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We study the behavior of the energy fluctuations in the stationary state of a uniformly heated granular gas.
The equation for the one-time two-particle correlation function is derived and the hydrodynamic eigenvalues are
identified. Explicit predictions are subsequently determined for energy fluctuations. The results explain Monte
Carlo numerical data reported in previous studies [Eur. Phys. J. B 51, 377 (2006)].
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1. Introduction

Recent years have witnessed ongoing interest in the

microscopic and macroscopic properties of granular

media. In such systems, a simple ingredient—energy

dissipation resulting from collisions—has far-reaching

consequences [1], with rich phenomenology: non-

Gaussian velocity distributions [2,3], non-equipartition

of energy [4–7], and spontaneous symmetry breaking

[8–10], to name but a few. Theoretically, one of the

tools used to understand this body of phenomena is

kinetic theory, which is extended naturally to these

systems by introducing an ‘inelastic collision rule’ in

which the energy is not conserved. Although most of

the work carried out thus far has focused on the one-

particle properties, and on the study of the correspond-

ing Boltzmann equation, it has been shown that

correlations are also important and, as a matter of

fact, necessary to understand the behavior of the

system when vortices or cluster are developed [11,12],

or even in simpler situations where spatial homogene-

ity is enforced [13,14].

As a consequence of dissipation in collisions, the

total energy of an isolated granular system decays

monotonically in time. Under certain conditions, the

system reaches a homogeneous cooling state in which

the time dependence of the one-particle distribution

function is entirely embodied in the kinetic (so-called

granular) temperature, which evolves with time as t�2

[2,15]. It is experimentally difficult to probe such

a regime (see, however, [16,17]). Nevertheless, it is

possible to maintain a granular system in the fast-flow

regime by injecting energy in such a way that

a stationary state is reached. In these states, the

energy injected by the thermostat is compensated by

the energy dissipated in collisions. Several mechanisms

can be introduced in order to obtain a stationary state.

If, for example, energy is injected by a moving

boundary such as a vibrating piston, the system

reaches an inhomogeneous stationary state [18]. In

this work, we will focus on a granular gas that is heated

uniformly, coupling the velocity of each particle to

a white noise, the so-called ‘stochastic thermostat’

[3,19–27]. For this kind of forcing, which is relevant

for some two-dimensional experimental configurations

with a rough vibrating piston [28], the system reaches

a homogeneous stationary state after a transient

regime. The advantage of such a driving mechanism

is that it lends itself to theoretical progress. In this

context, the single-particle distribution function has

been characterized [3] and long-range correlations

predicted from a hydrodynamic treatment [21]. More

recently, the fluctuations of the total energy have been

analysed [29] (see also [30] for a related numerical

study in an inhomogeneous system). In Ref. [29], the

second moment of the total energy fluctuations was

evaluated by neglecting the correlations, which, by

and large, could not explain the simulation results.

The objective of the present work is to clarify and

quantify the influence of the inelasticity induced

correlations on the total energy fluctuations.

The methods used bear some similarities to those

reported in [31], where it was shown that, for
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the unforced system, the contribution coming from the

correlations is of the same order as that coming from

the one-particle distribution function itself.

The paper is organized as follows. In Section 2, the

equation for the two-particle distribution function is

derived, taking due account of the thermostat, while in

Section 3 the results are particularized to the homo-

geneous stationary state, which will play the role of our

reference state in subsequent analysis. There we also

summarize the main results already known and

pertaining to the one-particle distribution function.

In Section 4 we analyse the hydrodynamic equations

for a homogeneous linear perturbation of the reference

state, and obtain the corresponding modes and

eigenvalues, which are finally used in Section 5 to

meet our objective and obtain an explicit expression for

the variance of the total energy.

2. Heated granular gas: two-body kinetic description

We consider a gas of N hard disks (dimension d¼ 2)

or spheres (d¼ 3) of mass m and diameter � that

collide inelastically with a coefficient of normal

restitution � [1]. The system is heated uniformly by

adding a random component to the velocity of each

particle at equal times [21,22]. The driving is

implemented in such a way that the time between

random kicks is small compared with the mean free

time. Then, between collisions, the velocities of the

particles undergo a large number of kicks due to

the thermostat. In addition, we will assume that

the ‘jump moments’ of the velocities of the particles

verify

Bij, �� � lim
�t!0

h�vi, ��vj, �i
�t

¼ �20�ij��� þ
�20
N
ð�ij � 1Þ��� , i, j ¼ 1, . . . ,N,

�, � ¼ 1, . . . , d, ð1Þ

where we have introduced �vi,�� vi, �(tþ�t)� vi, �(t),

vi,�(t) being the � component of the velocity of

particle i at time t. We have also introduced the

strength of the noise, �20, and h� � �i, which denotes the

average over different realizations of the noise.

The non-diagonal terms (corresponding to i 6¼ j and

�¼ �) are necessary in order to conserve the total

momentum.

In the dilute limit, assuming molecular chaos, i.e.

that no correlations exist between colliding particles,

and that the sizes of the jumps due to the thermostat

are small compared with the velocity scale on which the

distribution varies, the equation for the single particle

distribution function in our system is the Boltzmann–

Fokker–Planck equation [3,22]

@

@t
fðx1,tÞþLð0Þðx1Þfðx1, tÞ ¼ J½f j f �þ �

2
0

2

@

@v1

� �2

fðx1, tÞ,

ð2Þ
where xi is short-hand for position-momenta coordi-

nates {ri, vi} and

Lð0Þðx1Þ ¼ v1 �
@

@r1
: ð3Þ

The inelastic collision operator J[ f j f ] reads

J½ f j f � ¼ �d�1

Z
dv2 �T0ðv1, v2Þf1ðr, v1, tÞf1ðr, v2, tÞ, ð4Þ

where

�T0ðv1, v2Þ ¼
Z

dr̂�ðr̂ � gÞðr̂ � gÞ½��2b�1
�̂ � 1�, ð5Þ

with g¼ v1� v2 the relative velocity, � the Heaviside

step function, r̂ a unit vector joining the centers of the

particles at contact and b�1
r̂ an operator replacing

the velocities v1 and v2 appearing on the right by

the precollisional values

v�1 � b�1
r̂ v1 ¼ v1 �

1þ �
2�

ðg � r̂Þr̂, ð6Þ

v�2 � b�1
r̂ v2 ¼ v2 þ

1þ �
2�

ðg � r̂Þr̂: ð7Þ

The term

�20
2

@

@v1

� �2

f ðx1, tÞ

is a diffusive Fokker–Plank term, and is a signature of

the external noise.

As we shall be studying fluctuations, it is

convenient to introduce the two-particle distribution

function, f2(x1, x2, t). The quantity f2(x1, x2, t)dx1 dx2
is defined as the number of pairs of particles in

which one lies inside the differential volume dx1
centred in x1 and, likewise with dx2, x2 for the

second particle. This definition is easily generalized

to higher n-particle distribution functions,

fn(x1, . . . , xn). The evolution equation for f2 is [31,32]

@

@t
þ Lð0Þðx1Þ þ Lð0Þðx2Þ

� �
f2ðx1,x2, tÞ

¼ �ðr12Þ�d�1 �T0ðv1, v2Þf2ðx1, x2, tÞ

þ �d�1

Z
dx3½�ðr13Þ �T0ðv1, v3Þ þ �ðr23Þ �T0ðv2, v3Þ�

� f3ðx1,x2, x3, tÞ þ FTH, ð8Þ
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where we have introduced FTH which accounts for

the external driving. The evolution Equation (8)

essentially contains three parts: the free streaming on

the left-hand side, the two terms on the right-hand

side corresponding to collisions, and the last term,

FTH, due to the thermostat. The collisional contribu-

tion is split into one part corresponding to collisions

of particles with velocities v1 and v2, and the other

that involves collisions of particles with velocities v1
or v2 with a third particle with arbitrary velocity, v3.

The collisional contribution is identical to that

appearing in the absence of forcing [31]. We

concentrate now on the new term, FTH. Assuming

that the sizes of the jumps due to the thermostat are

small compared with the scale in which the distribu-

tion f2 varies, we can expand FTH in the spirit of the

Fokker–Planck description [33]

FTH ’ 1

2

Xd

�, �¼1

X2

i, j¼1

Bij, ��

@

@vi, �

@

@vj, �
f2ðx1, x2, tÞ

¼ 1

2
�20

@2

@v21
þ @2

@v22
� 2

N

@

@v1
� @
@v2

� �
f2ðx1, x2, tÞ, ð9Þ

where we have taken into account Equation (1), and

we have explicitly assumed that the jump moments

Bij,�� do not depend on the magnitude of the velocities

of the particles.

Let us introduce the two-particle and three-particle

correlation functions through the usual cluster

expansion

f2ðx1, x2, tÞ ¼ f1ðx1, tÞf1ðx2, tÞ þ g2ðx1, x2, tÞ, ð10Þ

and

f3ðx1,x2,x3,tÞ ¼ f1ðx1,tÞf1ðx2,tÞf1ðx3,tÞ
þg2ðx1,x2, tÞf1ðx3, tÞþg2ðx1,x3,tÞf1ðx2,tÞ
þg2ðx2,x3, tÞf1ðx1, tÞþg3ðx1,x2,x3, tÞ:

ð11Þ

The equation for the correlation function g2(x1, x2, t)

can be obtained following the same lines as in Refs.

[31,34]. Neglecting the three-body correlations, g3, in

Equation (8), we obtain

@

@t
þ Lð0Þðx1Þ þ Lð0Þðx2Þ

� �
g2ðx1, x2, tÞ

¼ �ðr12Þ�d�1 �T0ðv1, v2Þf1ðx1, tÞf1ðx2, tÞ þ ½Kðx1, tÞ

þ Kðx2, tÞ�g2ðx1, x2, tÞ �
�20
N

@

@v1
� @
@v2

f1ðx1, tÞf1ðx2, tÞ,

ð12Þ

where we have introduced the linear operator K(xi, t)

defined as

Kðxi, tÞ ¼ �d�1

Z
dx3 �ðri3Þ �T0ðvi, v3Þð1þ Pi3Þf1ðx3, tÞ

þ �
2
0

2

@

@vi

� �2

, ð13Þ

and where the permutation operator Pab interchanges

the labels of particles a and b in the quantities on which

it acts. As will become clear below, the 1/N term in

Equation (12) is crucial for the calculation of the

energy fluctuations.

3. The stationary state

It has been shown numerically that, after a transient

time, the system reaches a homogeneous stationary

state [21] in which the energy input from the

thermostat is compensated by the energy lost in

collisions. In this section we will particularize the

equations of the previous section to this state,

summarizing the results that are already known

concerning the one-particle distribution function and

that are required for our theoretical analysis.

The Boltzmann–Fokker–Planck Equation (2) for

the distribution function, fH(v1), in the stationary

homogeneous state is

�20
2

@

@v1

� �2

fHðv1Þ þ J½ fH j fH� ¼ 0: ð14Þ

It is convenient to introduce the scaled distribution

function �H

fHðvÞ ¼
nH

vdH
�HðcÞ, ð15Þ

where nH is the homogeneous density, vH¼ (2TH/m)1/2

is the thermal velocity defined from the granular

temperature

TH ¼ 2

dnH

Z
dv

1

2
mv2fHðvÞ, ð16Þ

and c¼ v/vH is the rescaled velocity. The distribution

function has been studied in Ref. [3], where an

approximate expression for �H(c) was derived to

second order in Sonine polynomials [35]

�HðcÞ ¼
e�c2

	d=2
1þ a2ð�ÞS2

d=2�1ðc2Þ
� �

, ð17Þ

with

S2
d=2�1ðc2Þ ¼

1

2
c4 � 1

2
ðdþ 2Þc2 þ 1

8
dðdþ 2Þ, ð18Þ
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and a2(�) a coefficient related to the kurtosis of the

function �H(c)

d

dþ 2

hc4iH
hc2i2H

¼ 1þ a2ð�Þ: ð19Þ

An approximate expression for a2 reads (see [23,36] for

a discussion of various possible approximations)

a2 ¼
16ð1� �Þð1� 2�2Þ

73þ 56d� 24�d� 105�þ 30ð1� �Þ�2 :
ð20Þ

The expression for the temperature in the first Sonine

approximation is

TH ¼ m
d�20

ffiffiffi
	

p

ð1� �2Þ�dnH�d�1

� �2=3
ð1þOða2ÞÞ, ð21Þ

where �d¼ 2	d/2/�(d/2) is the d-dimensional solid

angle.

We now turn to the equation for the correlation

function, g2,H(x1,x2). It is convenient to introduce the

rescaled correlation function ~gH via

g2,Hðx1, x2Þ ¼
nH

‘dv2dH
~gHðl12, c1, c2Þ, ð22Þ

where ‘¼ (nH�
d�1)�1 is proportional to the mean free

path and l¼ r/‘. In these units, the equation for the

reduced function ~gH reads

�ðc1Þ þ�ðc2Þ � c12 �
@

@l12

� �
~gHðl12, c1, c2Þ

¼ ��ðl12Þ �T0ðc1, c2Þ�Hðc1Þ�Hðc2Þ

þe� 20
nH‘

d

N

@

@c1
� @
@c2

�Hðc1Þ�Hðc2Þ, ð23Þ

where we have introduced the linearized Boltzmann–

Fokker–Planck operator �(c)

�ðciÞhðciÞ ¼
Z

dc3 �T0ðci, c3Þð1þ Pi3Þ�Hðc3ÞhðciÞ

þ
e�20
2

@

@ci

� �2

hðciÞ, ð24Þ

with rescaled noise amplitude

e�20 ¼
�20‘

v3H
: ð25Þ

As can be seen from Equation (23), the correlation

function, ~gH, is determined by the properties of the

linearized Boltzmann–Fokker–Planck operator, �,

and by the one-particle distribution function �H.

Consequently, it is important to study the spectral

properties of �, in particular the upper (hydro-

dynamic) part of the spectrum, in order to understand

the fluctuations of global quantities. In the case of

a granular gas in the homogeneous cooling state [37],

and for a system under ballistic annihilation dynamics

[38], it has been shown that it is possible to find the

hydrodynamic eigenvalues and eigenfunctions of the

linearized Boltzmann operator. Once these quantities

are known, it becomes possible to evaluate the

fluctuations of the relevant global quantities in the

so-called ‘hydrodynamic approximation’ [31,34].

Below, we will see that we can evaluate the fluctuations

of the total energy in an equivalent approximation, but

without knowledge of the eigenfunction associated

with the energy. The only information needed is the

form of the linearized hydrodynamic equations and, in

particular, the eigenvalues.

4. Hydrodynamic equations

4.1. Evolution of homogeneous perturbations

The objective in this section is to consider the

linearized hydrodynamic equations around a homo-

geneous perturbation in order to extract information

about the behavior of a small perturbation of the total

energy.

The complete nonlinear hydrodynamic equations

for a granular system heated by a stochastic thermostat

are [21,25]

@

@t
n ¼ �r � ðnuÞ, ð26Þ

@

@t
u ¼ �u � ru� 1

mn
rjPij, ð27Þ

@

@t
T ¼ �u � rT� 2

dn
ðr � qþ PijrjuiÞ � 
Tþm�20,

ð28Þ

where Pij is the pressure tensor, q is the heat flux and


 is the cooling rate, which is also a functional of the

distribution function


 ¼ ð1� �2Þm	ðd�1Þ=2�d�1

4d�½ðdþ 3Þ=2�nkBT

�
Z

dv1

Z
dv2 jv1 � v2j3f ðr, v1, tÞf ðr, v2, tÞ: ð29Þ

Considering a homogeneous state, the previous equa-

tions reduce to

@

@t
n ¼ 0,

@

@t
u ¼ 0,

@

@t
T ¼ �
Tþm�20: ð30Þ

In the long time limit, the system is expected to

approach a steady state with a constant temperature

given by the equation


Hð fHÞTH ¼ m�20: ð31Þ
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Substituting the explicit form of the one-particle

distribution function (15) in the equation above, we

obtain the temperature given in Equation (21).

Now let us consider a homogeneous state close to

this homogeneous stationary state. We can write the

hydrodynamic fields as n(t)¼ nHþ �n, u(t)¼ �u and

T(t)¼THþ �T. We also define the dimensionless

hydrodynamic fields

��ð�Þ ¼ �n

nH
, �wð�Þ ¼ �u

vH
, �
ð�Þ ¼ �T

TH

, ð32Þ

where we have introduced the dimensionless time

scale �, proportional to the number of collisions per

particle, defined as

� ¼
Z t

0

dt0
vH

‘
¼ vH

‘
t: ð33Þ

Assuming that the deviations are small, and taking into

account Equations (30) and (31), we can write the

linearized evolution equations for the dimensionless

hydrodynamic fields in this new time scale:

@

@�
�� ¼ 0,

@

@�
�w ¼ 0,

@

@�
�
 ¼ �
0���

3

2

0�
,

ð34Þ

where 
0¼ ‘
H/vH is a dimensionless coefficient that is

a functional of the one-particle distribution function in

the stationary state. Its expression in the first Sonine

approximation is [3]


0 ¼
ð16þ 3a2Þ	ðd�1Þ=2ð1� �2Þ

8
ffiffiffi
2

p
d�ðd=2Þ

: ð35Þ

To obtain the equation for �
 we have assumed that the

perturbed distribution function scales as

f ðv, tÞ ¼ n

�vðtÞd
�H

v

�vðtÞ

� �
, ð36Þ

where �vðtÞ ¼ ½2TðtÞ=m�1=2, and �H is the same scaled

distribution function as for the reference stationary

state. This assumption has already been used and

tested numerically in [21]. Then, the cooling rate 


for the state under scrutiny is proportional to T1/2(t)

and we obtain the equation for the linearized energy

written above. Equations (34) indicate that

a perturbation in the total number of particles or

total momentum does not decay, as a consequence

of the fact that these variables are conserved, but

a perturbation in the total energy will decay

(exponentially in �) to the stationary value,

as expected. Moreover, as the equation for the

temperature can be rewritten in the following form:

@

@�

2

3
��þ �


� �
¼ � 3

2

0

2

3
��þ �


� �
, ð37Þ

we can identify the hydrodynamic eigenvalues �¼ 0

and � ¼ � 3
2

0, � being (dþ 1)-fold degenerate. For the

sake of clarity, it proves convenient to relabel these

eigenvalues as

�1 ¼ 0, �2 ¼ 0, �3 ¼ � 3

2

0, ð38Þ

where �2 is d-fold degenerate. The associated hydro-

dynamic modes, fy�gdþ2
�¼1, are

y1 ¼ ��, y2 ¼ �w, y3 ¼
2

3
��þ �
: ð39Þ

The þ sign in the last equation stems from the fact

that an increased density leads to enhanced dissipation,

and hence a lower temperature.

4.2. Enforcing consistency with the linearized

Boltzmann–Fokker–Planck equation description

We now turn our attention to the problem of finding

the linearized hydrodynamic equations for

a homogeneous perturbation, directly from the

Boltzmann–Fokker–Planck equation. Enforcing con-

sistency with the macroscopic considerations of

Section 4.1, we will infer useful properties on the

hydrodynamic part of the spectrum of �(c). We first

introduce the scaled deviation of the distribution

function

��ðc, �Þ ¼ vdH
nH

½f ðv, tÞ � fHðvÞ�: ð40Þ

The evolution of the scaled distribution is governed by

@

@�
��ðc, �Þ ¼ �ðcÞ��ðc, �Þ, ð41Þ

where the operator �(c) is the linearized Boltzmann–

Fokker–Planck operator defined in (24). Let us also

introduce the scalar product

hf ðcÞ j gðcÞi �
Z

dc��1
H ðcÞf �ðcÞgðcÞ, ð42Þ

where f � is the complex conjugate of f. Interestingly,

the hydrodynamic modes introduced in (39) can then

be written as

y� ¼ h ��� j ��i, � ¼ 1, 2, 3, ð43Þ
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where

��1ðcÞ ¼�HðcÞ, ��2ðcÞ ¼ c�HðcÞ, ��3ðcÞ ¼
c2

d
�1

6

� �
�HðcÞ:

ð44Þ

Taking the scalar product of the linearized Boltzmann–

Fokker–Planck Equation (41) with the functions ���, we

obtain the linear Equations (34) (in the hydrodynamic

time scale, that is if we wait long enough so that fast

modes have vanished) only if the spectrum of � admits

the three eigenvalues written in (38), and the associated

‘hydrodynamic’ eigenfunctions, f��gdþ2
�¼1, obey the

orthogonality condition

h ���1 j ��2i ¼ ��1�2 , �1,�2 ¼ 1, 2, 3: ð45Þ

In Appendix A, it is shown that the null eigenvalue is

(dþ 1)-fold degenerate, and the corresponding eigen-

functions, �1 and m2, are determined. Moreover, as

a consequence of particle and total momentum

conservation in a collision, ��1 and �n2 are the

corresponding left eigenfunctions. We were not able

to demonstrate that �3 is an eigenvalue of �, but we

have shown explicitly that

h ��3 j ��i ¼ 0, for � ¼ 1, 2: ð46Þ

In the following, we will assume that � actually

admits this third eigenvalue, with an unknown

eigenfunction �3. With the help of this assumption,

we will see in the next section that it is possible to

define a projector in the hydrodynamic subspace,

which opens the way for evaluating the variance of

the total energy fluctuations.

5. Energy fluctuations

In this section, we study the fluctuations of the global

energy for a system in the stationary state. As we are

interested in global quantities, it is convenient to define

a global correlation function �H

�Hðc1, c2Þ �
Z

dr12 ~gHðr12, c1, c2Þ: ð47Þ

The energy fluctuations can be written as a functional

of this correlation function and the one-particle

distribution function, �H, as [31,38]

hð�EÞ2iH ¼ m2

4
Nv4H

"Z
dc c4�HðcÞ

þ
Z

dc1

Z
dc2 c

2
1c

2
2�Hðc1, c2Þ

#
: ð48Þ

In order to evaluate the integral over the correlation

function �H, we start from (23), integrating over the

position variable. Assuming periodic boundary condi-

tions, the spacial gradient terms disappear and we have

the following equation for �H:

½�ðc1Þ þ�ðc2Þ��Hðc1, c2Þ ¼ �ðc1, c2Þ, ð49Þ

where

�ðc1, c2Þ ¼ � �T0ðc1, c2Þ�Hðc1Þ�Hðc2Þ

þe� 20
@

@c1
� @
@c2

�Hðc1Þ�Hðc2Þ: ð50Þ

The solubility condition for Equation (49) is that � does

not have components in the subspace associated with

the null eigenvalue. In our case, this subspace is

generated by f ��1, �n2g. Due to the conservation of the

number of particles and total momentum in a collision,

and to the symmetry of the second term of �, we have

h ��1ðc1Þ�n2ðc2Þ j�ðc1,c2Þi ¼ h�n2ðc1Þ ��1ðc2Þ j�ðc1,c2Þi¼ 0,

ð51Þ
h ��1ðc1Þ ��1ðc2Þ j�ðc1,c2Þi ¼ h ��2, iðc1Þ ��2, jðc2Þ j�ðc1,c2Þi ¼ 0,

ð52Þ

for i 6¼ j. The case i¼ j is analysed in Appendix B,

where it is shown that h ��2, iðc1Þ ��2, iðc2Þ j �ðc1, c2Þi ¼ 0.

In order to prove this property, the presence of the

second term on the right-hand side of Equation (50) is

essential. Hence, the solubility condition holds and the

problem of finding �H with Equation (49) is well

defined.

Let us also define a projector P12 in the hydro-

dynamic subspace as

P12hðc1, c2Þ ¼
X3

�1¼1

X3

�2¼1

h ���1 ðc1Þ ���2 ðc2Þ j hðc1, c2Þi

� ��1 ðc1Þ��2ðc2Þ, ð53Þ

where f��g3�¼1 are the right hydrodynamic eigenfunc-

tions of the linearized Boltzmann–Fokker–Planck

operator, f ���g3�¼1 the orthogonal set introduced in the

previous section, Equation (44), and we have general-

ized the scalar product by

hf ðc1, c2Þ j gðc1, c2Þi ¼
Z

dc1

Z
dc2 �

�1
H ðc1Þ��1

H ðc2Þ

� f �ðc1, c2Þgðc1, c2Þ: ð54Þ

Note that P12 is a projector even if the function ��3 is

not the true left eigenfunction of �(c) (remember that
��1 and �n2 are the actual left eigenfunctions associated

with the null eigenvalue). The fact that the set of

functions f ���g3�¼1 and f��g3�¼1 fulfil the orthogonality

condition (45) is enough to guarantee that P2
12 ¼ P12.

Using this projector, we define the ‘hydrodynamic
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part’ of �H to be the function

�
ðhÞ
H ðc1, c2Þ � P12�Hðc1, c2Þ ¼

X3

�1¼1

X3

�2¼1

a�1�2��1ðc1Þ��2 ðc2Þ:

ð55Þ
The coefficients a�1�2 are the quantities we need to

evaluate. As they are essentially the first moments of

the correlation function �H, they are directly related to

the integral we have to calculate in (48). It is tempting

to treat �3 as if it was an actual left eigenfunction of the

linearized Boltzmann–Fokker–Planck operator, and

we will in the following use the approximation

P12�ðciÞ ¼ P12�ðciÞP12, ð56Þ

which allows us to find a closed equation for �
ðhÞ
H . This

approximation has already been invoked in other

systems such as the freely evolving granular gas [31], or

the probabilistic ballistic annihilation model [34]. With

the information available on the linearized Boltzmann–

Fokker–Planck operator, it would seem to be the best

that can be done technically. Let us also remark that

the approximation is exact in the elastic limit. In the

inelastic case, some exact results for the fluctuations of

the total energy have been obtained for one dimen-

sional Maxwell molecules [40]. Then, applying the

projector P12 to Equation (49) and taking into account

the approximation (56), we obtain the following

expressions for the coefficients a�1�2:

a�1�2 ¼ �h ���1 ðc1Þ ���2 ðc2Þ j �T0ðc1, c2Þ�Hðc1Þ�Hðc2Þi
��1 þ ��2

,

ð57Þ
where it has been assumed that ��1þ ��2 6¼ 0.

The coefficients associated with the vanishing eigen-

value cannot be calculated using Equation (49), but

are fixed by the boundary conditions. The coefficients

a�1�2 are evaluated in Appendix C. The expression

for �
ðhÞ
H is finally given by

�
ðhÞ
H ¼ a11�1ðc1Þ�1ðc2Þ þ a13½�1ðc1Þ�3ðc2Þ þ �3ðc1Þ�1ðc2Þ�

þ a33�3ðc1Þ�3ðc2Þ, ð58Þ
where a11¼�1, a13 ¼ � 1

3
and a33 can be obtained as

a functional of the one-particle distribution function

a33 ¼
h ��3ðc1Þ ��3ðc2Þ j �T0ðc1, c2Þ�Hðc1Þ�Hðc2Þi

3
0
: ð59Þ

An approximate expression is derived in Appendix C,

and reads

a33 ¼

(
�15þ 7dþ 14d2 � 3ð�9þ dð9þ 2dÞÞ�

þ30ð1þ dÞ�2 � 6ð9þ dÞ�3Þ

)

9dð�19þ 2dð�7þ 3�Þ þ 3�ð9þ 2ð�1þ �Þ�ÞÞ :

ð60Þ

Taking into account (48) and (58), the variance of the

energy fluctuations can finally be written as

�2E ¼ N
hð�EÞ2iH
hEi2H

¼ ða2 þ 1Þ dðdþ 2Þ
4

þ d2a33 � d2
5

36
:

ð61Þ

In Ref. [29], the value of �2E has been measured by

means of the Direct Monte Carlo simulation method

(DSMC). In Figure 1 we compare our theoretical

prediction (solid line given by (61)) with the DMSC

simulations results (symbols). The agreement is satis-

factory for the whole range of inelasticities, at variance

with the theoretical attempt put forward in [29], which

neglected velocity correlations. In particular, we note

the non-trivial result in the elastic limit

lim�!1- �
2
Eð�Þ ¼ d=3 (i.e. 2/3 in Figure 1, which is

well obeyed), while in the free cooling regime, this

quantity vanishes [31]. We emphasize that the elastic

limit is singular: the behaviour for elastic systems with

�¼ 1 is not approached by taking the quasi-elastic

limit �! 1� (we note that the divergence of the

different moments of the velocity distribution as �! 1

is nevertheless indicative of the absence of a stationary

state when �¼ 1). Such a singularity has already been

reported in one dimension [39], but, to our knowledge,

not for two-dimensional granular systems. It is also

interesting to note that the singular nature of the quasi-

elastic limit appears at the two-body level through the

energy fluctuations, while, as far as rescaled distribu-

tion functions are concerned, the one-body level of

description is regular, with a well-behaved velocity

distribution approaching a Gaussian form [22].

0 0.2 0.4 0.6 0.8 1

α

0.6

0.8

1

1.2

N=100
N=1000

σ
E2

Figure 1. Scaled second moment of the energy
fluctuations �2E as a function of the restitution coefficient �.
The solid line is the theoretical prediction and symbols
are the two-dimensional Monte Carlo simulation results of
Ref. [29].
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6. Conclusions

The problem of the fluctuations of the total energy

of a granular (inelastic) gas maintained in a non-

equilibrium stationary state by a random acceleration

has been addressed. A numerical study of this

quantity has been performed by means of Monte

Carlo simulations and an argument assuming an

uncorrelated non-Gaussian individual distribution

function had been proposed in [29], without success.

The main goal of this work was therefore to take

due account of velocity correlations in order to study

these fluctuations.

To this end, the standard description at the

single-particle level is not sufficient, and the two-

particle correlation function is needed. We have

derived the evolution equation for such an object,

and particularized the analysis to the homogeneous

stationary state that is reached by the system in the

long time limit. Our work shows that this equation is

not a straightforward generalization of its counter-

part arising in the context of the undriven granular

gas (i.e. by only changing the linearized Boltzmann–

Fokker–Planck operator into its driven form).

A non-trivial non-diagonal term appears in the

Fokker–Planck equation for the two-particle distri-

bution function (contribution @v1 � @v2 in Equation

(9)), as a consequence of the coupling between

velocities due to momentum conservation.

We have seen that, for our purposes, exact

knowledge of the hydrodynamic eigenfunctions is

not needed. The important point is that we can

construct a set of functions f ���g3�¼1, which are linear

combinations of 1, c and c2, that are orthogonal to

the right eigenfunctions f��g3�¼1 of the linearized

Boltzmann–Fokker–Planck operator �. This ortho-

gonality property holds for the ‘real’ left eigenfunc-

tions, that in our case correspond to the null

eigenvalue (i.e. density and velocity fields associated

with conserved quantities). The function ��3 is not

a left eigenfunction of � but it can be proved to be

orthogonal to �1 and m2. In a subsequent step,

the linear hydrodynamic equations around the

reference state are derived and from that

knowledge, the hydrodynamic eigenvalues are identi-

fied and the variance of energy fluctuations subse-

quently derived.

Finally, our prediction has been successfully

tested against the numerical results obtained by the

Direct Monte Carlo simulation method for the

complete range of values of the coefficient of normal

restitution �. This provides strong support for the

theory developed here and assesses in retrospect

the validity of our assumptions.
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Appendix A. Eigenvalue problem for ,

We consider here the eigenvalue problem for the homo-
geneous linear Boltzmann–Fokker–Planck operator �,
defined in (24)

�ðcÞ��ðcÞ ¼ ����ðcÞ: ðA1Þ

We are interested in the eigenfunctions and eigenvalues
associated with linear hydrodynamics and, to perform the
analysis, techniques similar to those in [31,37,38] will be
required.

Consider first the function

 1ðcÞ ¼ �HðcÞ: ðA2Þ
When the linearized operator � acts on �H, we have

�ðc1Þ�Hðc1Þ ¼
Z

dc2 �T0ðc2, c3Þð1þ P12Þ�Hðc2Þ�Hðc1Þ

þ
e�20
2

@

@c1

� �2

�Hðc1Þ: ðA3Þ

Taking into account the equation for �H, Equation (14), we
obtain the following relation:

�ðc1Þ 1ðc1Þ ¼ �
e�20
2

@

@c1

� �2

�Hðc1Þ: ðA4Þ

Now let us considerer the function

 2ðcÞ ¼ � @

@c
�HðcÞ: ðA5Þ

Taking the derivate in the equation obeyed by �H(c�w)

with respect to w, and subsequently evaluating the result for
w¼ 0, we obtain

�ðc1Þ 2ðc1Þ ¼ 0: ðA6Þ

Finally, we will consider the function

 3ðcÞ ¼ c � @
@c
�HðcÞ: ðA7Þ

From the equation obeyed by  3(�c1), we can take the

derivate with respect to �, and evaluate the result for �¼ 1.
We arrive at an equation for  3(c1),

�ðc1Þ 3ðc1Þ ¼ ðdþ 3Þ
e�20
2

@

@c1

� �2

�Hðc1Þ: ðA8Þ

From Equations (A4), (A6) and (A8), we can identify

two eigenfunctions of �. Making use of (A4) and (A8), it
appears that

�ðcÞ 1

3

@

@c
� ½c�HðcÞ� þ �HðcÞ

� �
¼ 0: ðA9Þ

Hence, from Equations (A6) and (A9) we can conclude

that the null eigenvalue is (dþ 1)-fold degenerate with the
eigenfunctions

�1ðcÞ ¼
1

3

@

@c
� c�HðcÞ½ � þ �HðcÞ, n2 ¼ � @

@c
�HðcÞ: ðA10Þ

Appendix B. Evaluation of the coefficient a2, i2, i

In this appendix, we show that
h ��2, iðc1Þ ��2, iðc2Þ j �ðc1, c2Þi ¼ 0. The integral corresponding
to the second term of � is simply

Z
dc1

Z
dc2c1, ic2, ie� 20

@

@c1
� @
@c2

�Hðc1Þ�Hðc2Þ ¼ e� 20: ðB1Þ

The other term can be written as
Z
dc1

Z
dc2c1, ic2, i �T0ðc1,c2Þ�Hðc1Þ�Hðc2Þ

¼
Z
dc1

Z
dc2�Hðc1Þ�Hðc2Þ

Z
dr̂�ðr̂ � c12Þðr̂ � c12Þ½br̂�1�c1, ic2, i

¼
Z
dc1

Z
dc2�Hðc1Þ�Hðc2Þ

Z
dr̂�ðr̂ � c12Þ

� ðr̂ � c12Þ
1þ�
2

ðr̂ � c12Þc12, i�̂i�
ð1þ�Þ2

4
ðr̂ � c12Þ2�̂2i

� �

¼ 	ðd�1Þ=2

�½ðdþ3Þ=2�
1��2
4d

Z
dc1

Z
dc2�Hðc1Þ�Hðc2Þc312 ¼e� 20, ðB2Þ

which is the desired result.
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Appendix C. Evaluation of the coefficients abb0

In this appendix we evaluate the coefficients a��0. As the
number of particles and the total momentum are conserved
quantities in our system, we have

hð�N Þ2i ¼ 0, h�Pi�Pji ¼ 0, ðC1Þ
h�N�Pii ¼ 0, h�N�Ei ¼ 0, ðC2Þ

h�E�Pii ¼ 0: ðC3Þ

Enforcing the above constraints, we obtain
Z

dc�HðcÞ þ
Z

dc1

Z
dc2�Hðc1, c2Þ ¼ 1þ a11 ¼ 0, ðC4ÞZ

dcci�HðcÞ þ
Z

dc1

Z
dc2c1i�Hðc1, c2Þ ¼ a12 ¼ 0, ðC5Þ

Z
dcc2�HðcÞþ

Z
dc1

Z
dc2c

2
1�Hðc1,c2Þ ¼

d

2
þda13þ

d

6
a11 ¼ 0,

ðC6ÞZ
dccicj�HðcÞþ

Z
dc1

Z
dc2c1ic2j�Hðc1,c2Þ¼ 1

2
�ijþa2i2j ¼ 0,

ðC7ÞZ
dc cic

2�HðcÞ þ
Z

dc1

Z
dc2 c1ic

2
2�Hðc1, c2Þ ¼ a23 ¼ 0:

ðC8Þ
As a consequence, the values of some coefficients follow

a11 ¼ �1, a12 ¼ 0,

a13 ¼ � 1

3
, a2i2j ¼ � 1

2
�ij, a23 ¼ 0: ðC9Þ

Of course, the coefficients associated with ��1þ ��1 6¼ 0 could
also have been calculated directly by Equation (57),
obtaining the same results. The coefficient a33 is evaluated
using (57) and it can be written in terms of the one-particle
distribution function as

a33 ¼
h ��3ðc1Þ ��3ðc2Þ j �T0ðc1, c2Þ�Hðc1Þ�Hðc2Þi

3
0

¼ 1

18
þ bð�Þ

3
0
,

ðC10Þ

where

bð�Þ ¼ � 	ðd�1Þ=2

�½ðdþ 5Þ=2�d2

�
Z

dc1

Z
dc2�Hðc1Þ�Hðc2Þ#ðc1, c2Þ,

ðC11Þ

with

#ðc1, c2Þ ¼
ð1� �2Þðdþ 1þ 2�2Þ

16
c512

þ ðdþ 5Þ � �2ðdþ 1Þ þ 4�

4
c312C

2

� 1þ �
2

ð2dþ 3� 3�Þc12ðC � c12Þ2,

ðC12Þ

and C¼ (c1þ c2)/2. The coefficient b(�) can be evaluated

using the expression of �H(c) in the first Sonine approxima-
tion, Equation (17), which yields

bð�Þ ¼

ð1þ dÞð3þ dÞð2dða2 þ 16ð�1þ �Þ þ 15a2�Þ
þ16ð�1þ �Þð�1þ 2�2Þ þ a2ð7þ 3�ð�13

þ10ð�1þ �Þ�ÞÞÞ�½ð1þ dÞ=2�

8
><
>:

9
>=
>;

21=2	dþ1=2128d2ð�2þ ð5þ dÞ=2Þ
ð�1þ ð5þ dÞ=2Þ�½d=2��½�2þ ð5þ dÞ=2�

( )

� ð1þ �Þ:
ðC13Þ

If we take into account the explicit form of 
0 and a2, given in

Equations (20) and (35), respectively, we obtain after some
algebra

a33 ¼

�15þ 7dþ 14d2 � 3ð�9þ dð9þ 2dÞÞ�
þ30ð1þ dÞ�2 � 6ð9þ dÞ�3Þ

	 


9dð�19þ 2dð�7þ 3�Þ þ 3�ð9þ 2ð�1þ �Þ�ÞÞ
� � :

ðC14Þ
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