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ABSTRACT: The thermodynamics of nucleic acid processes is heavily affected by the electric double layer of
microions around the polyions. We focus here on the Coulombic contribution to the salt-polyelectrolyte preferential
interaction (Donnan) coefficient, and we report extremely accurate analytical expressions valid in the range of
low salt concentration (when polyion radius is smaller than the Debye length). The analysis is performed at the
Poisson-Boltzmann level, in cylindrical geometry, with emphasis on highly charged polyions (beyond “counterion
condensation’’). The results hold for any electrolyte of the formz-:z+. We also obtain a remarkably accurate
expression for the electric potential in the vicinity of the polyion.

Coulombic interactions between salt and polyanions play a
key role in the equilibrium and kinetics of nucleic acid
processes.1 A convenient quantity quantifying such interactions
and allowing for the analysis and interpretation of their
thermodynamics consequences is the so-called preferential
interaction coefficient. Several definitions have been proposed
and their interrelation studied (see e.g. refs 2-4). In the present
work, they are defined as the integrated deficit (with respect to
bulk conditions) of co-ions concentration around a rodlike
polyion. Our goal is to provide analytical expressions describing
the effect of salt concentration and polyion structural parameters
on the preferential interaction coefficient, for a broad class of
asymmetric electrolytes. For symmetric electrolytes, it will be
shown that our formulas improve upon existing analytical
results. For other asymmetries, they seem to have no counterpart
in the literature. Our analysis holds for highly (i.e., beyond
counterion condensation5,6) and uniformly charged cylindrical
polyions and is explicitly limited to the low salt regime (i.e.,
when the polyion radiusa is smaller than the Debye length 1/κ).
These conditions are most relevant for RNA or DNA in their
single-, double-, or triple-strand forms.

As in several previous approaches,7-10 we adopt the mean-
field framework of Poisson-Boltzmann equation, in a homo-
geneous dielectric background of permittivityε. The same
starting point has proven relevant for related structural physical
chemistry studies of nucleic acids.11 In a z-:z+ electrolyte, the
dimensionless electrostatic potentialφ ) eæ/kT (with e > 0
the elementary charge andkT thermal energy) then obeys the
equation12

wherer is the radial distance to the rod axis. The valenciesz+
andz- of salt ions are both taken positive. Denoting derivative

with a prime, the boundary conditions readrφ′(r) ) 2ê > 0 at
the polyion radius (r ) a) and φ f 0 for r f ∞. The latter
condition expresses the infinite dilution of polyion limit and
ensures that the whole system is electrically neutral, since it
(indirectly) implies thatrφ′ f 0 for r f ∞. We consider a
negatively charged polyanion for whichφ < 0, and the line
charge density readsλ ) -eê/lB < 0, where lB ) e2/(εkT)
denotes the Bjerrum length (0.71 nm in water at room
temperature). Finally, the Debye length is defined from the bulk
ionic densitiesn+

∞ andn-
∞ throughκ2 ) 4πlB(z+

2n+
∞ + z-

2n-
∞).

The Coulombic contribution to the anionic preferential
interaction coefficient is defined as7-10,13

while its cationic counterpart follows from electroneutrality. This
quantityswhich provides a measure of the Donnan effect14s
can be expressed in closed form as a function of the electrostatic
potential (see Appendix A). As can be seen in (A3) and (A4),
Γ depends exponentially on the surface potentialφ0, so that
deriving a precise analytical expression is a challenging task.
Furthermore, we are interested here in the limitκa < 1
(including the regimeκa , 1), which is analytically more
difficult than the opposite high salt situation where to leading
order the charged rod behaves as an infinite plane, and curvature
corrections can be perturbatively included.15-17

We will proceed in two steps. Focusing first on the surface
potentialφ0 ) φ(a), we make use of recent results18 that have
been obtained from a mapping of eq 1 onto a Painleve´ type III
problem.19-21 The exact expressions thereby derived only hold
for 1:1, 1:2, and 2:1 electrolytes but may be written in a way
that is electrolyte independent. This remarkable feature is
specific to the short distance behavior ofφ and has been
overlooked so far, since not only short distance but also large
distance properties have been studied.18 We are then led to
conjecture that the corresponding expression holds forany
binary electrolytez-:z+, and we explicitly check the relevance
of our assumption on several specific examples.
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Technical details are deferred to the appendices. It is in
particular concluded in Appendix B that the surface potential
may be written

where

Expression 4 is valid forκa < 1 andz+ê > 1 [in fact, z+ê > 1
+ O(1/|log κa|)]. These conditions are easily fulfilled for nucleic
acids. The “constant’’C appearing in (3) depends smoothly on
the ratioz+/z- but is otherwise salt and charge independent.
We report in Table 1 its values for several electrolyte asym-
metries. The decrease (in absolute value) ofC when z+/z-
increases is a signature of more efficient (nonlinear) screening
with counterions of higher valencies.

From eq 3 and the results of Appendix B, our approximation
for Γ takes a simple form

This expression is tested in Figures 1 and 2 against the ”true’’
numerical results that serve as a benchmark. In Figure 1 which
corresponds to a monovalent salt (or more generally az:z
electrolyte), we also show the prediction of ref 9, which is, to
our knowledge, the most accurate existing formula for a 1:1
salt. For the technical reasons discussed in Appendix B, and

that are evidenced in Figure 6, our expression improves that of
Shkel, Tsodikov, and Record,9 particularly at lower salt content.
For 1:2 and 2:1 salts, we expect eq 5 to be also accurate since
it is based on exact expansions. The situation of other salt
asymmetries is more conjectural (see Appendix B), but eq 5 is
nevertheless in remarkable agreement with the full solution of
eq 1 (see Figure 2). To be specific, in both Figures 1 and 2, the
relative accuracy of our approximation is better than 0.2% for
κa ) 10-2 (for both ss and ds RNA parameters). Atκa ) 0.1,
the accuracy is on the order of 1%.

As illustrated in Figure 3, approximation 4 assumes thatz+ê
> 1. The corresponding expression forΓ therefore breaks down
whenê is too low. More general expressions, still forκa < 1,
may be found in Appendix C. The inset of Figure 3 offers an
illustration and shows that the limitations of approximation 4
may be circumvented at little cost, providing a quasi-exact value
for Γ. Moreover, it is shown in this appendix that forz+ê ) 1
µ̃ reads

Table 1. Values ofC Appearing in Eq 4 as a Function of Electrolyte
Asymmetriesa

z+/z- 1/10 1/3 1/2 1 2 3 10
C -2.51 -1.94 -1.763 -1.502 -1.301 -1.21 -1.06

a For z+/z- ) 1, 1/2, and 2,C is known analytically from the results of
ref 18. The corresponding values are recalled in Appendix B. For other
values ofz+/z-, C has been determined numerically; see in particular Figure
6 of Appendix B.

Figure 1. Preferential interaction coefficient for a 1:1 salt. The main
graph corresponds to ss-RNA with reduced line chargeê ) 2.2 while
the inset is for ds-RNA (ê ) 5). The circles correspond to the value of
(2) following from the numerical solution of eq 1. The prediction of
eq 5 withµ̃ given by (4) andC = -1.502, shown with the continuous
curve, is compared to that of ref 9, shown with the dashed line. As in
all other figures, the opposite ofΓ is displayed, to consider a positive
quantity.

e-z+φ0 =
2(z+ + z-)

z+ (κa)2
[(z+ê - 1)2 + µ̃2] (3)

µ̃ =
-π

log (κa) + C - (z+ê - 1)-1
(4)

Γ = -
z-

z+
(1 + µ̃2) (5)

Figure 2. Same as Figure 1 for a 1:3 and a 3:1 electrolyte. From Table
1, we haveC = -1.21 in the 1:3 case and converselyC = -1.94 in
the 3:1 case. The symbols correspond to the numerical solution of eq
1, and the continuous curves show the results of eq 5 with againµ̃
given by eq 4.

Figure 3. Preferential interaction coefficient for a 1:1 salt (henceC
= -1.502) andκa ) 10-2. The circles show the numerical solution of
PB theory (1), the continuous curve is for (5) with (4), and the dashed
line is the prediction of ref 9. Although approximation (4) breaks down
at low ê, the inset shows thatµ̃ following from the solution of eq C2
gives through (5) aΓ (continuous curve) that is in excellent agreement
with the “exact one’’, shown with circles as in the main graph.

µ̃ =
-π/2

log (κa) + C
(6)
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On the other hand, eq 3 still holds. The correspondingΓ is
shown in Figure 4.

We provide in Appendix C a general expression of the short
scale (i.e., valid up toκr ∼ 1) radial dependence of the electric
potential (see eq C1). The bare charge should not be too low
[more precisely, one must haveê > êc with êc given by eq
C5], andµ̃, which encodes the dependence onê, follows from
solving eq C2. In general, the corresponding solution should
be found numerically. However, one can show (a) thatµ̃
vanishes forê ) êc, (b) thatµ̃ takes the value (6) whenz+ê )
1, and (c) thatµ̃ is given by (4) whenz+ê exceeds unity by a
small and salt-dependent amount. In practice, for DNA and
RNA, we haveê > 2, and eq 4 provides excellent results
wheneverκa < 0.1. To illustrate this, we compare in Figure 5
the potential following from the analytical expression C1 to its
numerical counterpart. We do not display 1:1, 1:2, and 2:1
results since in these cases eq C1 is obtained from an exact
expansion and fully captures ther dependence of the potential.
For the asymmetry 1:3, Figure 5 shows that the relatively simple
form (C1) is very reliable. A similar agreement has been found
for all couplesz-:z+ sampled, with the trend that the validity
of (C1) extends to larger distances asz+/z- is decreased. In

this respect, the agreement shown in Figure 5 for whichz+/z-
is quite high (3) is one of the “worst’’ observed.

Conclusion

The polyion ion preferential interaction coefficientΓ describes
the exclusion of co-ions in the vicinity of a polyelectrolyte in
an aqueous solution. We have obtained an accurate expression
for Γ in the regime of low salt (κa < 1). The present results are
particularly relevant for highly charged polyions (z+ê > 1, that
is, beyond the classical Manning threshold22) but are somewhat
more general and hold in the rangeêc < ê < 1, whereê stands
for the line charge per Bjerrum length andêc is a salt-dependent
threshold, given by eq C5. Our formulas have been shown to
hold for arbitrary mixed salts of the formz-:z+ (magnesium
chloride, cobalt hexamine, etc.). They have been derived from
exact expansions valid in 1:1,1:2, and 2:1 cases, from which a
more general conjecture has been inferred. The validity of this
conjecture, backed up by analytical arguments, has been
extensively tested for various values ofz+/z-, polyion charge,
and salt content. These tests have provided the numerical value
of the constantC reported in Table 1, which only depends on
the ratioz+/z-. As a byproduct of our analysis, we have obtained
a very accurate expression for the electric potential in the vicinity
of the charged rod (r < κ-1).

It should be emphasized that the validity of our mean-field
description relying on the nonlinear Poisson-Boltzmann equa-
tion depends on the valency of counterions (z+) and to a lesser
extent on the value ofz-.12,23For the 1:1 case in a solvent like
water at room temperature, microionic correlations can be
neglected up to a salt concentration of 0.1 M.8 For z+ g 2 or in
solvents of lower dielectric permittivity, they play a more
important role. Our results however provide mean-field bench-
marks from analytical expressions, from which the effects of
correlations may be assessed in cases where they cannot be
ignored (see e.g. ref 8 for a detailed discussion).
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Appendix A

In order to explicitly relate the preferential coefficientΓ in
(2) to the electric potential, we follow a procedure similar to
that which leads to an analytical solution in the cell model,
without added salt.24 Implicit use will be made of the boundary
conditions associated with (1). First, integrating eq 1, one gets

where the notation [F(r′)]a
r ) F(r) - F(a) has been introduced.

Then, multiplying eq 1 byr2φ′ and integrating, we obtain

Combining both relations with adequate weights, in order to
suppress the integral over counterion (+) density, we have

Figure 4. Same as Figure 1 forê ) 1 and z+/z- ) 1. The same
quantities are shown: our prediction forΓ [eqs 5 and 6 withC =
-1.502] is compared to that of ref 9. The inset shows-z+Γ/z- for a
1:2 salt such as MgCl2 where C takes the value-1.301. Circles:
numerical data; curve: our prediction.

Figure 5. Opposite of the electric potential vs radial distance in a 1:3
electrolyte withκa ) 10-2. The continuous curve shows the prediction
of eq C1 withµ̃ given by (4); the circles show the numerical solution
of eq 1. The potential forê ) 2.2 is shown in the main graph on a
log-linear scale and on a linear scale in the lower inset. The upper
inset is forê ) 5.

[r′φ′(r′)]a
r ) κ

2

z+ + z-
∫a

r
(e-z+φ - ez-φ)r′ dr′ (A1)

z+ + z-

2κ
2

[(r′φ′)2]a
r ) -[r′2 e-z+φ

z+
+ r′2 ez-φ

z- ]
a

r

+

∫a

r
2r′(e-z+φ

z+
+ ez-φ

z-
) dr′ (A2)
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whereφ0 ) φ(a) is the surface potential. Equation A3 will turn
useful in the formulation of a general conjecture concerning
the surface potentialφ0 (see Appendix B). We also note that
for the systems under investigation here the surface potential is
quite high, and a very good approximation to (A3) is

Appendix B

We start by analyzing a 1:1 electrolyte, for which it has been
shown19,20 that the short distance behavior reads

whereΨ denotes the argument of the Euler Gamma function
Ψ(x) ) arg[Γ(ix)].19,20 In (B1), µ denotes the smallest positive
root of

Expressions B1 and B2 require thatê exceeds a salt-dependent
threshold [denotedêc below and given by eq C5] that is always
smaller than 1.18 They thus always hold forê g 1 and in
particular encompass the interesting limiting caseê ) 1, which
is sufficient for our purposes. For largeê, we have proposed in
ref 18 an approximation which amounts to linearizing the
argument of the tangent in (B1) in the vicinity of-π and
similarly linearizingΨ to first order: Ψ(x) = -π/2 - γx +
O(x3), whereγ is the Euler constant, close to 0.577. It turns
out, however, that finding accurate expressions for exp(-z+φ0),
which is useful for the computation of the preferential interaction
coefficient, requires to include the first nonlinear correction in
the expansion of the tangent. After some algebra, we find

where the constantC ) C1:1 readsC1:1 ) γ - log 8 = -1.502
andψ(2)(1) ) d3 ln Γ(x)/dx3|x)1. From (B3) and (B3) where the
sinus is expanded to third order, we obtain

whereµ̃ is given by

In writing (B5), we have introduced the change of variableµ̃
) 2µ.25 The reason is that similar changes for other electrolyte
asymmetries allows to put the final result in a “universal’’
(electrolyte independent) form (see below). A similar reason
holds for introducingz+, here equal to 1, in the denominator of
(B5).

The functional proximity between our expressions and those
reported in ref 9 in the very same context is striking. We note,
however, that ourµ̃ (denotedâ in ref 9) involves a different
constantC. More importantly, the functional form of (B1) differs
from that given in ref 9. The comparison of the performances
of our results with those of ref 9 is addressed below and is also
discussed in the main text.

Performing a similar analysis as above in the 1:2 case where
z+ ) 2 andz- ) 1, we obtain from the expressions derived in
ref 18:

and similarly in the 2:1 case (z+ ) 1, z- ) 2)

In both cases, provided again thatê is not too low (see below),
µ̃ is given by (B5),26 with however a different numerical value
for C [C1:2 ) γ - (3 log 3)/2- (log 2)/3 = -1.301 andC2:1

) γ - (3 log 3)/2- log 2 = -1.763].
The similarity of expressions B4, B6, and B7 leads to

conjecture that this form holds for anyz-:z+ electrolyte:

We then have to determine the prefactorA as a function ofz+
andz-. To this end, we make use of the exact relation (A3) [or
equivalently (A4)], where in the limit of largeê the left-hand
side is finite while the two terms on the right-hand side diverge.
This yields the leading order behavior:

It then follows thatA ) 2(z+ + z-)/z+ so that our general
expression B8 takes the form

This expression holds regardless of the approximation used for
µ̃. If eq B5 is used, thenz+ê should not be too close to unity
(see Appendix C for more general results including the case
z+ê ) 1).

In order to test the accuracy of (B10) in conjunction with
(B5), we have solved numerically eq 1 for several values ofκa
< 1 and electrolyte asymmetry and checked that for several
different values ofz+ê > 1 the quantity

is a constantC, which only depends onz+/z- but not on salt
andê. [It should be borne in mind that eq B5 is a smallκa and
largeê expansion, which becomes increasingly incorrect asκa
is increased and/orê lowered.] This is quite a stringent test (since
the two terms on the right-hand side of (B11) are large and
close] which requires high numerical accuracy. This is achieved
following the procedure outlined in ref 27. In doing so, we
confirm the validity of (B10) and collect the values ofC given
in Table 1. In the 1:1 case, we predict thatC ) γ - log 8 =
-1.507, in excellent agreement with the numerical data of
Figure 6. On the other hand, the prediction of ref 9 thatQ

∫a

∞
r′(ez-φ - 1) dr′ )

z+z-

κ
2 (ê2 - 2ê

z+
) -

a2

2(z+ + z-)
{z+(ez-φ0 - 1) + z-(e-z+φ0 - 1)} (A3)

∫a

∞
r′(ez-φ - 1) dr′ =

z+z-

κ
2 (ê2 - 2ê

z+
) -

a2z-e-z+φ0

2(z+ + z-)
(A4)

eφ/2 ) κr
4µ

sin[2µ log(κr
8 ) - 2Ψ(µ)] + O(κr)4 (B1)

tan[2µ log(κa/8) - 2Ψ(µ)] ) 2µ
ê - 1

(B2)

µ =
-π/2

log (κa) + C - (ê - 1)-1
+

π3

6(log(κa) + C - (ê - 1)-1)4[ 1

(ê - 1)3
+

ψ(2)(1)
8 ] (B3)

(κa)2e-φ0 = 4[(ê - 1)2 + µ̃2] (B4)

µ̃ =
-π

log(κa) + C - (z+ê - 1)-1
(B5)

(κa)2e-z+φ0 = 3[(ê - 1)2 + µ̃2] (B6)

(κa)2e-z+φ0 = 6[(ê - 1)2 + µ̃2] (B7)

(κa)2e-z+φ0 = A [(z+ê - 1)2 + µ̃2] (B8)

(κa)2 exp(-z+φ0)
êf∞

∼ 2
z+ + z-

z+
(z+ê - 1)2 (B9)

(κa)2e-z+φ0 = 2
z+ + z-

z+
[(z+ê - 1)2 + µ̃2] (B10)

Q ) -π[(κa)2e-z+φ0
z+

2(z+ + z-)
- (z+ê - 1)2]-1/2

-

log(κa) + (z+ê - 1)-1 (B11)
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reaches a constant close to-1.90 (shown by the horizontal
dashed line in Figure 6) is incorrect. Figure 6 shows that the
quality of expression B10 deteriorates whenκa increases, as
expected. It is noteworthy, however, that forκa ) 10-1 its
accuracy is excellent wheneverê > 2. The inset of Figure 6
shows the validity of (B10) for a 3:1 electrolyte. Whenz+ê is
close to 1, eq B5 becomes an irrelevant approximation to the
solution of eq B2 and can therefore not be inserted into the
general formula B10. This explains the large deviations between
Q and the asymptotic valueC observed in Figure 6 for the lower
values ofê reported. We come back to this point in Appendix
C.

The present results hold forz+ê > 1 + O(1/|log κa|). In this
regime, our analysis shows that eq B10 [withµ̃ given by (B5)]
is correct up to order 1/log4(κa) for any (z-,z+). On the other
hand, the results of ref 9, valid in the 1:1 case, appear to be
correct to order 1/log2(κa). In addition, our expression for the
surface potential may be generalized to a broader range ofê
values, and an expression for the short distance dependence of
the electric potential may also be provided. This is the purpose
of Appendix C.

Appendix C

In Appendix B, the “universal’’ results valid for all (z+,z-)
have been unveiled partly by a change of variableµ f µ̃ from
existing expressions.18 In light of these results and of their
accuracy (assessed in particular by the precision reached for
the preferential interaction coefficient), it is tempting to go
further without invoking approximations of (B2) or related
expressions for other asymmetries than 1:1. Inspection of the
results given in ref 18 for the 1:1, 1:2, and 2:1 cases lead, with
again the help of (A4), to the conjecture that

with

We emphasize that (C1), much as (B1), is a short distance
expansion and typically holds forκr < 1 (hence the requirement
thatκa < 1). In Appendix D we give further analytical support
for conjecture (C1). A typical plot showing the accuracy of (C1)
is provided in the main text (Figure 5). Forκr < 0.1, the
agreement with the exact result is better than 0.1% and becomes
progressively worse at higher distances (20% disagreement at
κr ) 1).

From (C1), it follows that the integrated chargeq(r) in a
cylinder of radiusr [that is q(r) ) -rφ′(r)/2] reads

where the so-called Manning radius18,28,29is given by

The Manning radius is a convenient measure of the counterion
condensate thickness. It is the pointr where not onlyz+q(r) )
1 but also whereq(r) vs logr exhibits an inflection point.30 For
high enoughê, the logarithmic dependence of 1/µ̃ with salt [see
(B5)] is such thatRM ∝ κ-1/2.

The two relations C1 and C2 encompass those given in
Appendix B and allow to investigate the regimez+êc < z+ê
and in particular the casez+ê ) 1, the so-called Manning
threshold.5 However, (C1) and (C2) are not valid forê < êc,
with

Note thatêc < 1, since the constantC is negative and that salt
should fulfill κa < 1. Forκa ) 10-2 andz+/z- ) 1, we obtain
êc = 0.836. This is precisely the point where-Γ ) 1 in the
inset of Figure 3. This inset also shows that the value ofΓ
resulting from the use of the solution of (C2) is remarkably
accurate.

At this point, it seems useful to investigate the Manning
threshold casez+ê ) 1 (which corresponds to the onset of
counterion condensation whenκa f 05,18,30). It is readily seen
that the solution of (C2) reads

which should be inserted in (C1) to obtain the potential profile
or in (5) to get the interaction coefficient.

Appendix D

In this appendix we give further support for the conjecture
(C1) which gives the short distance expansion of the electric
potential. Let us suppose initially that the charge is below the
Manning thresholdê < êc. It is straightforward to verify that
Poisson-Boltzmann eq 1 admits solutions which behave asφ(r)
) -2A ln(κr) + ln B + O(1) for κr , 1. Injecting this
expansion into eq 1 allows us to compute higher order terms.
To study the regime beyond the Manning threshold, we compute
all higher order terms of the formr2n(1+z+A) (for a negatively
charged macroion) andr2n(1-z-A) (for a positively charged
macroion), withn a positive integer. These terms turn out to
present themselves as the series expansion of the logarithm;

Figure 6. Plot of the quantityQ defined in (B11) vs line chargeê for
a 1:1 electrolyte atκa ) 10-3 (continuous curve) andκa ) 10-1 (dashed
curve). The value reached at largeê is compared to the prediction of9

Q f eγ + log 2 - γ = -1.90 (horizontal dashed-dotted line) whereas
eqs B10 and B5 implyQ f γ - log 8 = -1.50, shown by the
horizontal dotted line. The inset shows the same quantity for a 3:1
electrolyte atκa ) 10-5. [Such a very low value is required to determine
precisely the value of the asymptotic constantC, which can subsequently
be used at experimentally relevant (higher) salt concentrations.] Here,
we obtainQ f -1.94 (dotted line), which is the value reported forC
in Table 1.

ez+φ/2 =
-κr

µ̃ x z+

2(z+ + z-)
sin[µ̃ log(κr) + µ̃C] (C1)

tan[µ̃ log(κa) + µ̃C] ) µ̃
z+ê - 1

(C2)

z+q(r) ) -1 + µ̃ tan[µ̃ log( r
RM

)] (C3)

κRM ) exp(-C - π
2µ̃) (C4)

z+êc ) 1 + 1
log κa + C

(C5)

µ̃
z+ê)1

) -π/2
log(κa) + C

(C6)
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thus, resumming them we obtain

The dots represent terms of orderr2n(1+z+A)+2m(1-z-A) with n and
m two nonzero positive integers. When the Manning threshold
is approached,z+A + 1 ) 0 for negatively charged macroion,
the termsr2n(1+z+A) (second line of eq D1) become of order one,
but the rest of the terms (third line of eq D1 and dots) remain
higher order: a change in the small distance behavior ofφ

occurs. A similar situation is reached for 1- z-A ) 0, which
is the Manning threshold for a positively charged macroion.

A andB in the previous equations are constants of integration,
which should be determined with the boundary conditionsrφ′(r)
) 2ê at the polyion radius (r ) a) andφ f 0 for r f ∞. Thus,
to proceed further, we have to connect the long and the short
distance behavior ofφ. This connection problem has been only
solved in the cases 1:1, 1:2, and 2:1 in refs 19 and 31. In
particular, onceA has been chosen (notice that fora ) 0, A )
-ê), B should be one and only one function ofA in order to
satisfyφ f 0 for r f ∞. The results from refs 19 and 31 show
that

whereγ(x) ) Γ(x)/Γ(1 - x). B turns out to have some interesting
properties in the cases 1:1, 1:2, and 2:1, where its exact
expression D2 is known. Namely, at the Manning threshold 1
+ z+A ) 0

Furthermore, if we put 1+ z+A ) iµ̃ and define

then forµ̃ ∈ R, Ψ(µ̃) ∈ R is areal function of µ̃, with Ψ(0) )
0.

Let us now study the regime beyond the Manning threshold
for a negatively charged macroion. From eq D1 we can write

neglecting terms of higher order whenz+A is close to-1.

Let us conjecture that the properties ofB as a function ofA
presented above hold in the general casez-:z+. Then using the
parameterµ̃ defined above we find after some simple algebra

Recalling that|µ̃| , 1, we can approximateΨ(µ̃) = µ̃C, where
C ) Ψ′(0). Replacing this approximation into (D6) and
imposing the boundary conditionaφ′(a) ) 2ê leads to (C1) and
(C2). Numerical values obtained for the constantsC are reported
in Table 1, for different charge asymmetriesz-:z+. The previous
analysis shows that analytical predictions forC could be made
if the connection problem is solved and the equivalent of
expressions D2 are found for the general casez-:z+.
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φ(r) ) -2A ln(κr) + ln B +

2
z+

ln[1 -
z+B-z+(κr)2(1+z+A)

8(z+ + z-)(1 + z+A)2] -

2
z-

ln[1 -
z-Bz-(κr)2(1-z-A)

8(z+ + z-)(1 - z-A)2] + ‚‚‚ (D1)

B ) 26Aγ((1 + A)/2)2 (1:1)

B ) 33A22Aγ(2(1 + A)/3)γ((1 + A)/3) (1:2)

B ) 33A22Aγ((1 + 2A)/3)γ((2 + A)/3) (2:1) (D2)

lim
Af-1/z+

z+B-z+

8(z+ + z-)(1 + z+A)2
) 1 (D3)

e2iΨ(µ̃) )
z+B-z+

8(z+ + z-)(1 + z+A)2
(D4)

ez+φ(r)/2 ∼ (κr)-z+ABz+/2(1 -
z+B-z+ (κr)2(1+z+A)

8(z+ + z-)(1 + z+A)2) (D5)

ez+φ(r)/2 ) -κr
µ̃ x z+

2(z+ + z-)
sin[µ̃ log(κr) + Ψ(µ̃)] +

O(r3+2z-/z+) (D6)
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