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An e� ective pair potential for systems of uniformly charged lamellar colloids in the presence of
an electrolytic solution of microscopic co- and counterions is derived. The charge distribution
on the discs is expressed as a collection of multipole moments, and the tensors which deter-
mine the interactions between these multipoles are derived from a screened Coulomb poten-
tial. Unlike previous theoretical studies of such systems, the interaction energy may now be
expressed for discs at arbitrary mutual orientation. The potential is shown to be exactly
equivalent to the use of linearized Poisson± Boltzmann theory.

1. Introduction

While the mesostructure, stability and phase be-
haviour of charge-stabilized dispersions of spherical
colloidal particles are by now reasonably well under-
stood, both experimentally and theoretically [1± 3], the
picture is much less clear in the case of lamellar colloids,
of which clay dispersions are a pre-eminent example [4].
This is due partly to the high degree of polydispersity,
the irregular shapes, and the extreme anisotropy of the
thin lamellar particles of naturally occurring clay sus-
pensions. Such complications render an unambiguous
interpretation of experimental data, e.g. from small
angle X-ray or neutron di� raction measurements, very
di� cult, while posing a practically insurmountable chal-
lenge to the theoretician attempting a statistical
mechanics description. Even for the widely studied syn-
thetic model system of laponite, made up of nearly
monodisperse, disc-shaped platelets, there is no con-
sensus among experimentalists as to the structure, gel-
ling behaviour and rheology of semi-dilute suspensions
[5± 9], while attempts at a theoretical description, or
simulations of this model system are in their infancy
[10, 11]. The main reason for the latter state of a� airs
is that a realistic model for the e� ective interaction
between a pair of arbitrarily oriented charged circular
platelets, generalizing the isotropic DLVO potential [1]
between spherical colloids, is not available. Only in the
simplest case of two coaxial, uniformly charged discs,
has a screened Coulomb interaction been worked out

within linear [12] and nonlinear [13] Poisson±
Boltzmann (PB) theory.

The molecular dynamics (MD) simulations of [11]
were based on a site± site interaction model, generalizing
the `Yukawa segment’ representation used earlier to
simulate suspensions of charged rods [14]. Within such
a representation the charge distribution on a rod or a
platelet is discretized into ¸ interaction sites, each
carrying a fraction 1=¸ of the total charge ; sites on
di� erent particles interact via a screened Coulomb
potential. This Yukawa segment model is very compu-
tationally intensive, since the total interaction between
two particles involves ¸2 contributions. It also carries a
degree of arbitrariness in the choice of the number of
sites ¸, which for practical reasons must be taken to be
much smaller than the number of elementary surface
charges (typically 103 for laponite) carried by individual
platelets.

This paper examines the continuous version of the
Yukawa segment model, and derives a multipolar
expansion of the e� ective, screened Coulomb interaction
between two uniformly charged platelets of arbitrary
relative orientations. The resulting anisotropic e� ective
pair potential is shown to be accurate for centre-to-
centre distances larger than the radius of the platelets,
and should hence provide a useful tool for theoretical
investigations of the structure and sol± gel transition in
semi-dilute clay dispersions.

2. The Yukawa segment model
Consider a suspension of Np in® nitely thin circular

platelets per unit volume, of radius a, and carrying a
uniform surface charge density ¼ ˆ Ze=pa2, where Ze
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(< 0) is the total charge on a platelet. The platelets,
together with microscopic co- and counterions, are sus-
pended in water. Since the present study focuses on
mesoscopic lengthscales, of the order of a (typically
a ’ 15nm for Laponite) , one may neglect the molecular
nature of water, which will be regarded as a continuum
of dielectric constant ". Within linearized PB theory, the
e� ective interactions between platelets are always pair-
wise additive [15], and the screening of electrostatic
interactions by the co- and counterions is uniquely char-
acterized by the Debye screening length :

¶D ˆ 1
µ

ˆ
X

¬

n¬z2
¬e2

"0"kBT… †¡1=2

; …1†

where the sum is over all microion species, n¬ and z¬ are
the concentration (number density) and valence of ions
of species ¬, and "0 is the permittivity of free space.
Building on the linearity of the theory, the Yukawa
segment model assumes that each in® nitesimal area ds
(or s̀egment’ ) on a uniformly charged disc generates a
screened Coulomb potential

¿…r† ˆ ¼ds
4p"0"r

e¡µr: …2†

The corresponding pair potential between two in® nite-
simal areas ds (around r) and ds 0 (around r 0) on two
discs is then

v…jr ¡ r 0j† ˆ ¼2ds ds 0

4p"0"jr ¡ r 0j e¡µjr¡r 0 j ; …3†

and the total pair interaction between the discs is
obtained by integrating expression (3) over the surfaces
of the two discs. However, for arbitrary orientations of
the discs, this leads to intractable expressions involving
multiple integrals.

Instead, by analogy with electrostatic interactions
between extended charge distributions, a systematic
multipolar expansion of the screened Coulombic inter-
action will be sought. The derivation of such an expan-
sion requires some care, because the basic screened
Coulomb potential (2) does not satisfy Poisson’ s equa-
tion, except in the bare Coulomb limit, where µ ! 0.

3. The potential around a single plate

To get a feeling for a multipolar expansion involving
screened, rather than bare, Coulomb interactions, con-
sider ® rst the potential due to a uniformly charged disc,
along the axis of the disc. Using cylindrical coordinates,
with the z coordinate along the axis of the disc (cf. ® gure
1), the screened potential along that axis (i.e. for a radial
coordinate « ˆ 0) is simply
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which is easily expanded in powers of …a=z† according to

C…« ˆ 0 ;z† ˆ Ze
4p"0"

e¡µjzj X1

nˆ0

An ‡ Kn‰ Š 1
jzj… †n‡1

; …5†

where the coe� cients An and Kn are listed in table 1.
Several points are to be noted about this expansion.

First, the corresponding expansion for the bare
Coulomb potential is correctly retrieved by taking the
limit µ ! 0; this amounts to setting all Kn ˆ 0 in equa-
tion (5), leaving only odd powers of 1=z in the expan-
sion, since all odd coe� cients An vanish. This is an
obvious consequence of the space re¯ ection symmetry
of the uniform charge distribution on a disc, which
implies that only even multipole moments exist.
However, for the screened Coulomb potential, terms
with even powers of 1=z appear in the expansion,
which would correspond to odd multipoles (dipole,
etc.) in the bare Coulomb case.

The second remark is that expansion (5) also follows
from the exact potential due to a uniformly charged
disc, and its associated electric double-layer of co- and
counter ions, as calculated within linearized PB theory
[16], namely

C…«;z† ˆ 2Ze
a"0"

…1

0
J1…ka†J0…k«†e¡jzj

����������
k2‡µ2

p
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Figure 1. Integration over the surface of a disc.



This agreement between the expansion in equation (5)
and the expansion of equation (6) for « ˆ 0 is an
illustration of the exact equivalence between the
Yukawa segment model and a full linearized PB calcula-
tion of the e� ective potential generated by a charged
particle of any shape and its associated electric double
layer.

The ® nal point concerns the generalization of expan-
sion (5) away from the z axis, i.e. for « 6ˆ 0. In the bare
Coulomb case …µ ˆ 0†, the coe� cients An in table 1 may
be immediately carried over to spherical polar coordi-
nates …r; ³;¿† to write down an expansion of the poten-
tial due to a uniformly charged disc in even Legendre
polynomials (the potential is independent of the azi-
muthal angle ¿) :

C…r;³† ˆ Ze
4p"0"

X1

nˆ0; even

An
1

rn‡1 Pn…cos ³†: …7†

However, the presence of the exponential screening
factor in expansion (5) prevents a similar straight-
forward generalization to o� -axis conditions in the
screened Coulomb case (µ 6ˆ 0). For this reason the
multipolar expansion must be re-examined more care-
fully for the Yukawa segment model.

4. Screened multipolar expansion

The multipolar expansion of the total potential C…r†
due to a uniformly charged disc, with each in® nitesimal
surface element generating the screened potential (2)
(Yukawa segment model), may be derived along lines
nearly identical to the classic calculation for unscreened
charge distributions [17]. Clearly

C…r† ˆ
…

S
¿…jr ¡ sj†ds …8†

where the integral is over the surface S of the disc. The
potential ¿ may now be expanded as a Taylor series
about the centre of the disc …s ˆ 0†, i.e.
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where the sums are over all three Cartesian coordinates
of the vector s 2 S. All odd terms (e.g. the dipolar term)
vanish by symmetry. This leaves only the even terms:

C…r† ˆ CZ…r†‡ CQ…r†‡ CF…r†‡ ¢ ¢ ¢ ; …10†
involving the total charge Ze of the disc, its quadrupole
tensor Q, its hexadecapole tensor U, etc.,

CZ…r† ˆ ZeTµ…r†;

CQ…r† ˆ e
2!

Q¬ T µ
¬ …r†;

CF…r† ˆ e
4!

F¬ ®¯T
µ
¬ ®¯…r†; …11†

where the Einstein convention of summation over
repeated indices has been adopted. The tensors T µ are:

T µ
¬ ® ¢¢¢ ˆ r¬r r® ¢ ¢ ¢ 1

4p"0"

e¡µr

r… †; …12†

while the Q¬ ;F¬ ®¯ are the Cartesian components of the
2nd rank quadrupolar and 4th rank hexadecapolar ten-
sors. For a uniformly charged disc the quadrupolar
tensor is given (in a frame where the z coordinate is
along the axis of the disc) by

Q ˆ ¼

e

…

S
ssds

ˆ

¡Q 0 0

0 ¡Q 0

0 0 0

0
BBB@

1
CCCA; …13†

where Q ˆ ¡Za2=4. Note that, contrary to the bare
Coulomb case, Q cannot be chosen traceless in the
screened case, because the tensors T µ

¬ ¢¢¢ are themselves
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Table 1. Coe� cients appearing in the series expansion of the
electrostatic potential along the z axis (equation (5)) : Cn

1=2
is the coe� cient of the term of order xn in the binomial
expansion of …1 ‡ x†1=2.
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not traceless. The Cartesian components of the 4th rank
hexadecapole moment are de® ned by

F¬ ®¯ ˆ ¼

e

…

S
s¬s s® s¯ds: …14†

For a disc, choosing the z coordinate along its axis, the
only nonzero components ¬ ®¯ are the two diagonal
components Fxxxx and Fyyyy and those in which x and
y both appear twice. Explicitly,

Fxxxx ˆ Fyyyy ˆ Za4

8
² F

Fxxyy ˆ Fxyxy ˆ ¢ ¢ ¢ ˆ Za4

24
² F

3
: …15†

The calculation of the tensors T µ
¬ ® ... is considerably

lengthier for the screened than for the bare Coulomb
interaction. Some details are given in appendix A.

In spherical coordinates, the total potential due to the
uniformly charged disc, up to hexadecapolar order, may
® nally be written as:
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Returning to cylindrical coordinates, this expression
reduces on the z axis to

C…« ˆ 0 ;z† ˆ Ze
4p"0"

e¡µjzj 1
z

¡ µa2

4
1
z… †2

"

‡ µ2a4

24
¡ a2

4… †1
z… †3

‡µa4

8
1
z… †4

‡ a4

8
1
z… †5

#
; …17†

which coincides with expansion (5), with coe� cients
given in table 1, up to order a4 (the higher powers of a
in the coe� cients of 1=z4 and 1=z5 corresponding to
higher order multipole moments). To illustrate the con-
vergence of the multipolar expansion of the potential to
hexadecapolar order, in ® gures 2 and 3 the potential
given by expression (16) is compared with the linearized
PB potential of equation (6) and an explicit numerical
integration over a discretized charge distribution (with
¸ ˆ 7841 sites), both along the z axis and in the xy
plane. The numerical integration was carried out to
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Figure 2. Electrostatic potential along the z axis : solid lines,
multipolar expansion; dashed lines, linearized PB poten-
tial ; and triangles, a numerical integration over a discret-
ized charge distribution (Yukawa segment model) ; upper
set of curves, µa ˆ 0:5; lower set, µa ˆ 1:0. The diver-
gence is highlighted in the logarithmic inset ® gure.
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in ® gure (2)) for µa ˆ 0:5 and 1:0.



check its accuracy against the exact potential (6), since it
will be the only available test of the multipolar expan-
sion of the screened pair interaction between two plate-
lets at arbitrary orientations, to be discussed in section 6.
Agreement is seen to be excellent, down to around
z…«† ’ a, where the multipolar expansion diverges
dramatically, as higher order terms in …1=r†n start to
dominate.

5. EŒective interactions between two plates

The results of the previous section for the e� ective
potential around a single platelet may now be used to
determine the potential energy of interaction (or e� ec-
tive pair potential) of a pair of discs, at arbitrary relative
orientations, as shown in ® gure 4. The interaction
energy VAB is formally expressed by integrating the
screened electrostatic potential arising from one disc
(A) de® ned by equations (10) and (11), over the surface
charge distribution of the second disc (B) :

VAB…r; ³A ; ³B ;¿A ;¿B† ˆ
…

SB

¼ dsCA…r ‡ s†: …18†

The potential CA…r ‡ s† may be expanded in a Taylor
series in powers of s, about the centre of disc B (s ˆ 0),
along the lines of equation (9), with the result :

VAB ˆ ¼

…

SB
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¬r¬CA…r†

‡ 1
2!

sB
¬sB

 r¬r CA…r†‡ ¢ ¢ ¢ : …19†

Now inserting the expansions of the potential CA…r†
(equation (10)), and its derivatives, into (19) the electro-
static pair potential is given by

VAB ˆ e¼
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A
®¯ ‡ ¢ ¢ ¢ ‡ ¢ ¢ ¢ : …20†

Integrating over the surface SB of disc B naturally intro-
duces the multipole moments of the surface charge dis-
tribution of that disc into expression (20) for VAB , which
hence may be cast in the form

VAB…r;³A ; ³B ;¿A ;¿B† ˆ V ZZ
AB ‡ …V ZQ

AB ‡ V QZ
AB†‡ V QQ

AB

‡ …V ZF
AB ‡ V FZ

AB†‡ ¢ ¢ ¢ …21†
where

V ZZ
AB ˆ e2ZAT µZA ; …22†

V ZQ
AB ˆ e2

2!
ZAT µ

¬ QB
¬ ; …23†

V QQ
AB ˆ e2

2!2!
QA

¬ T µ
¬ ®¯Q

B
®¯ ; …24†

V ZF
AB ˆ e2

4!
ZAT µ

¬ ®¯F
B
¬ ®¯: …25†

This expansion is consistent up to order 1=r5 with the
corresponding series for pure Coulombic interactions
(µ ˆ 0). The rather cumbersome expressions for the
screened interaction tensors are given in appendix A,
while details of the summations over Cartesian coordi-
nates, implicit in equations (23) ± (25), are described in
appendix B.

6. Results for speci® c geometries

The detailed behaviour of the e� ective pair potential
VAB de® ned by equations (21) ± (25) will now be exam-
ined, as a function of the centre-to-centre distance
between, and the mutual orientations of, the two discs.
The relevant variables are: r, the separation of the cen-
tres of masses of the two discs; f³A ; ³Bg the polar angles
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Figure 4. Geometry of a pair of platelets. The disc orienta-
tions are characterized by the spherical polar angles ³ and
¿. The azimuthal angle ¿B has been omitted for clarity.



of the two discs; D ¿, the di� erence in the azimuthal
angles of the two discs; and µ, the inverse screening
length determined by the co- and counterions. Rather
than specialize to the physical parameters particular to
laponite (Z ’ ¡1000, a ’ 15 nm), in the ® gures that
follow, all distances will be scaled by the disc radius a,
which provides a convenient length scale, and all ener-
gies by the bare Coulombic energy of two charges Ze a
distance a apart, i.e. by Z2e2=4p"0"a. Thus these results
apply to the most general uniformly charged disc.

The case of two coaxial plates is illustrated in ® gure 5,
where the various contributions to the energy VAB are
plotted as a function of the distance between the two
plates. The exact result in this simple geometry is known
within LPB theory [12], and used to test the convergence
of the multipolar series. As expected, the charge± charge
contribution (22) dominates for large spacings, but the
contributions of the higher order terms become very
signi® cant for spacings less than the disc diameter, 2a.

In ® gure 6 the energy is plotted as a function of the
separation between two discs lying in the same plane,
like two coins on a table. In this geometry all multipolar
contributions are positive (repulsive), and the enhance-
ment of the total energy over the charge± charge term is
more pronounced. Included in this ® gure is the potential
energy obtained by integrating over the Yukawa poten-
tial over two discretized site-charge distributions, where
each disc has ¸ ˆ 7841 point charges, each carrying
charge Ze=¸. The agreement of this calculation with
the multipolar expansion is excellent, down to the dis-

tance of closest approach r ˆ 2a below which point the
discs intersect.

In ® gure 7 the energy is plotted as a function of the
separation of two discs in a T-shaped con® guration
(³A ˆ 0 ;³B ˆ p=2), a geometry favoured by the quad-
rupoles, as also observed in [10], where a purely quad-
rupolar disc model was studied. The agreement with the
discretized Yukawa segment calculation is again excel-
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Figure 5. Contributions to the potential energy as a function
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(³A ˆ 0; ³B ˆ 0; D ¿ ˆ 0), for inverse screening length
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ment model calculation.
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included for comparison.
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lent, except at very close centre-to-centre separations,
where the multipolar expansion is expected to collapse.

In ® gure 8 the behaviour of the pair potential is exam-
ined as one disc slides over the other at constant altitude
(z ˆ 1:5a in this plot), with the two discs parallel to each
other. As expected the energy goes through a maximum
at the distance of closest approach, but detailed struc-
ture is seen in the total energy, as each order of multi-
pole± multipole interaction decays with di� ering power
law behaviour. The agreement with the numerical
Yukawa segment calculation is again good, except in

the region around closest approach, where the platelets
are co-axial, and the greatest deviation is observed, as
seen in ® gure 5. This deviation decreases signi® cantly the
greater the vertical separation of the platelets, and may
be improved at close separation by the inclusion of
higher order multipole moments.

In ® gure 9, the angular dependence of the potential is
examined by varying the angle ³B at ® xed centre-to-
centre separation of r ˆ 1:5a and ³A ˆ 0. Obviously
the charge± charge interaction is independent of relative
orientation, but signi® cant variation in all higher order
interactions is observed. Notably, the quadrupole ±
quadrupole interaction is favoured when the discs
are perpendicular to each other. The agreement with
the computationally expensive numerical integration
method is observed to be good, except when the discs
are parallel, where the deviation is most noticeable, as
observed and commented upon in ® gures 5 and 8.

Finally in ® gure 10 the dependence of the interaction
on the azimuthal angles is probed, for disc separations
in the range 1 < r=a < 1:5 for discs ® xed at
³A ˆ ³B ˆ p=4. As noted in appendix B, the interaction
energy depends only on the di� erence D ¿ ˆ ¿A ¡ ¿B.
As the separation of the discs increases, the angular
dependence of the pair potential is seen to diminish,
and indeed at large separations disappears.

7. Conclusion

The familiar multipole moment expansion of the elec-
trostatic interaction between two extended charge dis-
tributions have been generalized to the case where the
interaction is linearly screened by co- and counterions of
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Figure 9. Contributions to the potential energy as a function
of the angle ³B with ³A ˆ 0 for µa ˆ 0:5, and ® xed centre-
to-centre distance r ˆ 1:5a. The discretized Yukawa seg-
ment calculation has been included for comparison.
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disc separations r=a ˆ 1.0, 1.1, 1.2, 1.3, 1.4 and 1.5, from
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an ionic solution in which the charged colloidal particles
are dispersed. The case of uniformly charged, disc-like
platelets, a model for the synthetic clay laponite, was
speci® cally considered in this paper, but the Yukawa-
segment model, and the corresponding multipolar
expansion, may be extended to particles of any shape.
For example, this procedure may be adapted readily to
the case of uniformly charged rods, where symmetry
again precludes multipole moments of odd order, by
insertion of the relevant quadrupole and hexadecapole
tensors for such a charge distribution. In the simplest
case of spherical particles, the present treatment leads
back to the familiar DLVO potential. For discs, the
expansion, including up to quadrupole ± quadrupole
and charge± hexadecapole terms, yields interaction ener-
gies in good agreement with data for a discretized ver-
sion of the Yukawa segment model, down to centre-to-
centre distances of the order of the disc radius a, for all
relative orientations of the two platelets which were
investigated. As expected, the expansion breaks down
at shorter distances, and yields rapidly divergent ener-
gies as r ! 0.

The e� ective pair potential de® ned by equation (21),
and the explicit expressions in the appendices, should
prove useful in statistical mechanics descriptions of
semi-dilute clay dispersions, and of their sol± gel transi-
tion, provided suitable short range cuto� s are imposed.
For computer simulations of more concentrated disper-
sions, an appropriate strategy would be to use a hybrid
pair potential approach, interpolating between the mul-
tipolar expansion at large centre-to-centre distances, and
a direct summation of the ¸2 screened Coulomb site± site
interactions in a discretized version of the Yukawa
segment model, similar to that used in [11], at short
distances.

In order to determine the phase behaviour of disper-
sions of charged platelets, from direct calculations of the
free energy of systems of platelets interacting via the
multipolar e� ective pair potential derived in this
paper, it is important to include a structure-independent
`volume’ term in the free energy [18]. Such a volume
term has been shown to play a crucial role in the deter-
mination of phase diagrams of suspensions of spherical
charged colloidal particles, in the regime of very low
concentration of added electrolyte [3, 19]. The exact
form of the `volume’ term can be determined from a
careful analysis of the density functional formulation
of linearized PB theory [3, 15]. Such an analysis, which
also provides a rigorous foundation of the Yukawa seg-
ment model [11], is under way.

The authors would like to thank H. LoÈ wen and A. J.
Stone for useful discussions, and gratefully acknowledge
the support of the Franco-British Alliance Program,

Project No. PN 99.041. D.G.R. would like to thank
the EPSRC for their continued support.

Appendix A

Cartesian tensors for a screened Coulomb interaction
The Cartesian tensors for a screened Coulomb inter-

action are de® ned (analogously to the bare Coulomb
case) as derivatives of the potential, i.e.

Tµ
¬ ® ˆ r¬r r®

1
4p"0"

e¡µr

r… † …A 1†

Now, for any function f …r†, ( f …r† being e¡µr=r in the
current work) the gradient r¬ f …r† ˆ f 0…r†r¬r. For the
bare Coulomb potential, f …r† ˆ 1=r, and thus
r¬…1=r† ˆ ¡…1=r2†r¬r ² T 0

¬. Combining these two
simple results the gradient of a general function f …r†
may be expressed in terms of the bare Coulomb tensor
via r¬ f …r† ˆ ¡r2f 0…r†T 0

¬. Introducing the di� erential
operator D, de® ned by Df …r† ˆ ¡r2f 0…r†, this may
furthermore be written as r¬ f …r† ˆ Df …r†T 0

¬. Thus the
set of successive interaction tensors for a screened
Coulomb potential Tµ may be written, using the product
rule of di� erentiation, as

T µ
¬ ˆ r¬ f …r† ˆ …D1f †T 0

¬ ;

T µ
¬ ˆ r¬r f …r† ˆ …D2f †T 0

¬T 0
 ‡ …D1f †T 0

¬ ;

T µ
¬ ® ˆ …D3f †T 0

¬T 0
 T 0

® ‡ …D2f †‰T 0
¬ T 0

® ‡ T 0
¬® T 0

 ‡ T 0
 ® T 0

¬Š

‡ …D1f †T 0
¬ ® ;

T µ
¬ ®¯ ˆ …D4f †T 0

¬T 0
 T 0

® T 0
¯

‡ …D3f †‰T 0
¬ T 0

® T 0
¯ ‡ T 0

 ® T 0
¬T 0

¯ ‡ T 0
¬¯T

0
 T 0

®

‡ T 0
 ¯T

0
¬T 0

® ‡ T 0
¬® T 0

 T 0
¯ ‡ T 0

®¯T
0
¬T 0

 Š

‡ …D2f †‰T 0
¬ ® T 0

¯ ‡ T 0
¬ ¯T

0
® ‡ T 0

¬®¯T
0
 ‡ T 0

 ®¯T
0
¬

‡ T 0
¬ T 0

®¯ ‡ T 0
¬® T 0

 ¯ ‡ T 0
¬¯T

0
 ® Š‡ …D1f †T 0

¬ ®¯ ;

…A 2†
where the coe� cients fDnf g are functions solely of
distance, given by

D1f ˆ …1 ‡ µr†e¡µr ;

D2f ˆ µ2r3e¡µr ;

D3f ˆ µ2r4…µr ¡ 3†e¡µr ;

D4f ˆ µ2r5…12 ¡ 8µr ‡ µ2r2†e¡µr ; …A 3†
and all factors of 1=4p"0" and, more signi® cantly, every
angular dependence of the interaction are embodied in
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the bare Coulomb tensors T 0
¬ ¢¢¢, expressions for which

are easily calculated.

Appendix B
Evaluation of interaction energies

The interaction energy between two discs (A and B),
separated by a distance rAB and oriented at spherical
polar angles …³A ;¿A† and …³B ;¿B† may be written (equa-
tion (21)), as a sum of contributions to the total from the
interactions of each order of multipole via

VAB…rAB ;³A ;³B ;¿A ;¿B† ˆ V ZZ
AB ‡ …V ZQ

AB ‡ V QZ
AB†‡ V QQ

AB

‡ …V ZF
AB ‡ V FZ

AB†‡ ¢ ¢ ¢ ; …B 1†
where Z;Q and F denote, respectively, the charge, quad-
rupole moment and hexadecapole moment on a disc,
and V QZ

AB for instance denotes the contribution from
the interaction of the charge on disc A with the quadru-
pole on disc B.

The leading term in this expansion is simply the
screened Coulomb interaction of the two charges,
given by

V ZZ
AB ˆ ZAeT µZBe ˆ Z2e2

4p"0"

e¡µr

r
…B 2†

where T µ is the zero-order interaction tensor. The next
term in equation (B 1) corresponds to the charge± quad-
rupole interaction, V ZQ

AB, which is written in the following
form:

V ZQ
AB ˆ e2

2!
ZATµ

¬ QB
¬ : …B 3†

Expressing the screened interaction tensor Tµ
¬ in terms

of the unscreened tensors fT 0
¬ ¢¢¢g, using equation (A 2),

and recalling the de® nition of the quadrupole moment
tensor, equation (13), this sum is calculated via

T µ
¬ QB

¬ ˆ ¡Q‰D2f T 0
¬T 0

 ‡ D1f T 0
¬ Š‰d¬ ¡ nB

¬nB
 Š

ˆ ¡QfD2f ‰T 0
¬T 0

¬ ¡ T 0
¬nB

¬T 0
 nB

 Š

‡ D1f ‰T 0
¬¬ ¡ nB

¬T 0
¬ nB

 Šg

ˆ ¡
Q

4p"0"
D2f

1 ¡ cos2 ³B

r4… †
"

‡ D1f
1 ¡ 3 cos2 ³B

r3… †
#

ˆ Za2

4
1

4p"0"

e¡µr

r3 ‰…1 ‡ µr ‡ µ2r2†

¡ cos2 ³B…3 ‡ 3µr ‡ µ2r2†Š; …B 4†

where fnB
¬g denote the Cartesian components of the unit

vector which de® nes the major axis of disc B, and the
fDnf g are de® ned by equation (A 3). Along with this
energy, the contribution due to the interaction between
quadrupole on disc A and charge on disc B must be
added. When all multiplicative factors have been
included the ® nal result reads :

V ZQ‡QZ
AB ² V ZQ‡QZ

AB …r; ³A ; ³B†

ˆ ¡ Z2e2a2

8
1

4p"0"… †e¡µr

r3

£ 1 ‡ µr ‡ µ2r2

3… †3 cos2 ³A ‡ 3 cos2 ³B…
"

¡ 2 1 ‡ µr ‡ µ2r2…
#

; …B 5†

where it is observed that the charge± quadrupole inter-
action has no dependence on the azimuthal angles ¿A

and ¿B.
In the quadrupole ± quadrupole interaction energy it

is necessary to calculate the sum QA
¬ T µ

¬ ®¯Q
B
®¯. The

screened tensor is expressed as a sum of terms involving
the simpler unscreened tensors using equation (A 2), and
simpli® ed further by expressing all second and higher
rank unscreened tensors in terms of the ® rst-order
unscreened tensors, via

4p"0"T 0
¬ ˆ ¡ r¬

r3 ;

4p"0"T 0
¬ ˆ 3r¬r ¡ r2d¬

r5 ² r 3T 0
¬T 0

 ¡
d¬

r4

4p"0"T 0
¬ ® ² 15rT 0

¬T 0
 T 0

® ¡ 3
r2 …T 0

¬d ® ‡ T 0
 d¬® ‡ T 0

® d¬ †:

…B6†

Following this procedure of expressing the elements of
the nth-rank unscreened tensors in terms of those of the
1st rank tensors, the full unscreened 4th rank tensor,
using equations (A 2) and (B 6), is given by

T µ
¬ ® d ˆ T 0

¬T 0
 T 0

® T 0
¯‰D4f ‡ 18rD3f ‡ 87r2D2f Š

‡ ‰T 0
¬T 0

 d®¯ ‡ T 0
¬T 0

®d ¯ ‡ T 0
¬T 0

¯d ® ‡ T 0
 T 0

® d¬¯

‡ T 0
 T 0

¯d¬® ‡ T 0
® T 0

¯d¬ Š

£ ‰¡…D3f =r3† ¡ 9…D2f =r2†Š
‡ ‰d¬ d®¯ ‡ d¬® d ¯ ‡ d¬¯d ® Š‰D2f =r6Š

‡ Df T 0
¬ ®¯ ; …B 7†
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where the tensor T 0
¬ ®¯ appearing in the last line of equa-

tion (B 7) is the only term surviving if µ ˆ 0, corre-
sponding to the purely Coulombic interaction.

The screened Coulombic tensor T µ
¬ ®¯, given by

equation (B 7), is used to calculate both the contribution
to the potential away from a single disc due to the
hexadecapole moment CF…r† and also the quadrupole ±
quadrupole and charge± hexadecapole energies in the
e� ective pair potential. For illustrative purposes the
quadrupole ± quadrupole interaction energy will be pur-
sued here, which involves the sum QA

¬ Tµ
¬ ®¯Q

B
®¯. Using

equation (B 7) it is evident that this sum will itself
be the sum of contributions from terms involving
QA

¬ T 0
¬T 0

 T 0
® T 0

¯Q
B
®¯, QA

¬ T 0
¬T 0

 d®¯Q
B
®¯ etc. which must

each be calculated separately. The ® rst of these is calcu-
lated as

QA
¬ T 0

¬T 0
 T 0

® T 0
¯Q

B
®¯ ˆ Q2‰d¬ ¡ nA

¬ nA
 Š‰T 0

¬T 0
 T 0

® T 0
¯Š

£ ‰d®¯ ¡ nB
® nB

¯ Š

ˆ Q2‰T 0
¬T 0

¬ ¡ T 0
¬nA

¬ T 0
 nA

 Š

£ ‰T 0
®T 0

® ¡ T 0
® nB

® T 0
¯n

B
¯ Š

ˆ Q2

4p"0"

…1 ¡ cos2 ³A†…1 ¡ cos2 ³B†
r8 :

…B 8†
Proceeding along these lines for each of the terms
appearing in QA

¬ T µ
¬ ®¯Q

B
®¯, the interaction energy ® nally

reads :

V QQ
AB ² e2

2!2!
QA

¬ Tµ
¬ ®¯Q

B
®¯

ˆ Z2e2a4

64
…d¬ ¡nA

¬ nA
 †Tµ

¬ ®¯…̄ ®¯ ¡nB
® nB

¯ †

ˆ Z2e2a4

64
1

4p"0"… †
£ ‰D4f ‡18rD3f ‡87r2D2f Š 1

r8 …1 ¡cos2 ³A†

£…1 ¡cos2 ³B†

¡‰D3f ‡9rD2f Š 1
r7 ‰8 ¡6 cos2 ³A ¡6 cos2 ³B

‡ 4 cos ³A cos ³B…cos ³A cos ³B‡ sin ³A sin ³B cos…D ¿††Š

‡D2f
r6 ‰6‡2…cos ³A cos ³B ‡ sin ³A sin ³B cos…D ¿††2Š

‡Df
r5 ‰3 ¡15 cos2 ³A ¡15 cos2 ³B ¡45 cos2 ³A cos2 ³B

‡6…4 cos³A cos ³B ¡sin ³A sin ³B cos…D ¿††2Š ; …B9†

where attention may be drawn to the fact that the inter-
action energy involves only the di� erence in the azi-
muthal angles, D ¿ ˆ ¿A ¡ ¿B and not on their
absolute values.
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