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ABSTRACT: The thermodynamics of nucleic acid processes is heavily affected by the electric double layer of
microions around the polyions. We focus here on the Coulombic contribution to thgeblelectrolyte preferential
interaction (Donnan) coefficient, and we report extremely accurate analytical expressions valid in the range of
low salt concentration (when polyion radius is smaller than the Debye length). The analysis is performed at the
Poissor-Boltzmann level, in cylindrical geometry, with emphasis on highly charged polyions (beyond “counterion
condensation”). The results hold for any electrolyte of the farme,. We also obtain a remarkably accurate
expression for the electric potential in the vicinity of the polyion.

Coulombic interactions between salt and polyanions play a with a prime, the boundary conditions reagl(r) = 2£ > 0 at
key role in the equilibrium and kinetics of nucleic acid the polyion radiusri(= a) and¢ — 0 for r — co. The latter
processe$ A convenient quantity quantifying such interactions condition expresses the infinite dilution of polyion limit and
and allowing for the analysis and interpretation of their ensures that the whole system is electrically neutral, since it
thermodynamics consequences is the so-called preferential(indirectly) implies thatr¢’ — 0 for r — c. We consider a
interaction coefficient. Several definitions have been proposed negatively charged polyanion for whigh < 0, and the line
and their interrelation studied (see e.g. refA2. In the present charge density reads = —e&/lg < 0, wherelg = €%/(ekT)
work, they are defined as the integrated deficit (with respect to denotes the Bjerrum length (0.71 nm in water at room
bulk conditions) of co-ions concentration around a rodlike temperature). Finally, the Debye length is defined from the bulk
polyion. Our goal is to provide analytical expressions describing ionic densitiesn? andn” through«? = 4zlg(z:2n% + z-2n%).
the effect of salt concentration and polyion structural parameters The Coulombic contribution to the anionic preferential
on the preferential interaction coefficient, for a broad class of interaction coefficient is defined 3013
asymmetric electrolytes. For symmetric electrolytes, it will be
shown that our formulas improve upon existing analytical I‘=;<2f°°(eL¢ — r dr 2)
results. For other asymmetries, they seem to have no counterpart a
in the literature. Our analysis holds for highly (i.e., beyond
counterion condensati®f) and uniformly charged cylindrical
polyions and is explicitly limited to the low salt regime (€., can pe ‘expressed in closed form as a function of the electrostatic
when the po!ylon radiua is smaller than the Debye Iengthc‘,l./ _ potential (see Appendix A). As can be seen in (A3) and (A4),
These conditions are most relevant for RNA or DNA in their - depends exponentially on the surface potenfiglso that

single-, double-, or triple-strand form%. deriving a precise analytical expression is a challenging task.
As in several previous approacties} we adopt the mean- g thermore, we are interested here in the limit < 1

field framework O.f PoissonBoltzmann eq!“%“?”' in & homo- (including the regimexa < 1), which is analytically more
geneous dielectric background of permittiviey The same iy it than the opposite high salt situation where to leading

starting point has proven relevant for related structural physical o e the charged rod behaves as an infinite plane, and curvature
chemistry studies of nucleic acidsln az-:z; electrolyte, the corrections can be perturbatively includédt?

dimensionless electrostatic potential= ep/kT (with e > 0 We will proceed in two steps. Focusing first on the surface

the eI_em;antary charge akd thermal energy) then obeys the potentialgo = ¢(a), we make use of recent resift¢hat have

equation been obtained from a mapping of eq 1 onto a Paintgge Il

5 problem!®21 The exact expressions thereby derived only hold

l-ﬂ( %) = K et gn] (1) for 1:1, 1:2, and 2:1 electrolytes but may be written in a way

rar\ dr] z +z that is electrolyte independent. This remarkable feature is
specific to the short distance behavior ¢fand has been

wherer is the radial distance to the rod axis. The valendies ~ overlooked so far, since not only short distance but also large

andz- of salt ions are both taken positive. Denoting derivative distance properties have been studfetlVe are then led to
conjecture that the corresponding expression holdsafor

* Corresponding author. E-mail: trizac@Iptms.u-psud.fr. binary electrolytez:z:, and we explicitly check the relevance
T E-mail: gtellez@uniandes.edu.co of our assumption on several specific examples.

while its cationic counterpart follows from electroneutrality. This
quantity—which provides a measure of the Donnan efféet
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Table 1. Values of &’ Appearing in Eq 4 as a Function of Electrolyte
Asymmetriest

1/2 1 2 3
—1.763 —1.502 —-1.301 -1.21

1/3
—1.94

10
—1.06

zi/z-  1/10
4 —-2.51

aForzy/z- = 1, 1/2, and 2’is known analytically from the results of
ref 18. The corresponding values are recalled in Appendix B. For other
values ofz;/z-, ¢’has been determined numerically; see in particular Figure
6 of Appendix B.
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Figure 1. Preferential interaction coefficient for a 1:1 salt. The main
graph corresponds to ss-RNA with reduced line charge2.2 while

the inset is for ds-RNA§ = 5). The circles correspond to the value of
(2) following from the numerical solution of eq 1. The prediction of
eq 5 withz given by (4) ando’= —1.502, shown with the continuous
curve, is compared to that of ref 9, shown with the dashed line. As in
all other figures, the opposite &fis displayed, to consider a positive
quantity.

Technical details are deferred to the appendices. It is in
particular concluded in Appendix B that the surface potential
may be written

A

2. ()’ [(z.& — 1)+ @’

®3)

where

—TT
log (ka) + ¢'— (2, — 1) *

i~ (4)

Expression 4 is valid fora < 1 andz;& > 1 [in fact,z,.§ > 1
+ @(1/|log xal)]. These conditions are easily fulfilled for nucleic
acids. The “constant’c’appearing in (3) depends smoothly on
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Figure 2. Same as Figure 1 for a 1:3 and a 3:1 electrolyte. From Table
1, we haves’= —1.21 in the 1:3 case and conversely= —1.94 in

the 3:1 case. The symbols correspond to the numerical solution of eq
1, and the continuous curves show the results of eq 5 with ggain
given by eq 4.
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Figure 3. Preferential interaction coefficient for a 1:1 salt (hence

=~ —1.502) andca = 1072 The circles show the numerical solution of
PB theory (1), the continuous curve is for (5) with (4), and the dashed
line is the prediction of ref 9. Although approximation (4) breaks down
at low &, the inset shows thdit following from the solution of eq C2
gives through (5) &' (continuous curve) that is in excellent agreement
with the “exact one”, shown with circles as in the main graph.

that are evidenced in Figure 6, our expression improves that of

Shkel, Tsodikov, and Recofdharticularly at lower salt content.

For 1:2 and 2:1 salts, we expect eq 5 to be also accurate since
it is based on exact expansions. The situation of other salt

the ratioz./z- but is otherwise salt and charge independent. asymmetries is more conjectural (see Appendix B), but eq 5 is

We report in Table 1 its values for several electrolyte asym- nevertheless in remarkable agreement with the full solution of

metries. The decrease (in absolute value)cofvhen z./z- eq 1 (see Figure 2). To be specific, in both Figures 1 and 2, the

increases is a signature of more efficient (nonlinear) screeningrelative accuracy of our approximation is better than 0.2% for

with counterions of higher valencies. xa = 1072 (for both ss and ds RNA parameters). &t = 0.1,
From eq 3 and the results of Appendix B, our approximation the accuracy is on the order of 1%.

for I" takes a simple form As illustrated in Figure 3, approximation 4 assumes that

> 1. The corresponding expression fotherefore breaks down

when¢ is too low. More general expressions, still fea < 1,

may be found in Appendix C. The inset of Figure 3 offers an

illustration and shows that the limitations of approximation 4

This expression is tested in Figures 1 and 2 against the "true” may be circumvented at little cost, providing a quasi-exact value

numerical results that serve as a benchmark. In Figure 1 whichfor I'. Moreover, it is shown in this appendix that for§ = 1

corresponds to a monovalent salt (or more generallgza /i reads

electrolyte), we also show the prediction of ref 9, which is, to

our knowledge, the most accurate existing formula for a 1:1

salt. For the technical reasons discussed in Appendix B, and

-+ ©)
+

—7l2

log (k&) + & ©

[az
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Figure 4. Same as Figure 1 fof = 1 andz/z- = 1. The same
quantities are shown: our prediction for[egs 5 and 6 with¢’ =

—1.502] is compared to that of ref 9. The inset showsI/z- for a

1:2 salt such as Mgglwhere ¢ takes the value-1.301. Circles:
numerical data; curve: our prediction.

Figure 5. Opposite of the electric potential vs radial distance in a 1:3
electrolyte withka = 1072. The continuous curve shows the prediction
of eq C1 withii given by (4); the circles show the numerical solution
of eq 1. The potential foE = 2.2 is shown in the main graph on a
log—linear scale and on a linear scale in the lower inset. The upper
inset is foré = 5.

On the other hand, eq 3 still holds. The correspondinis
shown in Figure 4.

We provide in Appendi C a general expression of the short
scale (i.e., valid up ter ~ 1) radial dependence of the electric
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this respect, the agreement shown in Figure 5 for whidh-
is quite high (3) is one of the “worst” observed.

Conclusion

The polyion ion preferential interaction coefficidntlescribes
the exclusion of co-ions in the vicinity of a polyelectrolyte in
an aqueous solution. We have obtained an accurate expression
for I' in the regime of low salt{a < 1). The present results are
particularly relevant for highly charged polyiors.€ > 1, that
is, beyond the classical Manning thresH8jdbut are somewhat
more general and hold in the range< & < 1, whereé stands
for the line charge per Bjerrum length aégdis a salt-dependent
threshold, given by eq C5. Our formulas have been shown to
hold for arbitrary mixed salts of the form-:z; (magnesium
chloride, cobalt hexamine, etc.). They have been derived from
exact expansions valid in 1:1,1:2, and 2:1 cases, from which a
more general conjecture has been inferred. The validity of this
conjecture, backed up by analytical arguments, has been
extensively tested for various valuesafz-, polyion charge,
and salt content. These tests have provided the numerical value
of the constant’’ reported in Table 1, which only depends on
the ratioz,/z-. As a byproduct of our analysis, we have obtained
a very accurate expression for the electric potential in the vicinity
of the charged rodr(< «™1).

It should be emphasized that the validity of our mean-field
description relying on the nonlinear Poiss&Boltzmann equa-
tion depends on the valency of counterions) @nd to a lesser
extent on the value af-.1>23For the 1:1 case in a solvent like
water at room temperature, microionic correlations can be
neglected up to a salt concentration of 0.8 Morz: > 2 orin
solvents of lower dielectric permittivity, they play a more
important role. Our results however provide mean-field bench-
marks from analytical expressions, from which the effects of
correlations may be assessed in cases where they cannot be
ignored (see e.g. ref 8 for a detailed discussion).
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Appendix A

In order to explicitly relate the preferential coefficielitin
(2) to the electric potential, we follow a procedure similar to

potential (see eq C1). The bare charge should not be t0o oWt which leads to an analytical solution in the cell model,

[more precisely, one must have > &. with &; given by eq
C5], andi, which encodes the dependencerollows from
solving eq C2. In general, the corresponding solution should
be found numerically. However, one can show (a) that
vanishes fo = &, (b) thatii takes the value (6) when & =

1, and (c) thafi is given by (4) wherz.& exceeds unity by a
small and salt-dependent amount. In practice, for DNA and
RNA, we have& > 2, and eq 4 provides excellent results
whenevera < 0.1. To illustrate this, we compare in Figure 5
the potential following from the analytical expression C1 to its
numerical counterpart. We do not display 1:1, 1:2, and 2:1

results since in these cases eq C1 is obtained from an exact

expansion and fully captures thelependence of the potential.
For the asymmetry 1:3, Figure 5 shows that the relatively simple
form (C1) is very reliable. A similar agreement has been found
for all couplesz-:z. sampled, with the trend that the validity
of (C1) extends to larger distances &agz- is decreased. In

without added saR?* Implicit use will be made of the boundary
conditions associated with (1). First, integrating eq 1, one gets

2
o (la= 5 LE™ —era Ay

where the notationd(r")];, = F(r) — F(a) has been introduced.
Then, multiplying eq 1 by?¢’ and integrating, we obtain

e“”]r

a

z,+z
2
K

—Z+¢
[(r¢)1a= —[r'z—eZ+ +r? +

—Z19 ¢
ﬂzr'(i+eL )dr' (A2)

z,

Combining both relations with adequate weights, in order to
suppress the integral over counterior) (density, we have
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P D v=£(2_2_'§)_
j; r'(e 1) dor =z 2 2
2
& 7@ 1)+z (¥~ 1)} (A3)

2z.+z)

wherego = ¢(a) is the surface potential. Equation A3 will turn
useful in the formulation of a general conjecture concerning
the surface potentiapy (see Appendix B). We also note that
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The functional proximity between our expressions and those
reported in ref 9 in the very same context is striking. We note,
however, that oufi (denotedg in ref 9) involves a different
constant’. More importantly, the functional form of (B1) differs
from that given in ref 9. The comparison of the performances
of our results with those of ref 9 is addressed below and is also
discussed in the main text.

Performing a similar analysis as above in the 1:2 case where
z. = 2 andz- = 1, we obtain from the expressions derived in

for the systems under investigation here the surface potential isref 18:

quite high, and a very good approximation to (A3) is

- 2.7 a’z e =%
frret - pa =2 - 2) -
K

z (A4)

2z.+z)

Appendix B

We start by analyzing a 1:1 electrolyte, for which it has been
showri®20that the short distance behavior reads

& = % Sir{Z/A Iog(K—Sr) - 211!@)] + o)t (B1)

whereW denotes the argument of the Euler Gamma function
P(x) = arg[l['(ix)].1>2%In (B1), « denotes the smallest positive
root of

_2u
E—1

Expressions B1 and B2 require thagxceeds a salt-dependent
threshold [denoted. below and given by eq C5] that is always
smaller than 18 They thus always hold fo€ > 1 and in
particular encompass the interesting limiting cdse 1, which

is sufficient for our purposes. For largewe have proposed in
ref 18 an approximation which amounts to linearizing the
argument of the tangent in (B1) in the vicinity efx and
similarly linearizingW to first order: W(x) = —a/2 — yx +
A(x3), wherey is the Euler constant, close to 0.577. It turns
out, however, that finding accurate expressions for ezpéo),
which is useful for the computation of the preferential interaction
coefficient, requires to include the first nonlinear correction in
the expansion of the tangent. After some algebra, we find

tan[2« log(xa/8) — 2W(u)] = (B2)

~ —/2
: log xa) + ¢— (£ — 1)—1
6(loga) + ¢ — (6 — 1) Y| - 1° 8 (B3)

where the constant’= ¢*!readsc*! =y — log 8 = —1.502
andy®(1) = d® In T(X)/dx3|x=1. From (B3) and (B3) where the
sinus is expanded to third order, we obtain

(ka)’e =~ 4[(& — 1)* + 7] (B4)
whereji is given by
i = — (B5)

log(ka) + ¢~ (z,£—1)*

In writing (B5), we have introduced the change of variahble

= 2u.?5 The reason is that similar changes for other electrolyte
asymmetries allows to put the final result in a “universal”
(electrolyte independent) form (see below). A similar reason
holds for introducing., here equal to 1, in the denominator of
(B5).

(ka)%e > = 3[(§ — 1" + ] (B6)
and similarly in the 2:1 case{ =1,z = 2)
(ka)’e % = 6[(5 — 1)° + ii’] (B7)

In both cases, provided again tlaits not too low (see below),
2 is given by (B5)2% with however a different numerical value
for ¢’[22 =y — (3 log 3)/2— (log 2)/3~ —1.301 andc??
=y — (3 log 3)/2— log 2= —1.763].

The similarity of expressions B4, B6, and B7 leads to
conjecture that this form holds for arzy:z; electrolyte:

(ka)’e ™% = ([(z,& — 1) + ii’] (B8)

We then have to determine the prefacta@ras a function ok,
andz-. To this end, we make use of the exact relation (A3) [or
equivalently (A4)], where in the limit of largé the left-hand
side is finite while the two terms on the right-hand side diverge.
This yields the leading order behavior:

E—o0

+z
(ca) expi-z,49) ~ 2

Z,

z.£—17 (B9)

It then follows that.¢ = 2(z; + z-)/z; so that our general
expression B8 takes the form

(ka)’e = =2

+z
“H@E- 1+ (B10)
+

This expression holds regardless of the approximation used for
i If eq B5 is used, them; & should not be too close to unity
(see Appendix C for more general results including the case
2§ =1).

In order to test the accuracy of (B10) in conjunction with
(B5), we have solved numerically eq 1 for several valuesaof
< 1 and electrolyte asymmetry and checked that for several
different values oz & > 1 the quantity

L B e -1/2
20, +2) (z,6-1)

log(ka) + (z,& — 1) * (B11)

is a constant>, which only depends om;/z- but not on salt
andé. [It should be borne in mind that eq B5 is a smadland
large & expansion, which becomes increasingly incorrectas

is increased and/drlowered.] This is quite a stringent test (since
the two terms on the right-hand side of (B11) are large and
close] which requires high numerical accuracy. This is achieved
following the procedure outlined in ref 27. In doing so, we
confirm the validity of (B10) and collect the values 6fgiven

in Table 1. In the 1:1 case, we predict thdt=y — log 8 =
—1.507, in excellent agreement with the numerical data of
Figure 6. On the other hand, the prediction of ref 9 that

0= —n|(ka)’e ** -
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Figure 6. Plot of the quantity? defined in (B11) vs line chargéfor

a 1:1 electrolyte ata = 1072 (continuous curve) anca = 10! (dashed
curve). The value reached at lar§és compared to the prediction®of
2—¢e +log 2—y = —1.90 (horizontal dashed-dotted line) whereas
eqgs B10 and B5 imply? — y — log 8 = —1.50, shown by the
horizontal dotted line. The inset shows the same quantity for a 3:1
electrolyte aica = 107°. [Such a very low value is required to determine
precisely the value of the asymptotic constajivhich can subsequently

be used at experimentally relevant (higher) salt concentrations.] Here,
we obtain? — —1.94 (dotted line), which is the value reported f&r

in Table 1.

reaches a constant close t6l.90 (shown by the horizontal
dashed line in Figure 6) is incorrect. Figure 6 shows that the
quality of expression B10 deteriorates whes increases, as
expected. It is noteworthy, however, that fem = 107! its
accuracy is excellent whenevér> 2. The inset of Figure 6
shows the validity of (B10) for a 3:1 electrolyte. Whert is
close to 1, eq B5 becomes an irrelevant approximation to the
solution of eq B2 and can therefore not be inserted into the
general formula B10. This explains the large deviations between
2and the asymptotic valu€ observed in Figure 6 for the lower
values of€ reported. We come back to this point in Appendix
C.

The present results hold faré > 1+ @(1/|log «a|). In this
regime, our analysis shows that eq B10 [witlgiven by (B5)]
is correct up to order 1/Id¢ca) for any -,z+). On the other
hand, the results of ref 9, valid in the 1:1 case, appear to be
correct to order 1/loff«a). In addition, our expression for the
surface potential may be generalized to a broader range of
values, and an expression for the short distance dependence
the electric potential may also be provided. This is the purpose
of Appendix C.

Appendix C

In Appendix B, the “universal” results valid for allz(,z-)
have been unveiled partly by a change of variabte i from
existing expression$. In light of these results and of their

accuracy (assessed in particular by the precision reached for

the preferential interaction coefficient), it is tempting to go
further without invoking approximations of (B2) or related
expressions for other asymmetries than 1:1. Inspection of the
results given in ref 18 for the 1:1, 1:2, and 2:1 cases lead, with
again the help of (A4), to the conjecture that

2 kI % o ~
g% ~ g / 20+ 2) sinfit log(kr) + 6] (C1)

with

(0)
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z,E—-1

We emphasize that (C1), much as (B1), is a short distance
expansion and typically holds fer < 1 (hence the requirement
thatka < 1). In Appendix D we give further analytical support
for conjecture (C1). A typical plot showing the accuracy of (C1)
is provided in the main text (Figure 5). Far < 0.1, the
agreement with the exact result is better than 0.1% and becomes
progressively worse at higher distances (20% disagreement at
kr = 1).

From (C1), it follows that the integrated chargé) in a
cylinder of radiusr [that isq(r) = —r¢'(r)/2] reads

tanfi log(ka) + it0] =

(C2)

r

r)=—1+ jitani log[=— C3
2.q0) =1+ r{ﬂ g(RM)] (3)
where the so-called Manning radiig®2%s given by
kRy = exp(— G— £~) (C4)
20

The Manning radius is a convenient measure of the counterion
condensate thickness. It is the painthere not onlyz.q(r) =
1 but also wherg(r) vs logr exhibits an inflection point® For
high enougltt, the logarithmic dependence ofiwith salt [see
(B5)] is such thaRy 0«12,

The two relations C1 and C2 encompass those given in
Appendix B and allow to investigate the regimes. < z:&
and in particular the case.§ = 1, the so-called Manning
thresholc® However, (C1) and (C2) are not valid fdr< &,
with

1

2E=1+ logka+ &

(C5)
Note thaté; < 1, since the constant is negative and that salt
should fulfill ka < 1. Forka = 102 andz;/z- = 1, we obtain

&c = 0.836. This is precisely the point wherd” = 1 in the
inset of Figure 3. This inset also shows that the valud" of
resulting from the use of the solution of (C2) is remarkably
accurate.

At this point, it seems useful to investigate the Manning
threshold case& = 1 (which corresponds to the onset of
counterion condensation whea — 0°18:39, |t is readily seen
Wat the solution of (C2) reads

~

z5=1
n =

—7l2

logtea) + ¢ <o

which should be inserted in (C1) to obtain the potential profile
or in (5) to get the interaction coefficient.

Appendix D

In this appendix we give further support for the conjecture
(C1) which gives the short distance expansion of the electric
potential. Let us suppose initially that the charge is below the
Manning thresholE < &.. It is straightforward to verify that
Poissor-Boltzmann eq 1 admits solutions which behave@$

—2A In(kr) + In B + (1) for kr < 1. Injecting this
expansion into eq 1 allows us to compute higher order terms.
To study the regime beyond the Manning threshold, we compute
all higher order terms of the form?(+z4 (for a negatively
charged macroion) and®@-zA (for a positively charged
macroion), withn a positive integer. These terms turn out to
present themselves as the series expansion of the logarithm;
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thus, resumming them we obtain

¢(r) = —2AIn(xr) +In B+

Z+B—A(Kr)2(l+lu’-\)

2
—In|1— S| —
Zy 8(z, +z) 1+ zA)
Z_BL r 2(1-z.A
2y ZEETT L oy
z 8z, +z)1-zA)

The dots represent terms of ord@K+z-A+2m1-2_A) with n and

m two nonzero positive integers. When the Manning threshold

is approachedz+A + 1 = 0 for negatively charged macroion,

the termg2(1+2:A) (second line of eq D1) become of order one,

but the rest of the terms (third line of eq D1 and dots) remain

higher order: a change in the small distance behaviog of

occurs. A similar situation is reached for-1z_A = 0, which

is the Manning threshold for a positively charged macroion.
AandB in the previous equations are constants of integration,

which should be determined with the boundary conditiai§’)

= 2& at the polyion radiusr(= a) and¢ — 0 forr — 0. Thus,

to proceed further, we have to connect the long and the short

distance behavior a@b. This connection problem has been only

solved in the cases 1:1, 1:2, and 2:1 in refs 19 and 31. In

particular, oncéA has been chosen (notice that o= 0, A =

—¢&), B should be one and only one function Afin order to

satisfy¢ — O for r — . The results from refs 19 and 31 show

that

B=2((1+ A2 (1:1)
B=3"2%y(2(1+ ARy ((1+ A)/3) (1:2)

B =3¥2"((1 + 2A)3)y((2 + A)/3) (2:1) (D2)
wherey(x) = T'(X)/T'(1 — X). B turns out to have some interesting
properties in the cases 1:1, 1:2, and 2:1, where its exact
expression D2 is known. Namely, at the Manning threshold 1
+z:A=0

_ zB™*
lim >=1 (D3)
Amlz: 8(z, + 2. )1 + z,A)
Furthermore, if we put ¥ z,A = iz and define
—Zr
A — z,B (Da)

8(z, +z.)(1 + z.A)

then forii € R, W(i1) € R is areal function of iz, with W(0) =
0.

Let us now study the regime beyond the Manning threshold
for a negatively charged macroion. From eq D1 we can write

2, B7% (jer) 2N

8(z, +z.)(1 + z.A)

&2  (4er) 2B 1 — (D5)

neglecting terms of higher order whepA is close to—1.
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Let us conjecture that the properties®gs a function oA
presented above hold in the general case;. Then using the
parameteyi defined above we find after some simple algebra

A - ~
m sinfi log(xr) + W(i)] +

O(r3+2L/z+) (DG)

Recalling thatii| < 1, we can approximat® (i) = i &, where

¢ = W'(0). Replacing this approximation into (D6) and
imposing the boundary conditia®’(a) = 25 leads to (C1) and
(C2). Numerical values obtained for the constafitsre reported

in Table 1, for different charge asymmetriesz,. The previous
analysis shows that analytical predictions focould be made

if the connection problem is solved and the equivalent of
expressions D2 are found for the general case;.

N2 — —~Kl’
u
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