

βP = − (ν − 1)ζ(ν)�(ν/2)

2νπν/2
1

dν
(dimension ν), (3)

where ζ(ν) = ∑∞
n=1 n−ν is the Riemann zeta function and the minus/plus sign means

attraction/repulsion of the slabs. Note that in one dimension, one gets a finite result owing to
the limiting behaviour limν→1(ν − 1)ζ(ν) = 1. In 2D, we have explicitly

βP = − π

24

1

d2 (2D), (4)

and in 3D

βP = −ζ(3)
8π

1

d3 (3D). (5)

These large-distance behaviours do not depend on the composition of conducting slabs, nor
on the temperature: they are universal. It was shown [3] that the microscopic origin of this
universality lies in an electroneutrality sum rule for Coulomb fluids.

Another basic problem in soft matter physics is the determination of the temperature-
dependent effective interaction between charged mesoscopic objects, macro-ions (colloids,
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934 L. Šamaj, E. Trizac

polyelectrolytes) or charged membranes of several thousands elementary charges e, immersed
in a polar solvent, e.g. water, containing mobile micro-ions of low valence. Let the large
macro-ions be approximated by rectilinear hard walls, filled by a material of the same dielec-
tric constant as the solvent (i.e. there are no electrostatic image charges). In a simplified
model coined as “counter-ions only”, or “salt-free”, the macro-ions acquire a fixed surface
charge density σe (σ > 0) by releasing equally charged −e (valence = 1, for simplic-
ity) counter-ions into the solvent, the system as a whole being electroneutral. This model
was studied in the semi-infinite geometry of one charged wall and for counter-ions being in
between two symmetrically charged parallel plates at distance d . It became the cornerstone
for studying systematically the weak-coupling (high-temperature) [19] and strong-coupling
(low-temperature) [20,24] limit of Coulomb fluids. While two symmetrically charged plates
always repel one another in the weak-coupling limit, the situation changes for sufficiently
large couplings: an attraction may occur in a certain interval of distances d . An important
information in the two-plate geometry is the asymptotic d → ∞ behaviour of the pressure,
namely its sign (attraction or repulsion) and the explicit inverse-power-law dependence on
d . Naively, one may expect that for large d , the counter-ions will separate onto two sets,
one for each plate, to neutralize these plates. Then each plate with its counter-ions might
be viewed as a “neutral slab” and the two slabs interact consequently by the attractive van
der Waals-Casimir force of type (3). But the Poisson-Boltzmann solution [1], generalized
straightforwardly from 3D to any dimension ν,

βP ∼
σd→∞

2π2

βe2sν

1

d2 (dimension ν) (6)

shows that the possibility of counter-ions to migrate in the space between the plates is crucial.
This force is repulsive and differs fundamentally from the attractive fluctuational one (3):
although the prefactor to 1/d2 is independent of the fixed surface charge density σe, it does
depend on the temperature. An important question is whether the mean-field asymptotic
behaviour (6) remains valid also for finite temperatures. Such supposition is often taken as
natural, without any rigorous proof.

For the related geometry of one wall, the density profiles of counter-ions were investigated
within a test-charge theory for the electric double layer in Ref. [4]. This theory provides
results which interpolate between the correct strong-coupling (exponential decay) and the
weak-coupling (algebraic decay) limits. Its application to intermediate values of the coupling
constant indicates that there is a crossover from exponential to algebraic decay at large
distance from the charged wall. It is argued that in the algebraic regime, the density profile
is described by a modified mean-field equation. This unexpected conclusion might be put
into doubts by the fact that the exact contact theorem for the particle density at the wall is
not fulfilled by the test-charge theory in the region of intermediate values of the coupling
constant.

For symmetrically charged lines in 2D, the mean-field formula for the pressure (6) takes
the form

βP ∼
σd→∞

π

�

1

d2 (� → 0), (7)

where � ≡ βe2 is the 2D coupling constant. In a recent work [25], we solved exactly the
free-fermion point � = 2 by using a technique of anticommuting variables, with the result

βP = 1

πd2

2πσd∫

0

ds
s

sinh s
e−s ∼

σd→∞
π

12

1

d2 (� = 2). (8)
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Counter-Ions Between or at Asymmetrically Charged Walls 935

This asymptotic behaviour is not compatible with the mean-field one (7), i.e. the mean-field
prefactor must be renormalized by a �-dependent function which goes to unity as � → 0.

The aim of this paper is twofold.

– First, for the “unconstrained” version of the model with counter-ions moving freely in
space between the lines, we generalize the exact result at � = 2 for symmetric lines
[25] to asymmetrically charged lines, see Fig. 1. The weak-coupling and strong-coupling
limits for 3D asymmetrically charged plates were investigated in Ref. [14]. The 2D exact
result at the finite free-fermion coupling� = 2, presented in this work, leads to a pressure
which consists of two decoupled contributions from each of the lines.

– Our second aim is to solve a “constrained” version of the model in which counter-ions
do not move freely between the asymmetrically charged lines, but are constrained to
them (Fig. 2). The particle occupation of the lines is not fixed, i.e. the particles can lie
either on x = 0 line or x = d line. A similar 3D model, in which charged particles are
constrained to and simultaneously neutralize each of the symmetrically-charged plates,
was introduced and studied at low temperatures in Refs. [15,16]. We show that our
constrained model yields a phenomenology that is close to the Casimir electromagnetic
effect, although, at each finite distance, the net charge of every line is non-zero and thus
the charged lines together with the attached particles do not describe neutral conductors
as required by the Casimir effect.

For both models, there are important differences between the cases of likely-charged and
oppositely-charged lines, the latter case corresponds at large distances to a capacitor.

The paper is organized as follows. In Sect. 2, we recapitulate briefly the formalism of
anticommuting variables for a cylinder geometry of the confining domain, with two asym-

Fig. 1 Cylinder geometry with
periodical boundary conditions
(period W ) along the y-axis. Two
parallel lines with fixed charge
densities σe and σ ′e are localized
at the end points x = 0 and
x = d, respectively. Pointlike
counter-ions of charge −e are
allowed to move freely between
the lines in the “unconstrained”
version of the model

σ’

0

y

W

x
d

eσ
−e

e

Fig. 2 “Constrained” version of
the model: Cylinder geometry
with asymmetrically charged
lines, where counter-ions’
displacements are limited to the
lines

σe σ’e

0

y

W

x
d

−e
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936 L. Šamaj, E. Trizac

metrically charged circles at distance d . The thermodynamic limit is reached by increasing
the cylinder circumference W to infinity, keeping the overall electroneutrality, which effec-
tively transforms discrete sums to continuous integrals. Sect. 3 is devoted to the solution of
the unconstrained model. In Sect. 4, we deal with the model of counter-ions constrained to the
charged lines for which a comparison is made for large distances d with the van der Waals-
Casimir asymptotic formula (4). The qualitatively distinct regimes with likely-charged and
oppositely-charged lines are analyzed for both models. A short summary and conclusions
are drawn in Sect. 5.

2 General Formalism for Cylinder Geometry

We consider the system of N mobile pointlike particles with the (minus) elementary charge
−e, confined to the surface of a cylinder of circumference W and finite length d . The surface of
the cylinder can be represented as a 2D semiperiodic rectangle domain
 of points r = (x, y)
with coordinates x ∈ [0, d] (free boundary conditions at x = 0, d) and y ∈ [0,W ] (periodic
boundary conditions at y = 0,W ). It is useful to introduce the complex coordinates z = x+iy
and z̄ = x − iy. There are fixed line charge densities σe and σ ′e of dimension [length]−1

along the y-axis at the end-points x = 0 and x = d , respectively. Without any loss of
generality, we restrict ourselves to

σ > 0, −σ < σ ′ ≤ σ, (9)

which therefore includes cases where σ ′ < 0. We introduce the asymmetry parameter

η ≡ σ ′

σ
, η ∈ (−1, 1]. (10)

The symmetric case corresponds toη = 1. The overall electroneutrality condition is expressed
as

N = (σ + σ ′)W. (11)

Note that the requirement of positivity of N corresponds to the restriction −σ < σ ′ in (9).
We are interested in the thermodynamic limit N ,W → ∞, keeping the ratio N/W = σ +σ ′
fixed.

The Coulomb potential v at a spatial position r ∈ 
, induced by a unit charge at the
origin 0, is defined as the solution of the 2D Poisson equation �v(r) = −2πδ(r), under
the periodicity requirement along the y-axis with period W . Considering the potential as a
Fourier series in y, one obtains [6]

v(r) = − ln
∣
∣
∣2 sinh

(π z

W

)∣
∣
∣

= −1

2
ln

[

2 cosh

(
2πx

W

)

− 2 cos

(
2πy

W

)]

. (12)

For small distances r 	 W , this potential reduces to the 2D Coulomb potential− ln(2πr/W ).
At large distances along the cylinder x 
 W , this potential behaves like the 1D Coulomb
potential −π |x |/W . The interaction potential of two unit charges at points r and r′ is given
by v(r, r′) = v(|r − r′|). In what follows, we shall use two formulas:

W∫

0

dy v(r) = −πx (13)
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Counter-Ions Between or at Asymmetrically Charged Walls 937

and ∣
∣
∣
∣2 sinh

π(z − z′)
W

∣
∣
∣
∣ = e

π
W (x+x ′)

∣
∣
∣e− 2π

W z − e− 2π
W z′ ∣∣

∣ . (14)

For a given spatial configuration {r1, . . . , rN } of N charges, the total Coulomb energy of
the system consists of the self and mutual interactions of the fixed surface charge densities
σe and σ ′e, Ess , particles and surface charge densities, E ps , and particles themselves, E pp .
Using the relation (13) and the notation v(r) ≡ v(x, y), the self-interaction of the surface
charge densities σe and σ ′e vanishes,

1

2

[
(σe)2 + (σ ′e)2

]
W∫

0

dy

W∫

0

dy′ v(0, y − y′) = 0, (15)

while their mutual interaction energy is given by

(σe)(σ ′e)
W∫

0

dy

W∫

0

dy′ v(d, y − y′) = −π(σe)(σ ′e)W d. (16)

Since (−e)(σe)
∫ W

0 dy v(x, y) = πσe2x , the interaction energy of particles with the surface
charge densities takes the form

E ps =
N∑

j=1

[
πσe2x j + πσ ′e2(d − x j )

]

=
N∑

j=1

π(σ − σ ′)e2x j + Nπσ ′e2d. (17)

The particle-particle interaction energy is simply given by

E pp =
N∑

( j<k)=1

e2v(|r j − rk |). (18)

At inverse temperature β = 1/(kBT ), the Boltzmann factor of the total energy EN ({r}) =
Ess + E ps + E pp reads

e−βEN ({r}) = e−π�(σ ′)2W d
N∏

j=1

eπ�(σ
′−σ)x j

×
N∏

( j<k)=1

∣
∣
∣
∣2 sinh

π(z j − zk)

W

∣
∣
∣
∣

�

, (19)

where � = βe2 is the coupling constant.
Within the canonical ensemble, the partition function is defined as

Z N = 1

N !
∫




dr1

λ2 ε(r1) · · ·
∫




drN

λ2 ε(rN )e
−βEN ({r}), (20)

where λ is the thermal de Broglie wavelength and the function ε(r) reflects a possible con-
straint to the location of particles. In particular,

ε(r) = 1 (21)
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938 L. Šamaj, E. Trizac

for the unconstrained model pictured in Fig. 1 and

ε(r) ≡ ε(x) = λ [δ(x)+ δ(x − d)] (22)

for the constrained model in Fig. 2. Here, λ is included for dimensional reason, and turns
immaterial in what follows. The introduction of the ε-function allows us to treat the two
models using the same technique. With the aid of formula (14), the partition function (20)
can be expressed as

Z N =
(

W 2

4πλ2

)N

exp
[−π�(σ ′)2W d

]
QN , (23)

where

QN = 1

N !
∫




N∏

j=1

[d2z j wren(x j )]
∏

j<k

∣
∣
∣e− 2π

W z j − e− 2π
W z j

∣
∣
∣
�

(24)

and

wren(x) = 4π

W 2 ε(x) exp

[

π�(σ ′ − σ)x + π�

W
(N − 1)x

]

= 4π

W 2 ε(x) exp

[

π�

(

2σ ′ − 1

W

)

x

]

(25)

is the renormalized one-body Boltzmann factor.
For � = 2γ (γ a positive integer), the technique of anticommuting variables [22,23,25]

allows us to express QN as the integral over Grassman variables with the action that couples
certain composite operators by interaction strengths

w jk =
∫




d2zwren(x) exp

(

−2π

W
jz

)

exp

(

−2π

W
kz̄

)

(26)

[ j, k = 0, 1, . . . , γ (N − 1)]. Due to the orthogonality relation

W∫

0

dy exp

[
2π

W
i(k − j)y

]

= Wδ jk, (27)

the interaction matrix becomes diagonal, w jk = w jδ jk with

w j = W

d∫

0

dx wren(x) exp

(

−4π

W
j x

)

(28)

[ j = 0, 1, . . . , γ (N − 1)].
At the special coupling � = 2 (γ = 1), the composite operators become the standard

anticommuting variables. Due to the diagonalized form of the action

S =
N−1∑

j=0

ξ jw jψ j , (29)

we obtain the exact result

QN =
N−1∏

j=0

w j . (30)
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Omitting in (23) the irrelevant d-independent prefactors, the free energy, defined by −βFN =
ln Z N , reads

− βFN = −2π(σ ′)2W d +
N−1∑

j=0

lnw j . (31)

The corresponding pressure PN , i.e. the force between the plates per unit length of one of
the plates, is given by

βPN = ∂

∂d

(−βFN

W

)

. (32)

Explicitly,

βPN = −2π(σ ′)2 + 1

W

N−1∑

j=0

1

w j

∂w j

∂d
. (33)

Moreover, using the formalism of anticommuting variables, the density profile of particles
is expressible as

n(x) = wren(x)
N−1∑

j=0

〈ξ jψ j 〉 exp

(

−4π

W
j x

)

, (34)

where the correlators are given by 〈ξ jψ j 〉 = 1/w j ( j = 0, . . . , N − 1) within the free-
fermion action (29).

3 Counter-Ions Between Charged Walls

We first consider the unconstrained model in Fig. 1 with the trivial ε-function given by (21).
At � = 2, the renormalized one-body weight (25) reads

wren(x) = 4π

W 2 exp

[

2π

(

2σ ′ − 1

W

)

x

]

(35)

and the diagonal interaction elements (28) are given by

w j = 1

j − Wσ ′ + 1
2

[

1 − e
− 4πd

W

(
j−Wσ ′+ 1

2

)]

(36)

( j = 0, 1, . . . , N − 1). The pressure (33) is then expressible as

βPN = −2π(σ ′)2 + 4π

W 2

N−1∑

j=0

j − Wσ ′ + 1
2

1 − e
− 4πd

W

(
j−Wσ ′+ 1

2

)

×e
− 4πd

W

(
j−Wσ ′+ 1

2

)

(37)

and the density profile (34) as

n(x) = 4π

W 2

N−1∑

j=0

j − Wσ ′ + 1
2

1 − e
− 4πd

W

(
j−Wσ ′+ 1

2

) e
− 4πx

W

(
j−Wσ ′+ 1

2

)

. (38)

The particle number density has the correct dimension [length]−2. It can be readily shown
that

βPN = n(d)− 2π(σ ′)2. (39)
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Simultaneously, Eq. (38) implies the exact relation

n(0)− n(d) = 2π
[
σ 2 − (σ ′)2

]
(40)

and we can write
βPN = n(0)− 2πσ 2. (41)

Relations (39) and (41) correspond to the contact theorem valid for rectilinear (planar or line)
wall surfaces [5,10]. It is interesting that the contact theorem has the same form for arbitrary,
finite or infinite, circumference W .

Our next aim is to perform the continuum of the above formulas in the thermodynamic
limit N ,W → ∞, at the fixed ratio N/W = σ + σ ′. We choose t = (

j − Wσ ′ + 1
2

)
/N as

the continuous variable. For the density profile (38), one obtains

n(x) = 4π

(
N

W

)2
σ

σ+σ ′∫

− σ ′
σ+σ ′

dt t
e−4π(σ+σ ′)t x

1 − e−4π(σ+σ ′)td

= 1

πd2

2πσd∫

−2πσ ′d

ds s
e−2sx/d

1 − e−2s
. (42)

The pressure, given by

βP = 1

2
[n(0)+ n(d)] − π

[
σ 2 + (σ ′)2

]
, (43)

is found after some algebra in a symmetrized form

βP = 1

2πd2

⎛

⎜
⎝

2πσd∫

0

+
2πσ ′d∫

0

⎞

⎟
⎠ ds

s

sinh s
e−s . (44)

In the symmetric case σ = σ ′, we reproduce the previously obtained formula (4.40) of Ref.
[25].

We want to analyze the dependence of the pressure on the distance d between the charged
lines. Using the substitution s = dt in (44), the differentiation with respect to d implies

∂

∂d
βP = − 1

2π

2πσ∫

−2πσ ′
dt

[
t

sinh(dt)

]2

< 0, (45)

where the integral is positive with regard to the restriction −σ ′ < σ . This means that βP
decays monotonously as the function of distance d .

In the limit of small distances, we see from (44) that the pressure

βP ∼
d→0

σ + σ ′

d
> 0 (46)

exhibits the singularity and is positive, i.e. there is a repulsion between the charged lines.
This small d divergence is expected, and simply stems from the entropy cost of confining
the mobile ions in a narrow slab. Quite clearly then, we may anticipate that the constrained
model will not exhibit the same 1/d divergence, since approaching the two charged lines
does not restrict the configurational space of mobile ions.
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The asymptotic large-distance limit of βP depends on the sign of σ ′.

– If σ ′ > 0 (like-charged lines), we have the universal result

βP ∼
d→∞

1

πd2

∞∫

0

ds
s

sinh s
e−s = π

12

1

d2 , (47)

independent of the amplitudes of σ and σ ′ 1. It coincides with the previous finding (8)
for symmetrically charged lines; the same phenomenon is observed in the mean-field
limit where the formula (7) takes place for any σ ′ > 0 [14]. The pressure goes to zero
at d → ∞ from above, in agreement with its monotonous decrease property from +∞
at d → 0. Another consequence is that the pressure is positive (repulsive) for every d;
the value of the coupling � = 2 is not large enough to obtain attraction between the
like-charged lines. The plot of the dimensionless pressure βP/σ 2 vs. the dimensionless
distance σd for η = 1/2 is pictured in Fig. 3 by the solid line. The regions close to
the two charged lines decouple from one another in the limit d → ∞, the densities of
particles at the lines n(0) = 2πσ 2 and n(d) = 2π(σ ′)2 being equivalent to those for
semi-infinite geometries.

– For a neutral line at x = d , σ ′ = 0, we have

βP ∼
d→∞

1

2πd2

∞∫

0

ds
s

sinh s
e−s = π

24

1

d2 . (48)

As before, the pressure is always positive. Comparing this result with (47) we see that
the neutrality of the line at x = d diminishes the asymptotic pressure by 1/2. In the
mean-field limit, the diminishing factor is equal to 1/4 [14]; that factor 1/4 is obtained
by redefining d → 2d which was argued to be related to the decomposition of a system
with an asymmetry parameter η > 0 into two halves each with an effective η = 0. Such
an argument, which discards fluctuations, no longer applies to the coupling constant
� = 2.

– If σ ′ < 0 (oppositely charged lines), we reexpress the second integral on the rhs of (44)
by using the substitution s → −s and afterwards writing es = es − e−s + e−s , with the
result

−(2πσ ′d)2 −
−2πσ ′d∫

0

ds
s

sinh s
e−s .

Thus, at large distances, the pressure does not vanish,

βP ∼
d→∞ = −2π(σ ′)2 (49)

with an exponentially decaying correction. This behaviour is not surprising. Since the sign
of the particle charge is the same as that of the line at x = d , particles cannot neutralize and
are repelled from this line. For sufficiently distant lines we have n(0)  2π[σ 2 − (σ ′)2]
and n(d)  0, i.e. all counter-ions stay in the neighbourhood of line at x = 0 and
compensate partially its line charge density σe to |σ ′|e. We are left with a capacitor
of two lines with opposite charge densities ±σ ′e for which the pressure is negative

1 Note that whenever the pressure is of the form βP ∝ 1/d2, it cannot depend on the absolute values of σ and
σ ′, but only on the ratio η = σ/σ ′, for dimensional reasons. In the symmetric case, it is thus σ independent.
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Fig. 3 Unconstrained model: The dimensionless pressure βP/σ 2 vs. the dimensionless distance σd for two
values of the asymmetry parameter η = 1/2 (solid line) and η = −1/2 (dashed line). In both cases, the
pressure exhibits a monotonous decrease from ∞ at σd → 0 to: 0 for η = 1/2 and the capacitor limit −2πη2

for η = −1/2 at σd → ∞. In the latter case, the pressure equals to zero at the equilibrium distance σd∗
whose dependence on the negative η is pictured in the inset

(attractive) and given just by Eq. (49). The same scenario was discussed in [21], and
occurs in the mean-field treatment [14]. The dependence of βP/σ 2 on σd for η = −1/2
is represented in Fig. 3 by the dashed line. Since βP decays monotonously from +∞ at
d → 0 to the negative number −2π(σ ′)2 at d → ∞, there exists just one equilibrium
distance d∗ at which βP(d∗) = 0. Thus, oppositely charged lines repel one another for
distances d < d∗ while there is an attraction for d > d∗. The dependence of σd∗ on the
negative asymmetry η is presented in the inset of Fig. 3.

4 Counter-Ions at Charged Walls

The constrained model in Fig. 2 possesses a non-trivial ε-function (22). At � = 2, the
renormalized one-body weight (25) reads

wren(x) = 4πλ

W 2 [δ(x)+ δ(x − d)] exp

[

2π

(

2σ ′ − 1

W

)

x

]

(50)

and the diagonal interaction elements (28) are given by

w j = 4πλ

W

[

1 + e
− 4πd

W

(
j−Wσ ′+ 1

2

)]

(51)

( j = 0, 1, . . . , N − 1). The pressure (33) is given by

βPN = −2π(σ ′)2 − 4π

W 2

N−1∑

j=0

j − Wσ ′ + 1
2

1 + e
− 4πd

W

(
j−Wσ ′+ 1

2

)

×e
− 4πd

W

(
j−Wσ ′+ 1

2

)

, (52)
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which is of course independent of λ. It is easy to show that this relation is equivalent to the
following one

βPN = −2πσ 2 + 4π

W 2

N−1∑

j=0

j − Wσ ′ + 1
2

1 + e
− 4πd

W

(
j−Wσ ′+ 1

2

) , (53)

so that we can write

βPN = −π [
σ 2 + (σ ′)2

] + 2π

W 2

N−1∑

j=0

(

j − Wσ ′ + 1

2

)

× tanh

[
2πd

W

(

j − Wσ ′ + 1

2

)]

. (54)

The continuum procedure, analogous to that for the unconstrained model, leads to

βP = − 1

2πd2

⎛

⎜
⎝

2πσd∫

0

+
2πσ ′d∫

0

⎞

⎟
⎠ ds

s

cosh s
e−s . (55)

The density profile (34) has the form

n(x) = n0δ(x)+ ndδ(x − d), (56)

where

n0 = 1

W

N−1∑

j=0

1

1 + e
− 4πd

W

(
j−Wσ ′+ 1

2

) (57)

and

nd = 1

W

N−1∑

j=0

1

1 + e
− 4πd

W

(
j−Wσ ′+ 1

2

) e
− 4πd

W

(
j−Wσ ′+ 1

2

)

. (58)

The prefactors n0 and nd to the Dirac delta functions are the line particle densities of dimen-
sion [length]−1 along the y-axis at x = 0 and x = d , respectively. They are constrained by
the obvious electroneutrality condition

n0 + nd = N

W
= σ + σ ′. (59)

After taking the continuum limits of (57) and (58), we get

n0 = σ + 1

4πd
ln

(
1 + e−4πσd

1 + e−4πσ ′d

)

, (60)

nd = σ ′ + 1

4πd
ln

(
1 + e−4πσ ′d

1 + e−4πσd

)

. (61)

It holds that 0 ≤ nd ≤ n0. Note that for any finite distance d , (and symmetric σ = σ ′ case
excluded), the net (fixed background plus mobile particle) charge density on each of the two
lines is nonzero: (σ − n0)e �= 0 and (σ ′ − nd)e = −(σ − n0)e �= 0. The neutrality of
the two lines is attained at asymptotically large d provided that σ ′ ≥ 0. If σ ′ < 0, we find
that n0 = σ + σ ′ and nd = 0, i.e. the system corresponds to a capacitor of two lines with
opposite charge densities ±σ ′e. The ratio nd/n0 as a function of the dimensionless distance
σd is drawn for two values of the asymmetry parameter η = 1/2 (solid line) and η = −1/2
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(dashed line) in Fig. 4. It is seen that nd/n0 → 1 for σd → 0 for every positive or negative
value of η. This is an entropy driven phenomenon, since a particle’s localization on one or
the other line is at small d inconsequential from the energetic point of view. For η = 1/2, the
ratio nd/n0 tends to the neutrality value 1/2 at σd → ∞. On the other hand, for η = −1/2,
the ratio nd/n0 = 0 at σd → ∞, in agreement with the above discussion. It is interesting to
note that for negative η the value of nd is strictly positive for finite values of σd: although
the energy is increased by putting particles to the likely charged line, the entropy increase on
this less populated line favors a non-vanishing occupation by particles.

It can be shown from the expression of the pressure (55) that

∂

∂d
βP = 1

2π

2πσ∫

−2πσ ′
dt

[
t

cosh(dt)

]2

> 0, (62)

i.e. the pressure is a monotonously increasing function of d . In the limit d → 0, βP is
negative:

βP ∼
d→0

= −π [
σ 2 + (σ ′)2

]
, (63)

and, as expected, does not exhibit any singularity.
At asymptotically large distances, the sign of σ ′ is important.

– If σ ′ > 0, one obtains the universal formula

βP ∼
d→∞ − 1

πd2

∞∫

0

ds
s

cosh s
e−s = − π

24

1

d2 . (64)

This asymptotic behaviour coincides with that of the van der Waals-Casimir for two
neutral 2D conductors (4); since n0 = σ and nd = σ ′ at infinite distance, each of the
two lines is indeed neutral and the force between the lines results from internal charge
fluctuations inside each of the lines. The pressure goes to zero at d → ∞ from below,
which agrees with its property of the monotonous increase from the negative value (63)

0 0.2 0.4 0.6 0.8 1

σ d

0

0.2

0.4

0.6

0.8

1

n d / 
n 0

η = 0.5

η = − 0.5

Fig. 4 Constrained model: The ratio of the line particle densities nd/n0 vs. distance σd for the asymmetry
η = 1/2 (solid line) and η = −1/2 (dashed line). In both cases, the ratio decreases monotonously from 1 at
σd → 0 to: the electroneutrality limit 0.5 for η = 1/2 and 0 for η = −1/2 at σd → ∞
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 / 
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η = 0.5

η = − 0.5

Fig. 5 Constrained model: Dimensionless pressure βP/σ 2 as a function of dimensionless distance σd for the
asymmetry η = 1/2 (solid line) and η = −1/2 (dashed line). In both cases, the pressure exhibits a monotonous
increase from −π(1 + η2) at σd → 0 to: 0 for η = 1/2 and the capacitor limit −2πη2 for η = −1/2 at
σd → ∞

at d → 0. The pressure is always negative (attractive) for the couple of like-charged
lines. The dimensionless pressure plot for η = 1/2 is presented in Fig. 5 by the solid
line.

– For σ ′ = 0, we find that

βP ∼
d→∞ − 1

2πd2

∞∫

0

ds
s

sinh s
e−s = − π

48

1

d2 , (65)

which is one half of the previous result (64). As before, the pressure is negative.
– If σ ′ < 0, we reexpress the second integral on the rhs of (55) as

(2πσ ′d)2 −
−2πσ ′d∫

0

ds
s

cosh s
e−s

and arrive at the capacitor result

βP ∼
d→∞ = −2π(σ ′)2. (66)

Since the monotonously increasingβP interpolates between two negative values as d goes
from 0 to ∞, the pressure is always negative. For the asymmetry parameter η = −1/2,
βP/σ 2 as the function of σd is pictured in Fig. 5 by the dashed line.

5 Conclusion

In this paper, we investigated thermal equilibrium of 2D Coulomb systems composed of
two parallel asymmetrically charged lines at distance d , neutralized by “counter-ions only”.
Two versions of the model were considered: in the unconstrained version, counter-ions move
freely in the region between the lines, while in the constrained version, counter-ions stick
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to the charged lines. For the exactly solvable coupling constant � = 2, we analyzed the
dependence of the pressure on d , especially its sign and the asymptotic large-d behaviour.

The two models exhibit some common features. The expressions for the pressure (44) and
(55) consist of the sum of two decoupled contributions, one from each line. Such property
does not occur in the weak-coupling limit and is probably related to the free-fermion nature
of the � = 2 coupling. According to the derivative formulas (45) and (62), the pressure is
always a monotonous function of d , decreasing for the unconstrained model, and increasing
for its constrained counterpart. A similarly increasing pressure is found for bilayers, frozen
in their ground state (with thus a diverging coupling constant) [26].

For likely charged lines, the pressure goes to 0 at large d without changing its sign: it
is always positive (repulsive) for the unconstrained model and negative (attractive) for the
constrained model. The large-distance asymptotic behaviour of the pressure for the uncon-
strained model (47) is universal, however, the prefactor to 1/d2 is not consistent with the
mean-field prediction (7) but has to be renormalized by a temperature-dependent function.
This remark on the failure of mean-field at asymptotic distances, corroborates previous 2D
results obtained for symmetric lines [25]. It goes against common expectation that mean-field
should hold at large d [27,28], the underlying argument being that the small density of ions
far from the plate may effectively drive the system into a weakly-coupled regime, in the cor-
responding distance range. However, it should be kept in mind that Coulomb potential v(r) is
logarithmic in two dimensions and hence scale-free, so that the Coulombic coupling does not
depend on the density: it is always βe2. Hence, a 2D system, unlike its higher dimensional
counterparts, is nowhere weakly coupled when � > 1, and it therefore does not come as a
surprise that mean-field breaks down in 2D, even at large distances. Conversely, in dimen-
sion ν = 3, the standard argument on the asymptotic validity of mean-field may well apply.
We note that it is backed up by recent accurate Monte Carlo results [29]. As concerns the
constrained model, the net charge density on each of the two lines is nonzero for every finite
distance d and vanishes only at d → ∞. The universal d → ∞ behavior of the pressure (64)
coincides with that of the van der Waals-Casimir for two neutral 2D conductors (4), without
any need for temperature renormalization.

For oppositely charged lines, the pressure at asymptotically large d corresponds to a
capacitor in both unconstrained (49) and constrained (66) cases. This fact has an important
impact especially on the unconstrained model which exhibits at a special dimensionless
distance σd∗ a transition from the repulsion regime for d < d∗ to the attraction regime for
d > d∗; for the dependence of σd∗ on the negative asymmetry η ≡ σ ′/σ see the inset of
Fig. 3.

Finally, investigating the two present models under stronger correlations (e.g. � = 4, or
6) and also ultimately in the strongly coupled limit (� → ∞), provides interesting venues
for future work.
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