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We show that describing the screened electrostatic interactions in a periodic stack of rigid parallel
identical charged platelike colloids within a local density functional theory approach generically leads to
a swelling behavior. Within the same framework, we find that the effective potential between a pair of
such plates immersed in an electrolyte is repulsive at all distances. This general result is in contradiction
with a theory put forward by Sogami, Shinohara, and Smalley, that we criticize and thoroughly reconsider
to show how the two approaches can be reconciled.

I. Introduction

The counterintuitive phenomenon of effective attrac-
tions between like charges immersed in an electrolyte has
recently attracted considerable attention and questions
one of the fundamental tenets of colloid science.1-5 The
understanding of the underlying mechanism is crucial
for a correct description of a vast variety of industrial and
natural processes, in particular the stability and phase
behavior of colloidal dispersions. In this article, we
investigate the stability of electrostatically swollen stacks
of regularly spaced planar colloids or membranes of infinite
lateral extension in an electrolyte. Such a one-dimensional
geometry describes the early stages of clay swelling6 but
is also relevant for lamellar phases of charged bilayers.7
At the simplest level of mean-field description, with neglect
of excluded volume and Coulomb correlation effects, the
inhomogeneous density profiles of microscopic co- and
counterions forming the electric double layers around the
planar macroions can be obtained analytically.8 The
resulting Poisson-Boltzmann osmotic (or disjoining)
pressure in the stack is invariably found positive,9 which
is the signature of the tendency to swell. This behavior
is reminiscent of the repulsive nature of pair interactions
(as we shall see below, the two phenomena are however

distinct), established within the same mean-field frame-
work10,11 and recently extended beyond mean-field,12 with
the possible inclusion of approximate correlation contri-
butions. Note that more refined incorporation of discrete
solvent effects by adding a bilinear nonlocal term to the
free energy of standard Poisson-Boltzmann theory has
shown the possibility of a net attraction (negative pressure)
at high surface charges.13

Thepurposeof thepresent investigation is twofold.First,
we apply the general local density functional formalism
of ref 12 to provide a prediction for the stability of stacked
or lamellar phases. We show in section II that the
interactions of electric double layers generically lead to
swelling whereas describing an equilibrium spacing
between the membranes requires either the inclusion of
nonelectrostatic forces (usually van der Waals-like) or the
consideration of more refined theories. Second, the pair
potential problem is considered in section III with a
resulting effective repulsion at all distances, within the
same framework that encompasses in particular the
nonlinear Poisson-Boltzmann theory. This statement is
consequently in contradiction with the attractive behavior
reported by Sogami, Shinohara, and Smalley.14,15 We show
that their controversial finding is attributable to a
confusion in the thermodynamic potential describing the
electrostatic situation under study.

II. Swelling of a Lamellar Stack

Before setting the framework of the analysis, it is
worthwhile to point out that the results obtained in refs
10-12 for a pair of colloids do not apply to the regular
stacked situation under scrutiny here (the precise defini-
tion of the geometry is given at the beginning of section
IIA). First of all, the mechanical route followed in refs
10-12 (deriving the interactions by integration of the
stress tensor over the colloids’ surfaces) would yield a
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vanishing effective force in a regular stack, with cancelling
contributions acting on both sides of the platelets, and is
thus uninformative about the stability of the array.
Moreover, the situation considered in refs 10-12 is that
of two colloids immersed in an electrolyte, confined in a
cylinder with an axis parallel to the colloids’ line of centers,
and of infinite extension along this axis [see Figure 1a].
The assumption of infinite length is crucial for the validity
of the effective repulsion (see Appendix A), and the
corresponding confined two-body problem does not include
the multibody stack geometry, for which the confining
cylinder (Wigner-Seitz cell) would be a slab of finite
length. This point is in contradiction with one erroneous
conclusion reached in ref 21.

A. Density Functional Theory Formalism.26 We
consider a regular succession of rigid infinite parallel
plates located at z ) 2nh (n ∈ N). Each plate carries a
uniform surface charge σ and releases its counterions in
the electrolyte solution, considered to be a mixture of N
microions, where species R has charge number eR and local
density nR(z). We write the free energy of the total charge
distribution in the Wigner-Seitz cell around a given
platelet (e.g., that situated at z ) 0 for which the cell is
a slab extending between -h and h) as

where Fc(z) is the local total charge distribution, including
the microions and the plate (with global electroneutrality
∫-h

h Fc ) 0). F is expressed per unit area of the macroscopic
surfaces. Within the primitive model of electrolytes,22

whereby the solvent is regarded as a mere dielectric
continuum of permittivity ε, the total electrostatic po-
tential ψ(z) is the solution of Poisson’s equation

and can be cast in the form ψ(z) ) ∫-h
h Fc(z′) G(z, z′) dz′

where G is the appropriate Green’s function. The boundary
condition of vanishing electric field at z ) (h is fulfilled
by ∂zψ. This mean-field-like reduction of the problem
materialized by the introduction of the Wigner-Seitz slab
may be corrected by correlation terms included in the free
energy density f. Moreover, even if the van der Waals
energy term∫Fcψ )∫FcGFc is of mean-field form, correlation
terms can be accounted for provided they translate into
a local correction to the free energy, in the spirit of the
approaches depicted in refs 23-25. Consequently, the term
∫f in eq 1 does not reduce in general to the entropic
microions’ contribution (as in Poisson-Boltzmann theory22)
but may also include both non-mean-field energetic and
entropic effects. Of course, the present formalism encom-
passes the nonlinear Poisson-Boltzmann and Modified
Poisson-Boltzmann theories.27,28

B. Osmotic Pressure. For both canonical (fixed ionic
content of the electrolyte solution) and semi-grand-
canonical (when the solution is in osmotic equilibrium
with a salt reservoir) descriptions, the optimal density
profiles nR

/(z) are obtained by minimizing the functional

where µR is either the Lagrange multiplier associated with
the constraint of fixed average concentration or the
chemical potential of species R in the reservoir. The
resulting stationary equations read for all species R

These implicit relations between the electrostatic potential
and the densities {nR} allow us to solve Poisson’s equation
(eq 2) and compute the optimal profile nR

/(z) (hereafter
denoted nR(z) without ambiguity), from which we deduce
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Figure 1. Illustrative side view of the cell models considered.
Mirror symmetry with respect to the midplane z ) 0 between
the two colloids is enforced (this requirement is an important
ingredient in the proofs [refs 10-12]).

F ({nR}) ) ∫-h

h
f[{nR(z)}] dz + 1

2 ∫-h

h
Fc(z) ψ(z) dz (1)

∇2ψ ) -
4π
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Fc(z) ) -

4π

ε
[σδ(z) + ∑

R
eR nR(z)] (2)

Ω({nR}) ) F ({nR}) - ∑
R

µRNR (NR ) ∫-h

h
nR dz) (3)

∂f
∂nR

+ eRψ(z) ) µR (4)
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the Helmholtz free energy F(h, σ, T, {NR}) ) F ({nR
/}),

with F ) U - TS (U is the total internal energy, T is the
absolute temperature, and S is the entropy of the total
microion charge distribution in the cell).

From the knowledge of F, the definition of the ther-
modynamic potential R (whose variations correspond to
the reversible work performed by an operator and thus
define the osmotic pressure) requires the specification of
the thermodynamic situation under consideration. In the
canonical case with constant charge plates, R ) F.29 If,
on the other hand, the platelets are held at constant
potential (e.g., by an external generator), R is the
Legendre transform of F with respect to the surface
charge,29,30 namely,

where ψP ) ψ(z ) 0) denotes the surface potential. In the
opposite case of a system in equilibrium with a salt
reservoir,

In any case, the osmotic pressure is defined as

where R depends on the electrostatic situation considered,
as explained above. It is however important to stress that
the osmotic pressure should not depend on the electrostatic
situation under study, as becomes clear below. Theories
that do not result in the above fundamental invariance
of Π can consequently be disposed of.

The free energy variation induced by changing the
intermembrane distance is computed in Appendix B with
the result

so that the osmotic pressure reads

independently of the situation of constant potential or
constant charge considered. Not surprisingly, the pressure
is related to the Legendre transform of the free energy
density, as for ordinary homogeneous gases,30 and equals
the local stress π(z) at the midplane between the mem-
branes:

C. Stability Analysis. When the stack is in osmotic
equilibrium with a salt reservoir, the comparison of Π
obtained in section IIB with the pressure exerted by the
reservoir quantifies the tendency toward swelling (Π >
Πres) or collapse (Π < Πres). For consistency, the (neutral)
reservoir needs to be described within the same framework
as the electrolyte around the platelet. The remainder of
this section is devoted to the proof that Π is extremal in
the reservoir and that this extremum is a minimum under
fairly general conditions. We first analyze the ψ depen-
dence of the pressure π, defined by π(ψ) ) π(z) where
ψ ) ψ(z) is the solution of Poisson’s equation (eq 2). From
eq 11, we have

that can be recast making use of the stationary condition
in (4):

π thus goes through an extremum in the reservoir (Πres
by definition) where the charge density vanishes (unlike
at the midplane z ) h where Fc * 0). Relation 14 together
with Poisson’s equation implies that the local stress
introduced in eq 11 fulfills the mechanical equilibrium
condition for the fluid of microions:

which is the simple form taken in a one-dimensional
problem by the condition of vanishing divergence for the
generalized Maxwell stress tensor in the dielectric me-
dium.29

The second derivative of π can be obtained by introduc-
ing the Hessian matrix N × N

that obeys the relation

as can be seen from eq 4. We thus have

which is a positive quantity when the matrix of second
derivatives HRâ is positive definite. Under this assumption,
π is a convex-up function of the potential and the extremum
attained in the reservoir is therefore a minimum, so that
Π > Πres.

Despite the differences outlined at the beginning of
section II between the pair potential and the multibody
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h
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h
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nReR (13)
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8π(∂ψ
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stacked problems, the method employed here is close to
that of ref 12, and we shall also distinguish two different
situations to conclude with the stability analysis:

Case a. The free energy density does not depend on the
elementary charge e (as in mere mean-field treat-
ments8,22,27,28). In the limit e f 0 (at fixed valency eR/e), we
obtain a locally neutral mixture where the total free energy
functional reduces to the contribution ∫f. The thermody-
namic stability criterion of this neutral mixture implies
the positive definiteness of the matrix HRâ that is
independent of e.

Case b. Correlation or fluctuation effects are taken into
account with a resulting e-dependent free energy density.
It is no longer possible to find an uncharged mixture of
microspecies described by the same density f. The ther-
modynamic stability condition of the full functional (eq 1)
involves Green’s function G(z, z′) and does not imply the
positive definiteness of the Hessian H. However, the
convexity of f with respect to density variations is generally
fulfilled by the approaches proposed in the literature,
either in the full density range25 or for the small plasma
coupling parameters relevant to colloidal dispersions.24

From the above discussion and the positive definiteness
of the Hessian matrix H, we conclude that the stack
generically exhibits a tendency toward swelling.

III. Adiabatic Pair Potential
In this section, we consider within the density functional

formalism of eq 1 the problem of the effective interactions
between a pair of parallel charged plates immersed in an
electrolyte solution of infinite volume (no confinement).
The two rigid plates with distance 2h are supposed to be
of negligible thickness and uniform surface charge (as in
section II); they divide the electrolyte solution into two
disconnected regions (inner region with |z| < h and outer
region with |z| > h), which does not correspond to the
situation analyzed in refs 10-12. However, the gener-
alization to the present case is straightforward and yields
an effective repulsion as long as both regions are in contact
with salt reservoirs imposing the same chemical potential
for microspecies. Indeed, from the computation of the free
energy variation detailed in section IIB, the effective force
can be written

From the vanishing of the electric field at z ) 0 and
|z| f ∞, we have Πin ) π(z ) 0) and Πout ) π(|z| f ∞). For
|z| f ∞, the charge density vanishes so that Πout equals
the osmotic pressure in the salt reservoir under consid-
eration. The argument of section IIC indicates that
Πin > Πout and that the interactions are repulsive under
the assumption of positive definiteness for the stability
matrix ∂Râ

2 f. This last condition is obeyed by Poisson-
Boltzmann (PB) theory independently of the valency of
the microions [see eq 20 below]. Our result is consequently
in contradiction with the “long-range weak attractive part
of the free energy” reported in refs 14 and 15 for the same
system treated at the level of Poisson-Boltzmann. The
work of Sogami et al. has already been criticized,16-19 but
in our opinion, the subsequent controversy20 dwells on
ambiguities on the thermodynamic potential that should
be considered, which to our knowledge have not been
explicitly pointed out so far. It thus seems worthwhile to
restrict to PB theory and devote the remainder of this
article to briefly revisit the model of refs 14 and 15,
introduced to describe the swelling behavior of n-butyl-
ammonium vermiculite gels.

Within PB mean-field theory, the microions are con-
sidered as an ideal gas and density fluctuations are
discarded, so that the free energy density does not include
any correlation term and reduces to the entropy of an
ideal mixture:

where the (irrelevant) lengths {ΛR} involve the masses of
microions and â ) 1/(kT) is the inverse temperature. The
stationary condition in (4) translates into

and the local osmotic stress in (11) is given by the ideal
equation of state π(z) ) kT∑RnR(z). The electrostatic
potential ψ is chosen to vanish for |z| f ∞, so that nR

0 is
the density of species R far from the plates with a
corresponding chemical potential

As a result of the global electroneutrality condition, it can
be checked that the final free energy [expression 23 below]
is independent of an arbitrary shift of the potential ψ [in
which case the densities appearing in eq 22 are simply
the prefactors of the exponentials in (21)]. It is convenient
to use the relation between the local ionic densities and
the electrostatic potential to recast the Helmholtz free
energy F ) U - TS in the form

where eq 15 and the ideal equation of state for π(z) have
been used in going from the first to the second line. Note
that it is understood that the osmotic term Π in (23) takes
the value Πin (respectively Πout) for |z| < h (respectively
|z| > h). Strictly speaking, expression 23 diverges (if salt
is added to the electrolyte, some of the quantities NR are
extensive with system size). This feature can be circum-
vented by computing the excess free energy with respect
to a well-chosen reference system (for instance, the system
with same bulk densities in the absence of the plates).
Once the solution of Poisson’s equation is known (see ref
9 for a review of the standard solutions, including the
present geometry), F may be computed from eq 23.
Following this route, we readily recover the Helmholtz
free energy obtained by Sogami et al. by means of a
charging process. In eq 23, σ ) σin + σout stands for the
total surface charge on a platelet, including both the
different inner (σin from z ) h-) and outer (σout from
z ) h+) contributions, denoted Zi and Zo, respectively, in
refs 14 and 15.

In the model of refs 14 and 15, the electrostatic potential
is imposed to be continuous throughout the system and
the surface potential ψP is independent of the distance
2h between the plates. Moreover, the numbers of microions
between the plates also depend on h with a fixed chemical
potential, given by (22) where the nR

0 can be considered as

Fz ) - 1
2

δR
δh

) Πin - Πout (19)

f({nR}) ) â-1 ∑
R)1

N

nR[ln(nRΛR
3) - 1] (20)

nR(z) ) nR
0 exp(-âeRψ) (21)

µR ) kT ln (nR
0 ΛR

3) (22)

F ) F ({nR})

) σψP -
ε

8π
∫-∞

∞ (∂ψ

∂z )2

dz + ∑
R

NR(µR - kT)

) σψP + ∫-∞

∞
Π dz + ∑

R
NR(µR - 2kT) (23)
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the ionic densities of a reservoir in chemical equilibrium
with both the inner and outer parts of the electrolyte
solution around the plates. Consequently, the thermo-
dynamic potential R ψ defined in eq 7 should be used in
computing the force whereas F has been considered in
refs 14 and 15. The definition of the model imposes that
when h changes at fixed ψP , Zo is constant while Zi varies,
so that the two situations of constant charge and constant
potential are equivalent for the outer part of the system
(|z| > h) but not for the inner part. The reversible work
performed by an operator changing the distance 2h
between the charged plates is therefore given by the
variations of

whereas F ) Fin + Fout has been considered in refs 14 and
15. Omission of the chemical potential terms µRnR in the
right-hand side of eq 24 leads the force computed in
refs 14 and 15 to depend on the masses (through the
lengths ΛR), which is impossible in an equilibrium
statistical mechanics theory, as already pointed out in ref
31. With the aid of the relations given in ref 14 [e.g., eqs
63, 64, and 65 valid in the case of counterion dominance
between the plates], an explicit computation of the force
Fz ) -∂R ψ/∂(2h) yields the standard expression

where the continuity of the co- and counterion charge
density across the membrane (resulting from the imposed
continuity of the potential) has been used in going from
(25) to (26). The compatibility of eq 25 with eq 19 is
transparent. In terms of the variables used in refs 14 and
15, where Φ(0) denotes the reduced potential at mid-
distance between the plates, we get

hence an effective repulsion at all distances, that is in the
present case entirely due to the electrostatic pressure (the
osmotic contribution cancelling on both sides of the plates).

It can be checked that in the dual situation where both
the inner σin are outer σout surface charges are held
constant, the effective force is still given by (25). This
translates into the Legendre identity

that can be considered as a test for the consistency of the
thermodynamic potential used. In the limit of counterion
dominance between the plates investigated in ref 14, the
identity in (28) can be checked explicitly with the
thermodynamic potential R ψ used here.

IV. Conclusion

Describing the interactions between the electric double
layers around charged planar colloids with a local density
functional theory for ionic screening and the primitive
model of electrolytes, we have shown that a regular stack
of such plates generally displays a swelling behavior when
electrostatic forces alone are taken into account. Within
the same framework, the effective pair potential is found
to be repulsive at all distances, in contradistinction with
the results derived in refs 14 and 15. The repulsive
interactions are evidenced without resort to an explicit
solution of Poisson’s equation and are related to the
convexity of the underlying free energy functional, as
already noted in ref 12.

Of course, the present result does not preclude the
possibility of effective attractive pair potentials. In
particular, a drawback of the theories encompassed by eq
1 is that the direct correlation function c(2)(r1, r2) defined
as the second functional derivative of F is necessarily
mean-field-like:

with a δ-correlated short-range part. This shortcoming
may be circumvented by the inclusion of nonlocal terms
in the theory, for example, in the spirit of the weighted
density approximation.33,34 However, we expect the local
formalism considered here to be instructive for interplate
separations much larger than the ionic size.

Appendix A

References 10-12 proved that the effective interactions
between a pair of like-charged colloids immersed with
counterions and salt in a confining cylinder of infinite
extension [see Figure 1a] were repulsive. We show here
that the result does not hold for a finite-length cylinder.

We consider two colloids confined in the cylinder of
length 2h represented in Figure 1b, in the specific case of
Neumann boundary conditions on the surfaceΣ (vanishing
normal electric field). Due to the mirror symmetry of the
charge distribution, the electric field has no z-component
in the plane z ) 0, and the problem is equivalent to that
of a unique colloid (say colloid 1) in a subcell cylinder of
length h, with again Neumann boundary conditions [the
right half of the cylinder, indicated by a dotted rectangle
in Figure 1b]. We assume the effective force acting on
colloid 1 to be repulsive (F1

z g 0). Then, we translate along
the z-axis the left half cell (-h e z e 0) by a distance 2h,
keeping the right half fixed, to obtain the configuration
of Figure 1c. The electrostatic potential around colloid 1
is unaffected, so that the effective force is unchanged,
corresponding now to an effective attraction. Any repulsive
configuration with Neumann boundary conditions on the
confining cylinder can then be mapped onto an attractive
one (from the construction of the mapping, it appears that
this feature disappears in the limit h f ∞). The hypothesis
of infinite length is thus a key ingredient of the proofs in
refs 10-12. Moreover, numerical solutions of the nonlinear
Poisson-Boltzmann equation for finite-size disklike clay
platelets confined in a finite-length Wigner-Seitz cylinder
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(32) Marcus, R. A. J. Chem. Phys. 1955, 23, 1057. Trizac, E.; Hansen,
J.-P. Phys. Rev. E 1997, 56, 3137.

(33) Diehl, A.; Tamashiro, M. N.; Barbosa, M. C.; Levin, Y. Physica
A 1999, 274, 433.
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R ψ ) Fin + Fout - ∑
R

µR ∫-∞

+∞
nR(z) dz - σinψP (24)

Fz ) π(h-) - ε

8π(∂ψ
∂z )z)h-

2
- [π(h+) - ε

8π(∂ψ
∂z )z)h+

2 ] (25)

) ε

8π[(∂ψ
∂z )z)h+

2
- (∂ψ

∂z )z)h-

2 ] (26)

Fz ) 2π
ε

e2(Zo
2 - Zi

2) ) 4n0kT sinh2[Φ(0)
2 ] g 0 (27)

∂R ψ

∂h |ψP ,σout

) ∂

∂h[R ψ - ψP

∂R ψ

∂ψP
|

ψP ,σout
]

σin,σout

)

∂(R ψ + σinψP )
∂h |σin,σout

(28)

cR,â
(2) (r1, r2) ) - ∂

2f
∂nR∂nâ

δ(r1 - r2) - eReâG(r1, r2) (29)

Highly Charged Platelike Colloids Langmuir, Vol. 17, No. 16, 2001 4797



show repulsive effective pair forces when the distance
between the clay particles is smaller than the half length
h of the cylinder.35

Appendix B
It will be shown that upon modifying the distance

between the plates (h f h + δh), the Helmholtz free energy
changes according to eq 9. The present derivation bears
some similarities with other ones in the related context
of Poisson-Boltzmann cell theory.32 From the definition
of the free energy, eq 1, and the symmetry z T -z, we
have

Consider first the energetic contribution. Making use of
Poisson’s equation (eq 2), two integrations by parts [with
vanishing terms (∂zψ)z)(h

2 ] yield

The stationary condition (4) was used in going from (B2)
to (B3). Similarly, with NR ) ∫-h

h nR dz and since Fc reduces
to the microion charge distribution ∑ReRnR outside the
platelets (in particular between h and h + δh),

Gathering results, we obtain eq 9.

LA010213H
(35) Leote de Carvalho, R. J. F.; Trizac, E.; Hansen, J.-P. Phys. Rev.

E 2000, 61, 1634.
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δf dz + 2∫h

h+δh
f dz + 1

2 ∫-h

h
δ(Fcψ) dz +
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Fcψ dz (B1)
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2 ∫-h

h
δ(Fcψ) dz
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ψδFc dz + ∫h
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Fcψ dz (B2)
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