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Université Paris-Sud, UMR CNRS 8626, Orsay, France

(Received 23 October 2014; accepted 12 January 2015)

When a Coulombic fluid is confined between two parallel charged plates, an exact relation links the difference of ionic
densities at contact with the plates to the surface charges of these boundaries. It no longer applies when the boundaries are
curved, and we work out how it generalises when the fluid is confined between two concentric spheres (or cylinders), in
two and in three space dimensions. The analysis is thus performed within the cell model picture. The generalised contact
relation opens the possibility to derive new exact expressions, of particular interest in the regime of strong Coulombic
couplings. Some emphasis is put on cylindrical geometry, for which we discuss in depth the phenomenon of counterion
evaporation/condensation, and obtain novel results. Good agreement is found with Monte Carlo simulation data.
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1. Introduction

Exact results in the equilibrium statistical mechanics of
charged fluids are scarce [1–4], leaving aside the formal
body of relations that connect quantities that cannot be ob-
tained explicitly. Most often, the exact results pertain to
two-dimensional (2D) systems [5–7], where charges inter-
act by a logarithmic potential. Yet, an interesting and useful
exact relation is provided by the so-called contact theorem
[8–10], that is not limited to two dimensions, in the sense
that it also applies when charges interact through a 1/r po-
tential as is the case in three dimensions. To provide an
insight, we introduce the Bjerrum length �B, to be defined
below from the temperature and the solvent permittivity
(treated as a dielectric continuum); the contact theorem
holds for charges, point-like or with a given hard core, con-
fined between two parallel planar structureless interfaces,
having respective surface charges σ ae and σ be, where e is
the elementary charge. It simply relates the pressure P to the
contact densities of ions (na for the total ionic concentration
in contact with plate a):

βP = na − 2π�Bσ 2
a , (1)

where β = 1/(kT) is proportional to the inverse temperature.
A similar relation holds at contact with plate b where the
total density is nb:

βP = nb − 2π�Bσ 2
b . (2)

∗
Corresponding author. Email: trizac@lptms.u-psud.fr

This implies that for uncharged walls, we have βP = na =
nb, which provides an exact (although not explicit) equation
of state for a hard sphere fluid (see e.g. [11]). Another lim-
iting case of more significance to us is obtained when the
distance between the two plates (also referred later as the
macro-ions) diverges, which leads to a vanishing pressure,
and thus to an exact constraint between contact density and
surface charge. This allows to discriminate various approx-
imate approaches [12,13]. In other circumstances, knowing
the ionic density profile between the charged plates, one
can infer the equation of state. This is the route followed
in the strong coupling analysis of Refs [14–16], where an
exact and explicit equation of state can be obtained at short
distances [17].

However, the exact planar relation [18]

na − 2π�B σ 2
a = nb − 2π�B σ 2

b (3)

breaks down as soon as the charged interfaces are no longer
planar but bear some curvature. This is regrettable since
knowing the counterpart of Equation (3) would be desir-
able for analytical progress, as well as for testing numer-
ical simulations. Our main motivation is to fill this gap.
To this end, we shall work in the framework of the cell
model [3,19–21], where a charged body (cylindrical or
spherical, and bearing in the following the subscript a) is
enclosed in a concentric (Wigner–Seitz) cell of a similar
shape (referred with subscript b), and we shall analyse the
fate of the incorrect planar relation (3). The cell model ap-
proach has proven fruitful and provides accurate results for
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(a) 2d (b) 3d

Figure 1. Schematic view of the spherical cell in two and three dimensions. The charged macro-ion has radius Ra while Rb denotes the
size of the confining cell.

quantities such as the pressure, that can be compared against
experiments and numerical simulations [22–29]. Its inter-
est is that it is in essence a one macro-ion approach, and
thus considerably simpler than the original full N-macro-ion
problem.

At this point, a clarification is in order. Within the cell
model, and thus with curved macro-ions, an exact result
holds [10,21]

βP = nb − 2π�Bσ 2
b , (4)

where by definition b denotes the outer boundary (see
Figure 1). This relation is often particularised to the case
σ b = 0 [30], and relevant in numerical simulations to get
the pressure from the ionic density at contact with the con-
fining boundary [32]. In all our analysis, Equation (4) will
remain valid, but will not be of particular interest (apart
from allowing to introduce the pressure in relations where
it does not explicitly appear). Our interest instead goes to
finding the connection between na, nb, σ a, and σ b, which
should reduce to (3) when curvatures vanish.

The outline of the paper is as follows. The model is laid
out in Section 2, where a generalised contact theorem is de-
rived. Different geometries must be distinguished, and we
will explicitly consider three different cases: a sphere within
a confining sphere (in two dimensions with a log potential
or in three dimensions with a 1/r potential, see Figure 1), to-
gether with a cylinder within a cylinder. In two dimensions,
the latter case is equivalent to the previous 2D spherical
problem (a charged disc within a disc, see Figure 2), so that
only the three-dimensional (3D) case is of interest here.
In Section 3, the previous formal relations will be made
more explicit, whenever possible, and it will be shown that
upon taking the planar limit in a suitable fashion, one re-
covers the known relation (3). The remainder of the paper
will be devoted to discussing practical consequences of the

Figure 2. Schematic view of the cylindrical cell in three di-
mensions. The system is infinite along the cylinders’ axis. Such
a set-up is commonplace and relevant to the study of charged
polyelectrolytes [19,21]. The 2D case is identical to Figure 1(a).

generalised contact relation: first, considering cylindrical
macro-ions (in two or three dimensions) in Section 4, and
then spherical macro-ions in Section 5. In Section 6, our an-
alytical results will be compared to measures performed in
Monte Carlo simulations, following the centrifugal scheme
used in [33,34], to which the reader is referred for further
details. Particular attention will be paid to the weakly as
well and strongly coupled regimes.

2. Definitions and derivation of a formal contact
relation

2.1. The Hamiltonian and the virial

We consider N charged particles (with charges qie), e be-
ing the elementary charge and qi the valency, that occupy
the domain � between two concentric shells, with radius
Ra < Rb. The frontier of the domain is denoted as ∂�. Each
shell may carry a total charge Qae and Qbe, with uniform
surface charge densities σ ae and σ be. The system is glob-
ally neutral

∑
iqi + Qa + Qb = 0, at equilibrium with
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Molecular Physics 2411

Table 1. Dependence of the various one-body or two-body potentials on space dimension d.

v(r) va(r) vb Va Vb Vab

d = 2 −ln r −Qaln r −Qbln Rb −Q2
a(ln Ra)/2 −Q2

b(ln Rb)/2 −QaQbln Rb

d = 3 1/r Qa/r Qb/Rb Q2
a/(2Ra) Q2

b/(2Rb) QaQb/Rb

temperature 1/β. The Hamiltonian of the system reads

H = e2
∑
i<j

qiqj v(rij ) + e2
∑

i

qiva(ri) + e2
∑

i

qivb

+ e2Va + e2Vb + e2Vab, (5)

where v(r) is the Coulomb pair potential, va(r) the potential
created by the inner shell, vb the potential created by the
outer shell (constant), Va and Vb the self-energy of each
shell, and Vab the interaction potential between the shells.
Making use of the global electro-neutrality of the system
and of the explicit expressions recapitulated in Table 1, we
obtain

H/e2 =
∑

i

qiva(ri) +
∑
i<j

qiqj v(rij ) + V (Ra,Rb), (6)

with, for a 3D system,

V (Ra,Rb) = Q2
a

2Ra

− Q2
b

2Rb

, (7)

while the corresponding 2D results follow from the replace-
ment 1/r → −log r:

V (Ra,Rb) = −Q2
a

2
ln Ra + Q2

b

2
ln Rb. (8)

So far, we did not include a possible hard core exclusion
between the ions, and between the ions and the shells (in-
terfaces). This question will be briefly addressed in Section
2.3. Thus, whenever a ‘contact’ density will be referred to,
it should be understood that it pertains to the distance of
closest approach between two charged bodies, and not to
physically vanishing distances.

To avoid cumbersome expressions, the dielectric per-
mittivity is not included in the Hamiltonian, and is set to
unity. To prevent possible confusions, we shall make use of
the often employed coupling constant � = βe2 for 2D sys-
tems, and in three dimensions, of the Bjerrum length �B =
βe2/ε, where ε is the permittivity of the medium (solvent).
In water at room temperature, �B � 0.7 nm.

In both cases, the configurational partition function can
be written as

Z = Z∗e−βV (Ra,Rb), (9)

with

Z∗ =
∫

�N

drN exp

⎡⎣−βe2

⎛⎝∑
i<j

qiqj v(rij ) +
∑

i

qiva(ri)

⎞⎠⎤⎦ .

(10)

In the following discussion, the virial W will be an important
quantity. It is the sum of one-body and two-body terms and
is defined as

W/e2 = −
∑
i<j

qiqj rij · dv

drij

(rij ) −
∑

i

qiri · dva

dri

(ri).

(11)

Since r d
dr

(
1
r

) = − 1
r
, we have in three dimensions that

W/e2 = H/e2 − Q2
a

2Ra

+ Q2
b

2Rb

, (12)

while in two dimensions:

W/e2 = 1

2

∑
i

∑
j �=i

qiqj + Qa

∑
i

qi . (13)

Taking into account electro-neutrality, the latter expression
yields

W/e2 = 1

2

[
Q2

b − Q2
a −

∑
i

q2
i

]
. (14)

In particular, if there is only one species of charged particles,
qi = q, electro-neutrality reads qN + Qa + Qb = 0, and
W takes a particularly simple form

W/e2 = 1

2

[
Q2

b − Q2
a + q(Qa + Qb)

]
. (15)

The contribution to the virial due to hard core repulsion
can be disregarded under special circumstances as men-
tioned in Section 2.3. In general, this hard core term reads

WHC =
∑
i<j

(
−rij · d

drij

vHC(rij )

)
= 1

β

∑
i<j

[
rij δ(rij − aij

+)
]
,

(16)
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2412 J.P. Mallarino et al.

where aij is the shortest distance between ions, which have
been assumed spherical here.

2.2. Derivation of the generalised contact
theorem

2.2.1. Spherical geometry (d = 2 and d = 3)

We aim at getting a relationship between the densities at
each boundary. This relation can be obtained by computing
the volume derivative of the free energy following two dif-
ferent routes. Let us compute the derivative of the partition
function with respect to Rb, with fixed Ra, Qa, Qb, and N.
Let Vb = 4πR3

b/3 (3D) or Vb = πR2
b (2D) be the volume

(area) enclosed by the cell. We have

dV (Ra,Rb)

dVb

= σ 2
b

2χ
, (17)

with χ = 1/(4π ) in three dimensions, χ = 1/(2π ) in two
dimensions, and σ b is the surface charge density at the outer
shell. In 3D, Qi = 4πR2

i σi , while in 2D, the σ i with i = a
or i = b have the meaning of a line charge: Qi = 2πRiσ i.

An explicit derivation of Z∗ with respect to Rb reduces
the N-multiple integrals to (N − 1)-multiple integrals with
the position of one particle fixed at r = Rb (see e.g. [21]),
thus giving a term directly related to the density at r = Rb:

∂ ln Z∗

∂Vb

= n(Rb), (18)

where n(Rb) is the total density at the edge of the cell. In
the case of a multicomponent system, it is the sum of the
densities of each species n(Rb) = ∑

αnα(Rb).
Alternatively, the derivative can be computed using the

following scaling argument. In the configurational integral,
we make the change of variable r = r̃Rb, such that the
upper limit of integration is 1. On the other hand, the lower
limit of integration depends on Rb, since it is now Ra/Rb.
Also, the Boltzmann factor in the integral now depends on
Rb:

Z∗ = RNd

∫ ∏
i

di

∫
[Ra/Rb,1]N

∏
i

r̃d−1
i dr̃i

× exp

⎡⎣−βe2

⎛⎝∑
i<j

qiqj v(Rbr̃ij ) +
∑

i

qiva(Rbr̃i)

⎞⎠⎤⎦ ,

(19)

where d = 2, 3 is the dimension and i corresponds to the
solid angle. Taking the derivative with respect to Vb, gives

∂ ln Z∗

∂Vb

= N

Vb

+ 1

Vb d
〈βW 〉 + Va

Vb

n(Ra), (20)

where the brackets 〈...〉 denote statistical (canonical) aver-
age. Therefore, we have the relation

Vbn(Rb) = N + 1

d
〈βW 〉 + Van(Ra). (21)

We note in passing that this relation can also be obtained
from application of the virial theorem 〈2T + W〉 = 0,
where the average kinetic energy is 〈T〉 = (d/2)NkBT, and
the full virial W is W plus the contributions from the forces
from both domains walls at Ra and Rb. However, the scal-
ing argument presented above is more general and can be
adapted to other problems where the virial theorem does
not apply, for example in non-bounded systems, such as the
cylindrical geometry presented below.

2.2.2. Cylindrical geometry (d = 3)

An intermediate case between 2D and 3D is the cylindrical
geometry, where Qa and Qb are the charges of two concen-
tric cylinders with radius Ra and Rb, and length L → ∞.
The volumes become Va = πR2

aL and Vb = πR2
bL. The

interaction potential between the ions is the 3D Coulomb
potential v(r) = 1/r, but the interaction between the inner
cylinder and an ion is logarithmic va(r) = −2(Qa/L)ln r.
The counterpart of Equation (21) follows from noticing
that volume changes to the cell are conceived transversally
to the cylinder. Therefore, the contact theorem reads identi-
cal to Equation (21) with d = 2, and the virial W is defined
as

W/e2 =
∑
i<j

qiqj

r⊥
ij

2

r3
ij

+ 2
Qa

L

∑
i

qi, (22)

where rij is the distance between the ion i and the ion j, and
r⊥
ij is the norm of the projection on a transversal plane to the

cylinders of the position vector between ions i and j. The
equivalent to Equation (21) reads, in the cylindrical geom-
etry, specialising to a one-component system (ion charge
q)

πR2
bn(Rb) = N

L
+ e2QaqN

L2
+ β(qe)2

2L

〈∑
i<j

r⊥
ij

2

r3
ij

〉
+πR2

an(Ra). (23)

2.3. Hard core contribution

In addition to the Coulomb interaction, the inclusion of
ion-size effects modifies the average of the virial by an ad-
ditional term WHC, that can be computed using simulations.
Indeed, the calculation of that term involves prior knowl-
edge of the two-point correlation function, as Equation
(16) suggests. It can be shown that this contribution to the
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Molecular Physics 2413

particle density scales as the packing fraction of the ions
and the average value of the ion–ion pair correlation func-
tion at contact. In this work, we shall neglect the effects of
hard core. This is correct for salt-free system, where hard
core effects are irrelevant, and is asymptotically acceptable
for dilute and/or weakly coupled salt systems. In all gener-
ality, the hard core term should be introduced in Equation
(21). It is, furthermore, interesting to note that hard core do
not affect the validity of the planar results mentioned in the
introduction, while they do impinge on the results in curved
domains addressed here. We come back to this comment in
Section 3.2.

3. Explicit expressions and the planar limit

The previous contact-like relations, Equations (21) and
(23), establish a connection between the contact densities
n(Ra), n(Rb), the surface charges σ a, σ b, and the mean
value of some known function of ions’ coordinates. It is
instructive to analyse separately the three different geome-
tries depicted in Figures 1 and 2, in order to simplify the end
result to the greatest extent. This is the goal of this section,
where in each case, it will be checked that upon taking the
planar limit, one recovers as expected the constraint (3).

3.1. Two dimensions

Using the explicit expression (14) of W in two dimensions,
Equation (21) becomes

R2
a

(∑
α

nα(Ra) − πβe2σ 2
a

)
+ 1

π

∑
α

Nα

(
1 − βe2q2

α

4

)

= R2
b

(∑
α

nα(Rb) − πβe2σ 2
b

)
. (24)

Interestingly, if there is only one type of particles in the
system, this expression can be ‘separated’ into terms de-
pending only on each boundary:

R2
a

[
n(Ra) − πβe2σ 2

a + 2eσa

qRa

(
βe2q2

4
− 1

)]
= R2

b

[
n(Rb) − πβe2σ 2

b − 2eσb

qRb

(
βe2q2

4
− 1

)]
.

(25)

This is obtained using the electro-neutrality condition Nq
= −2π (σ aRa + σ bRb). Note that the ratio σ i/q is negative
(i = a or i = b).

The contact theorem for planar walls can be recovered.
In the limit Ra → ∞ and Rb → ∞ with Rb − Ra = h < ∞,

the ‘curvature’ terms ± 2σ
qR

(
βe2q2

4 − 1
)

from (25) vanish,

and introducing the coupling parameter � = βe2, we obtain

the well-known expression

n(Ra) − π�σ 2
a = n(Rb) − π�σ 2

b . (26)

This is the counterpart, for a 2D system, of the constraint
(3) put forward in the Introduction. For a multicomponent
electrolyte, the term

∑
α Nα

(
1 − βe2q2

α/4
)

should be ex-
tensive in the planar limit, i.e. proportional to Rah. There-
fore, it is negligible in front of the other terms of Equation
(24), which are proportional to R2

a or R2
b , and we recover

again (26).

3.2. Three dimensions – spherical geometry

In three dimensions, by using relation (12) between the
virial and the Hamiltonian, Equation (21) can be written
as

R3
a

(∑
α

nα(Ra) − 2πβe2σ 2
a

)
+ 1

4π

(
3
∑

α

Nα + β〈H 〉
)

= R3
b

(∑
α

nα(Rb) − 2πβe2σ 2
b

)
. (27)

Contrary to the 2D case, this expression cannot be ‘sepa-
rated’ into contributions from each boundary, even in the
case of a single component system. Reintroducing the per-
mittivity of the solvent that was omitted in the Hamiltonian
(i.e. substituting βe2 by �B), Equation (27) simplifies to

R3
a

(
n(Ra) − 2π�Bσ 2

a − 3σa

qRa

)
+ β〈H 〉

4π

= R3
b

(
n(Rb) − 2π�Bσ 2

b + 3σb

qRb

)
. (28)

In the planar limit, the term 3N − β〈H〉 is extensive, i.e.
proportional to R2

ah; therefore, it is negligible in front of
the other terms of Equation (27) which are proportional to
R3

a or R3
b . Note that a similar remark applies to the hard

core contribution stemming from WHC, which also yields a
negligible term in the planar limit. Then, we have

n(Ra) − 2π�Bσ 2
a = n(Rb) − 2π�Bσ 2

b , (29)

and we recover the contact theorem (3) for planar interfaces,
in three dimensions. It can be noted that relation (29) does
also apply in the mean-field Poisson–Boltzmann framework
(which in itself is noteworthy), where it bears the name of
Grahame equation [35].

3.3. Three dimensions – cylindrical geometry

To investigate the situation corresponding to Figure 2, we
introduce the two-body correlation function n

(2)
αγ between
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2414 J.P. Mallarino et al.

ions of charge qα and qγ . Let z be the component of r1 − r2

along the axis of the cylinders and r⊥
1,2 the transverse com-

ponents. For an infinite cylinder (L → ∞), the correlation
function depends only on z, r⊥

1 , and r⊥
2 . In terms of the

total correlation function hαγ , the correlation function is
nαγ (r1, r2) = nαnγ (1 + hαγ (r⊥

1 , r⊥
2 , z)), where nα , nγ are

the average densities of particles of species α and γ . It is
shown in Appendix 1 that

R2
b(n(Rb) − 2π�Bσ 2

b ) − R2
a(n(Ra) − 2π�Bσ 2

a )

= N

πL
+ e2

2π

∫
d2r⊥

1 d2r⊥
2

∫ +∞

−∞
dz e2

×
∑
αγ

qαqγ nαnγ hαγ (r⊥
1 , r⊥

2 , z)
r⊥

12
2(

r⊥
12

2 + z2
)3/2

.

(30)

A few limiting cases can be obtained from here. At the
mean-field level, hαγ = 0, then the previous relation reduces
to

R2
b(n(Rb) − 2π�Bσ 2

b ) − R2
a(n(Ra) − 2π�Bσ 2

a ) = N

πL
.

(31)

It is interesting to note that this relation can be straight-
forwardly recovered from Equation (24), specified to the
mean-field limit in which βe2 does vanish, the different
valencies qα being fixed. Indeed, the mean-field limit is
described by a partial differential equation (the Poisson–
Boltzmann framework [3]), and does not depend on the di-
mension of the system. This means that a circular charged
rim in a concentric Wigner–Seitz circle, leads to the same
electrostatic potential as a charged cylinder inside a concen-
tric Wigner–Seitz cylinder. This is quite remarkable since
the starting Hamiltonians, before taking the limit of weak
coupling, differ somewhat. We see here an illustration of
this property, since enforcing βe2 → 0 in (24) yields [36]

R2
a

(∑
α

nα(Ra) − πβσ 2
a

)
+ 1

π

∑
α

Nα

= R2
b

(∑
α

nα(Rb) − πβσ 2
b

)
, (32)

which is the counterpart of (31) (the 2D and 3D cases
are connected through the substitution � = βe2↔2�B and
N↔N/L).

Beyond mean field, that is for general coupling, the
planar limit, Ra → ∞, Rb → ∞ with h = Rb − Ra finite, is
recovered by noticing that the right-hand side of (30) is of
order Ra (or Rb), while the left-hand side is of higher order

R2
a , then

n(Rb) − n(Ra) = 2π�B(σ 2
b − σ 2

a ). (33)

We expectedly recover the planar contact theorem, see
e.g. (29), or equivalently (3). More generally, for a one-
component system, Equation (30) becomes

R2
b

(
n(Rb) − 2π�Bσ 2

b + 2eσb

Rbq

)
−R2

a

(
n(Ra) − 2π�Bσ 2

a − 2eσa

Raq

)
= n2�B q2

2π

∫
d2r⊥

1 d2r⊥
2

∫ +∞

−∞

× dz h(r⊥
1 , r⊥

2 , z)
r⊥

12
2(

r⊥
12

2 + z2
)3/2

. (34)

4. Application I : cylindrical colloids

Knowing the generalisation of the contact relation Equation
(3) to curved geometries, we are in a position to discuss sev-
eral applications. First, we show how known results can be
readily recovered for the 2D case. Then, new results will
be derived for the screening of 3D cylinders, where ob-
taining the contact densities in closed form is not possible.
Accurate analytical expressions will be derived, and a by-
product of the analysis will be an expression for the fraction
f of condensed ions at finite density, whereas the celebrated
Manning scenario [43] prescribes f at infinite dilution only
(where it takes the value fM = 1 − 1/ξ , ξ being the dimen-
sionless line charge to be defined below).

4.1. Screening of a two-dimensional disk

We consider the 2D case, with a one-component system
of counterions. Let � = βe2 be the Coulombic coupling
constant. For σ b = 0 and by electro-neutrality, the total
number of ions is N = |Qa/q|. Equation (25) reads

πR2
an(Ra) − �

4

(
Qa

q

)2

−
∣∣∣∣Qa

q

∣∣∣∣ (�

4
− 1

)
= πR2

bn(Rb).

(35)

Now, let us investigate the situation when Rb → ∞. If Rb =
∞, the derivation presented in Section 2.2 can be adapted.
However, this system presents the Manning condensation
phenomenon [37], where only a partial fraction of the ions
remains bound to the charged disk [33,38,39]. If Rb = ∞,
the partition function Z∗ of Equation (10) is not properly de-
fined, unless it is restricted only to the number of condensed
ions, as unbound ions give divergent contributions. Thus,
in (10), N should be replaced by Nc which is the number of
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condensed ions onto the disk. The analogue of (35) is

πR2
an(Ra) = −Nc

[
1 − �

4
+ �

4

(
Nc − 2

∣∣∣∣Qa

q

∣∣∣∣)] .

(36)

Comparison with (35) yields the density at the outer disk in
the limit Rb → ∞

πR2
bn(Rb) =

(∣∣∣∣Qa

q

∣∣∣∣− Nc

)(
1 − �

4
− �

4

(∣∣∣∣Qa

q

∣∣∣∣− Nc

))
.

(37)

If Rb is very large but not infinite, the picture of the separa-
tion of the systems into two fluids, formed by the condensed
counterions and the unbound one holds, and Equations (36)
and (37) should be valid. The condensed number of coun-
terions is [33,39–41]

Nc =
⌈∣∣∣∣Qa

q

∣∣∣∣− 2

�

⌉
=
∣∣∣∣Qa

q

∣∣∣∣− ⌊
2

�

⌋
, (38)

where �x and �x� are the ceiling and floor functions. The
last equality in (38) is only valid when |Qa/q| is an integer,
which is the case here since |Qa/q| = N. It should be kept
in mind that Nc should remain positive, which is not always
the case with formula (38). It is therefore understood that
whenever (38) leads to a negative quantity (�2/�� > |Qa/q|),
Nc = 0, meaning that counterion evaporation is complete.
Here, the number of condensed ions Nc was obtained as
follows. It is the smallest number of counterions such that
the partition function of the disk of charge Qa with Nc con-
densed counterions plus one additional unbound counterion
is divergent when Rb → ∞, indicating that the additional
counterion is really unbound from the disk. According to
this definition, if the system has Nc − 1 counterions bound
to the disk, it is able to bind one last additional charge [42].

Replacing (38) by (36) gives the density at contact with
the charged disk

πR2
an(Ra) = �

4

(
Qa

q

)2

+
∣∣∣∣Qa

q

∣∣∣∣ (�

4
− 1

)
+
⌊

2

�

⌋(
1 − �

4
− �

4

⌊
2

�

⌋)
, (39)

with correspondingly,

πR2
bn(Rb) =

⌊
2

�

⌋(
1 − �

4
− �

4

⌊
2

�

⌋)
. (40)

The above expressions hold provided evaporation is not
complete, while for �2/�� > |Qa/q| = N, we have

n(Ra) = 0 and

πR2
bn(Rb) = −�

4

(
Qa

q

)2

−
∣∣∣∣Qa

q

∣∣∣∣ (�

4
− 1

)
. (41)

These results deserve several comments. At arbitrary
coupling, the planar limit (26) should be recovered for
Ra → ∞, and fixed σ a (with thus Qa → ∞). This is indeed
the case, since linear terms in Qa can be neglected against
quadratic ones in (39). Second, they reproduce the mean-
field limit, as it should, for � → 0. This can be checked
enforcing condensation to occur (�2/�� < N). To ensure
compatibility of this constraint with the limit � → 0, we
can work at fixed �N and N → ∞. Equation (39) then
yields, neglecting a term in N� against those in 1/�∝N

ρ̃(Ra) = n(Ra)

π�σ 2
a

� 1

4π2R2
aσ

2
a �

(
�N2 − 4N + 4

�

)
=
(

N� − 2

N�

)2

. (42)

With the substitution N� → 2ξ , this is precisely of the
Poisson–Boltzmann form (54), valid when ξ > 1. Turning
to the contact density at Rb, we obtain from (40) that

πR2
bn(Rb) = 1

�
, � → 0, (43)

which indeed is the mean-field expression, reminded in (58)
below. For the particular case of 2/� > N (i.e. ξ < 1), we
obtained that Nc = 0; hence, the density at Ra is trivial:
n(Ra) = 0. On the outer shell,

πR2
bn(Rb) = N

[
1 − N�

4

(
1 + 1

N

)]
. (44)

This is fully compatible with the result from Poisson–
Boltzmann theory

ρ̃(RB) = πR2
an(Rb)

π�σ 2
a

=
(

Ra

Rb

)2 2

N�

(
2 − N�

2

)
. (45)

However, for arbitrary �, the result for n(Rb) departs from
mean field, which might come as a surprise since the
charged fluid of counterions becomes extremely dilute at
Rb. In three dimensions, diluteness ensures that mean field
applies far from the charged cylinder, irrespective of the
strength of coupling [34]. In 2D, on the other hand, no mat-
ter how far from the charged cylinder the counterions are,
they are still coupled, due to the scale invariance of the
logarithmic interaction [17].

Third, for � ≥ 2, the right-hand side of (40) vanishes,
showing that n(Rb) decays faster than R−2

b . This can be
understood by noticing that for � ≥ 2, the number of con-
densed counterions is Nc = |Qa/q|. Thus, far from the disk,
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Figure 3. (Colour online) The symbols show the density ρ̃ at
contact in r = Ra (green) and r = Rb (red) as a function of the
coupling parameter �, as obtained in Monte Carlo simulations;
here, log (Rb/Ra) = 100, N = |Qa/q| = 10 and q = 1. The tilde
notation follows from rescaling the densities with the value in the
planar case π �σ 2

a such that ρ̃ = n/(π�σ 2
a ). The dashed curves

represent the Rb → ∞ formulation from Equation (39) supple-
mented with na = 0 for � < 2/N, and Equations (40) and (41)
as far as the density at the outer boundary Rb is concerned. The
arrows indicate the location of � = 2, the borderline to complete
condensation beyond which n(Rb) = 0.

the effective potential that one single ion of charge q at a
distance r feels is that of the charged disk plus N − 1 re-
maining condensed ions. That object has a total charge −q,
which therefore leads to an effective potential of the form
Ueff(r) = qln r. One should consequently expect that the
density behaves as n(r) ∼ e−βqUeff(r) = r−� and it does de-
cays faster that r−2 when � ≥ 2. For � = 2, an exact result
[40,41] shows that R2

bn(Rb) ∼ 1/(2 ln(Rb/Ra)) as Rb →
∞. Finally, we show in Figure 3 that Equations (39) and
(40) are in excellent agreement with the Monte Carlo data,
provided Rb is large enough. The notation for the densities
used in the plots corresponds to a rescaling with the exact
planar result, i.e. ρ̃ := n/nplate ≡ n/

(
π�σ 2

a

)
. The figure

corresponds to Rb/Ra = e100, while decreasing this ratio
leads to rather strong finite size effects, that will be studied
elsewhere [41]. We note that for � < 2/N, n(Ra) = 0, as a
fingerprint of the vanishing of Nc (to anticipate a coming
and often used notation, this corresponds to ξ < 1 [37]).

In the strong coupling limit (large �) and in the absence
of an external boundary charge, condensation is complete:
the number of condensed ions is maximal, Nc = N. More
precisely, this occurs as soon as � > 2. For such a situation,
Equation (39) becomes

πR2
an (Ra) = N2�

4

(
1 − 4

N �
+ 1

N

)
. (46)

It can be seen in Figure 4 that this expression coincides
with the Monte Carlo measures, for � > 2. Note that

0 1 2 3 4 5 6 7 8
0

0,5

1

N=5
N=10ρ

| r=
R

a

Γ

Figure 4. The symbols show the density ρ̃ at contact (r = Ra),
as a function of the coupling parameter �, for N = 5 and N =
10. The dashed and dashed-pointed curves represent the analytic
prediction for full condensation from Equation (46). The dotted
arrow pointing upwards shows the threshold to full condensation.

(46) carries the leading order from the planar limit, i.e.
πR2

an (Ra) = N2�/4. The result (46) can indeed be re-
covered by adapting the Wigner strong coupling approach
presented in Refs [15,16] to the present case. Implement-
ing this technique turns out to slightly differ from the planar
geometry (corresponding to a line in 2D) where the profile,
to leading order, is given by the interaction with the surface
charge alone. Here, the remaining condensed counterions
also contribute to the profile to leading order; thus, the
contact density carries this trait as well. The details of the
derivation are presented elsewhere [40,41] with the result
that the density profile behaves as n(r) ∼ r− N�

2 − �
2 and the

corresponding density at contact is precisely given by (46).

4.2. Screening of a cylindrical macro-ion

In this section, we focus on the cylindrical geometry (see
Figure 2), where only the inner cylinder is charged (Qb =
0), and is screened by counterions of charge q. To make
the connection with previous works [38], it is convenient to
introduce the following notations: the Manning parameter
ξ = 2π�BRaq|σ a|, the Coulomb coupling parameter � =
2π�2

Bq3|σa| [14,15,17], and ρ̃(r) = n(r)/(2π�Bσ 2
a ). Due to

electro-neutrality, the total number of counterions is such
that N/L = ξ /�B, with a slight abuse of language (we deal
with systems of infinite length L, with thus a divergent N).
With these notations, the relation (23) reads

ρ̃(Ra) = 2
ξ − 1

ξ
+
(

Rb

Ra

)2

ρ̃(Rb) − �2
B

2ξ 2L

〈∑
i

∑
j �=i

r⊥
ij

2

r3
ij

〉
.

(47)
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Figure 5. Summary diagram emphasising the different regimes for the cylinder problem and the value for the contact densities. (a) and
(c) represent ‘artistic’ views of the needle (thin) and thick limits. Both correspond to strong coupling � � 1, with ξ � �1/2 (needle/thin,
where ions form a quasi 1D Wigner crystal) or ξ � �1/2 (thick case, where ions form a curved 2D crystal). In panel (b), the dashed
line represents ξ = √

�, the borderline between the needle and the thick cylinder regimes. Poisson–Boltzmann theory applies, roughly
speaking, for � < 1, while the upper part of the diagram is for the strong coupling regime � � 1. An intermediate region stands between
the strong coupling needle and thick limits and mean field where the properties of the system are of neither nature.

Next, we consider the situation when Rb → ∞. If Rb = ∞,
the derivation presented in Section 2.2 should be adapted.
In the cylindrical geometry, again, only a partial fraction f
of the ions remain bound to the charged cylinder if Rb is
very large. Thus, in (10), N should be replaced by Nc =
fN, the number of condensed counterions, where f is the
fraction of such ions. Then, when Rb → ∞, Equation (21)

LπR2
an(Ra) = −Nc + 1

2
〈βW 〉, (48)

whereas above, it should be understood that we consider
the limit L → ∞. In W, only the contribution from the
condensed ions should be included. That is

ρ̃(Ra) = 2

(
ξ − 1

ξ

)
f − �2

B

2ξ 2L

〈∑
i∈B

∑
j∈B,j �=i

r⊥
ij

2

r3
ij

〉
,

(49)

where B is the set of bound (condensed) ions to the charged
cylinder. Comparing (47) to (49), one can deduce that in the
limit Rb → ∞, the density at the outer cell, n(Rb), satisfies

(
Rb

Ra

)2

ρ̃(Rb) = 2
ξ − 1

ξ
(f − 1) + �2

B

2ξ 2L

[〈∑
i

∑
j �=i

r⊥
ij

2

r3
ij

〉

−
〈∑

i∈B

∑
j∈B,j �=i

r⊥
ij

2

r3
ij

〉]
(50)

where in the averages, the first sum includes correlation
between all the counterions (both bound and unbound),
whereas in the second sum, only correlations between the
bound ions are taken into account.

If Rb = ∞, the fraction of condensed ions is f = fM =
(ξ − 1)/ξ . This is the celebrated Manning result [21,43,44].
Then

ρ̃(Ra) = 2

(
ξ − 1

ξ

)2

− �2
B

2ξ 2L

〈∑
i∈B

∑
j∈B,j �=i

r⊥
ij

2

r3
ij

〉
(51)

and(
Rb

Ra

)2

ρ̃(Rb) = 2
1 − ξ

ξ 2
+ �2

B

2ξ 2L

[〈∑
i

∑
j �=i

r⊥
ij

2

r3
ij

〉

−
〈∑

i∈B

∑
j∈B,j �=i

r⊥
ij

2

r3
ij

〉]
. (52)

In the following, three different limits will be investigated.
We will start by the mean-field Poisson–Boltzmann regime
(� � 1) before taking the opposite view and work out the
effects of strong correlations (� � 1). There, one should
discriminate the cases where ξ � �1/2 and ξ � �1/2, which
can, respectively, be coined ‘thick’ and ‘thin’ (or needle) sit-
uations [34]. Cases with ξ � �1/2 correspond to a crossover
where analytical progress is more difficult, and will not
be addressed. The difference between the thin and thick
cases can be appreciated pictorially in Figure 5, panels (a)
and (c).
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4.2.1. Mean-field limit

For Rb → ∞, in the mean-field approximation stemming
from � → 0, the last term of (51) can be computed fol-
lowing the same lines as in Section 3.3, neglecting the
correlation function h and only considering the condensed
number of ions Nc = (ξ − 1)L/�B instead of N. Then

�2
B

2ξ 2L

〈∑
i∈B

∑
j∈B,j �=i

r⊥
ij

2

r3
ij

〉
=
(

ξ − 1

ξ

)2

(53)

and we obtain

ρ̃(Ra) =
(

ξ − 1

ξ

)2

= f 2
M. (54)

We thereby recover the known value [34], as following from
Poisson–Boltzmann theory, for an original approach. The
above expression assumes that ξ > 1, so that counterion
condensation effectively takes place. All parameters being
kept fixed but the cylinder radius Ra, one should recover
the planar limit, reading here ρ̃a = 1, when Ra → ∞. Re-
membering that ξ ∝ Ra, this is indeed the case, as is seen
by taking the limit ξ → ∞ in Equation (54).

4.2.2. Strong coupling and large dilution – thin
cylinder limit

In the opposite limit (strong coupling regime) where � � 1,
an explicit calculation can be performed. We furthermore
need to assume the thin cylinder limit Ra/a′ = ξ 2f/� �
1, where a′ is the lattice constant of the one-dimensional
(1D) Wigner crystal formed by the condensed ions along
the cylinder [34], see Figure 5(a). If U denotes the set of
unbound ions, we have〈∑

i

∑
j �=i

r⊥
ij

2

r3
ij

〉
−
〈∑

i∈B

∑
j∈B,j �=i

r⊥
ij

2

r3
ij

〉
= 2

〈∑
i∈B

∑
j∈U

r⊥
ij

2

r3
ij

〉

+
〈∑

i∈U

∑
j∈U,j �=i

r⊥
ij

2

r3
ij

〉
. (55)

Even if the coupling is strong near the charged cylinder, in
the far region, the unbound ions are diluted enough so that
mean field applies to them [34]. Thus, the second term on
the right-hand side of (55) can be evaluated neglecting the
correlations. Let nu(r⊥) denote the density of uncondensed
ions (which does not depend on the z coordinate). Then,
using (A4) to perform the integrals along the axis of the
cylinder

〈∑
i∈U

∑
j∈U ,j �=i

r⊥
ij

2

r3
ij

〉
=
∫

d2r⊥
1 d2r⊥

2 dz1dz2nu(r⊥
1 )nu(r⊥

2 )
r⊥

12
2

r3
12

= 2L

∫
d2r⊥

1 d2r⊥
2 nu(r⊥

1 )nu(r⊥
2 ) = 2N2

u/L, (56)

where Nu = N − Nc is the total number of uncondensed ions.
The other contribution to (55) can be computed by suppos-
ing that the uncondensed ions are completely uncorrelated
from the condensed ones and form a gas of density nu(r⊥)〈∑

i∈U

∑
j∈B

r⊥
ij

2

r3
ij

〉
= Nc

〈∑
i∈U

r⊥
i

2

r3
i

〉

= Nc

∫
d2r⊥dz nu(r⊥)

r⊥2

r3

= 2Nc

∫
d2r⊥ nu(r⊥)

= 2NcNu/L. (57)

So far, relations (56) and (57) hold, irrespective of the
value of the condensed fraction f, with Nc = fN and Nu =
(1 − f)N. They will therefore be used in the subsequent
analysis, where because of finite size effects, f takes a
non-trivial value (and thus differs from fM = 1 − 1/ξ ).
Here, we consider the case of large log (Rb/Ra), where f →
1 − 1/ξ . In other words, we have now that Nu/L = 1/�B and
Nc/L = (ξ − 1)/�B. Gathering results in (52), we obtain

(
Rb

Ra

)2

ρ̃(Rb) = 1

ξ 2
, (58)

which is consistent with the value given explicitly by the
Poisson–Boltzmann mean-field solution [19,33]. Indeed,
irrespective of the coupling parameter �, the ions far from
the charged cylinder at Ra are dilute enough so that mean
field does hold.

This is not the case in the vicinity of the charged cylin-
der. The density at contact (51) can be evaluated as follows.
In the strong coupling and the thin cylinder limit, the z
coordinates of condensed ions are fixed zn = na′, where
n is an integer (the ions form a quasi-1D Wigner crystal).
The leading order contribution to the potential energy of
the system is given by the cylinder-ion terms, allowing for
small vibrations in the radial direction r⊥, with a one-body
Boltzmann factor proportional to r⊥2ξ . Thus〈∑

i∈B

∑
j∈B,j �=i

r⊥
ij

2

r3
ij

〉
= Nc

∑
n∈Z∗

2

|n|3a′3

∫
r⊥>Ra

r⊥2ξ
r⊥2

d2r⊥∫
r⊥>Ra

r⊥2ξ d2r⊥

= 4ζ (3)f 3 ξ 5

�2�B

Nc

ξ − 1

ξ − 2
, (59)

where ζ (t) = ∑∞
n=1 n−t is the Riemann zeta function. Then,

replacing into (51), we have

ρ̃(Ra) = 2

(
ξ − 1

ξ

)2
(

1 −
(

ξ − 1

ξ

)3
ξ

ξ − 2

(
ξ 2

�

)2

ζ (3)

)
.

(60)
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This is in full agreement with the prediction from [34],
where it was obtained by completely different means, gen-
eralising the route outlined in [15,16]. The term with ζ (3)
should be seen as a small correction, meaning that to leading
order, the contact density is twice its mean-field counterpart
(ξ − 1)2/ξ 2, see Equation (54).

4.2.3. Strong coupling and thin cylinder limit: the
contact density for finite Rb

We have seen that under large dilution (Rb → ∞), the
fraction f of condensed ions goes to its known Manning
limit fM = 1 − 1/ξ . The same limiting expression is reached
in the mean-field regime as well (� → 0, at fixed ξ ). At
arbitrary coupling � and at finite although large Rb, the
situation is more complex, and plagued by severe finite
size effects [33,34,38]. It has been reported that one has in
general f > fM, but no analytical expression is available in
general for f. Under strong coupling � � 1, an empirical
equation was put forward in [34], which relates f to the
coupling parameter � and log Rb/Ra:

f − fM

fM

� log � − δ

log Rb

Ra

. (61)

For the range of values of ξ (between 3 and 5) and Rb/Ra

explored in [34], δ ≈ 4.5 within a margin of 20%. We will
soon be in a position to provide a justification of expression
(61) (Section 4.2.4), but before turning to these consider-
ations, we leave f as an unknown parameter and check for
the consistency of the contact relations in which it appears.

We assume that Rb/Ra is finite, but large enough to al-
low for a clear-cut distinction between bound and unbound
populations. Going back to (49) and neglecting the term in
brackets, which is valid under strong coupling, we have

ρ̃(Ra) � 2 fM f. (62)

The term neglected on the right-hand side of (49) can be es-
timated to behave like �2

BNcR
2
a/(ξ 2La′3) ∝ (R2

a/a
′2) � 1,

from the needle constraint (see Figure 5(a)), which can also
be expressed as ξ � √

�. This very feature can also be
observed in Equation (60), where the term in ζ (3) is a cor-
rection to the dominant behavior. Introducing a parameter
t := ξ (f − fM ) (t ∈ [0, 1]), the contact density (62) can be
written as

ρ̃(Ra)

2f 2
M

� 1 + t

ξ − 1
. (63)

This is in excellent agreement with Monte Carlo data, see
Figure 6, where f is in general unknown, but measured
from the measured profiles following the inflection point
criterion often used to quantify condensation [34,44,45],
and to separate the bound from the unbound ions.

0 0,2 0,4 0,6 0,8 1
1

1,1

1,2

1,3

1,4

1,5

Ξ=103 

Ξ=104 

ξ=3 

ξ=4 

ξ=5ρ
(R

a
)/

2
f

2 M

t

Figure 6. Contact density as a function of t = ξ (f − fM), which
measures the deviation from infinite dilution condensation frac-
tion. The prediction from Equation (63) corresponds to the dashed
lines in the plot. Upon changing the system size (in the range 10 <
log (Rb/Ra) < 100), the fraction of condensed ions f changes, which
causes t to vary. Error bars are smaller than the tick size.

Conversely, for the outer shell, we have to proceed from
Equation (50), where it is no longer possible to neglect the
terms in square brackets. Making use of Equations (55),
(56), and (57), we obtain

(
Rb

Ra

)2

ρ̃(Rb) = (1 − fM )2 − (f − fM )2. (64)

In t representation, this gives

ξ 2

(
Rb

Ra

)2

ρ̃(Rb) = 1 − t2, (65)

which is a universal parabola, irrespective of ξ . Here also,
the comparison with Monte Carlo is very good, see Figure 7.

4.2.4. Estimation of the condensed fraction for finite Rb

We have so far derived contact relations at Ra (inner sur-
face) and at Rb (outer surface), which have been shown to
be confirmed by Monte Carlo simulations. These relations
involve the condensed fraction, f, which is only known in
the truly dilute limit where Rb → ∞, in which case f →
fM = 1 − 1/ξ . However, f, as several other quantities of in-
terest, approaches its dilute limit in a logarithmic fashion,
and our goal here is to derive an explicit expression for the
size dependence of f. To this end, we develop in Appendix
2 a heuristic approach, which relies on the assumption that
the bound (condensed) and unbound fluids can be clearly
separated. The idea is to start from the following contact
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Figure 7. Same as Figure 6 for the rescaled density at the outer
surface ξ 2(Rb/Ra)2 ρ̃(Rb) is shown as a function of t. Note that the
analytic prediction from Equation (65), represented by the dotted
curve, is independent of ξ .

balance equation(
Rb

Ra

)2
ρ̃(Rb)

ρ̃(Ra)
= (1 − fM )2 − (f − fM )2

2fMf
, (66)

and to search for an alternative expression for the ratio of
densities appearing on the left-hand side. This is done in Ap-
pendix 2. Combining Equation (66) with Equation (B13),
and making again use of t = ξ (f − fM), we obtain

− log
(
1 − t2

)
2ξ

+
(

1 + fM

2
+ t

ξ

)
log

(
1 + t

fMξ

)
+ t

ξ

{
log

Rb

Ra

− log � − 1 + fM

2fM

− B (ξ )

}
= fM

{
log � − A

(
ξ,

Rb

Ra

)}
, (67)

with A and B given by

A
(

ξ,
Rb

Ra

)
= 2 log ξ + γ − log 2 + log fM

+
2
(

log
[
log Rb

Ra

]
− 1

)
+ log

[
2ξ 2f 2

M

]− 1

2fMξ
,

B (ξ ) = −2 log ξ − γ + log 2 − log fM − 1 + fM

2fM

.

(68)

Equation (67) simplifies in the limit of small t (i.e. large
box size), where

t � fMξ
log � − A

(
ξ, Rb

Ra

)
log Rb

Ra
− log � − B (ξ )

. (69)
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Figure 8. Condensed fraction under strong coupling for ξ = 4
and 5 in a log–log plot, where error bars are less than the tick
size. The solid curve represents the numeric solution obtained
for Equation (67) and the symbols are from Monte Carlo. Notice
that the analytic solution predicts saturation near log Rb

Ra
≈ 10 for

� = 103 and log Rb

Ra
≈ 20 for � = 104. Numerical results for the

condensed fraction for ξ = 4 and the approximation from Equation
(70) (inset).

Equation (69) provides the leading order and the main func-
tional behaviour for the condensed fraction of ions in the
region below saturation. In the limit where log (Rb/Ra) is
large, we obtain the dominant behaviour as

f − fM

fM

≈
log � − A

(
ξ, Rb

Ra

)
log Rb

Ra

. (70)

It is noteworthy that we recover the same expression as in
the empirical Equation (61).

The numerical results from Monte Carlo simulations
are displayed in Figures 8 and 9, and compared both to
the analytic prediction solving numerically Equation (67)
and to the asymptotic large box size expansion of Equation
(70). The agreement is good; we are indeed in the relevant
regime of parameters where � � 1, with the additional
needle constraint ξ 2 � �. These results tell us that we
should expect saturation below a critical box size and above
a certain coupling. Finally, regardless of the box size, f →
fM when � < eA. The quantity A, as shown in Figure 10,
compares relatively well with the numerical estimation of
4.5 reported in [34].

4.2.5. Strong coupling – thick cylinder limit

In this subsection, we consider the strong coupling regime
� � 1, but for a thick cylinder, i.e. ξ/

√
� � 1. In this

limit, the radius Ra of the cylinder is much larger than
the lattice constant a of the Wigner crystal of counterions
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Figure 9. Condensed fraction under strong coupling for
log (Rb/Ra) = 30 in a log–linear plot. As in Figure 8, the sym-
bols are for Monte Carlo data and the curves for the solution
of Equation (67). The analytic result predicts saturation, visible
only for log (Rb/Ra) = 30 close to � ≈ 2 × 104. Monte Carlo
results for the condensed fraction compared the approximation
from Equation (70) (inset).

formed in the limit T = 0 in the surface of the cylinder. This
is depicted in Figure 5(c). The Wigner crystal is almost the
planar hexagonal lattice, with probably some defects to
accommodate to the curvature of the cylinder. The lattice
spacing a is given by a = cRa

√
�/ξ , with c = (4π/

√
3)1/2.

Let us consider the situation Rb = ∞ and focus on the
contact density at the charged cylinder. In the planar case
(Ra = ∞), it is ρ̃(Ra) = 1. We wish to estimate here the
first correction to this value due to the cylinder curvature.

Rescaling all lengths by a in (51) gives

ρ̃(Ra) = 2

(
ξ − 1

ξ

)2

− ξ − 1

2ξc
〈w̃〉

√
�

ξ
, (71)

10 100 

3
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ξ=4 
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Δ=30 
Δ=50 
Δ=100 

A
R

b
R

a
ξ,

log(Rb/Ra) ξ

Figure 10. Plot of A as a function of log (Rb/Ra) and ξ . The
value obtained in [34] corresponds to A � 4.5. Also, we used the
abbreviation � = log (Rb/Ra).

with w̃ = ∑
i∈B (̃r⊥

i )2/̃r3
i , where r̃i = ri/a are located at the

positions of the crystal arrangement. The summation in w̃

involves the bound ions, but we are here in a limit where the
fraction of bound ions is very close to unity (from previous
sections, we have that 1 > f > fM = 1 − 1/ξ , and ξ has to
be large, meaning that f � 1). We will therefore neglect the
unbound ions in this analysis. Since the surface is almost
planar (the curvature is measured by the ratio a/Ra � 1),
we can approximate w̃ = S1 + S2 with

S1 =
∑

n

+∞∑
j=−∞

n2

(n2 + 3j 2)3/2
(72)

and

S2 =
∑

n

+∞∑
j=−∞

(n + 1/2)2

((n + 1/2)2 + 3(j + 1/2)2)3/2
. (73)

The sum over n runs over all lattice points on the circumfer-
ence of the cylinder. That sum gives a leading contribution
which is of order 2πRa/a, the number of lattice points in
the circumference. Therefore, using the fact that

lim
n→∞

+∞∑
j=−∞

n2

(n2 + 3j 2)3/2
= 2√

3
, (74)

it is convenient to write

S1 = 2πRa

a
+

+∞∑
n=−∞

⎡⎣ +∞∑
j=−∞

n2

(n2 + 3j 2)3/2
− 2√

3

⎤⎦
(75)

and a similar equation for S2. Notice that the regularised
sum

S∗
1 =

+∞∑
n=−∞

⎡⎣ +∞∑
j=−∞

n2

(n2 + 3j 2)3/2
− 2√

3

⎤⎦ (76)

is convergent, and can be numerically evaluated: S∗
1 �

−0.80959. The regularised version of the second sum is
S∗

2 � −1.29712. Putting all results together

ρ̃(Ra) =
(

ξ − 1

ξ

)2
(

1 − 1

ξ − 1
− ξ

ξ − 1

S∗
1 + S∗

2

2c

√
�

ξ

)
.

(77)

Taking into account that 1/ξ corrections are sub-leading
terms compared to

√
�/ξ (since ξ � √

� � 1), and the
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Figure 11. (Colour online) Rescaled contact density at Ra(
ρ̃/f 2

M − 1
)

as a function of ξ/
√

�, on a log–log scale. The
crossover from the needle into the thick limit appears approxi-
mately at ξ/

√
� ≈ 0.4. The dashed curves represents the predic-

tion for the thin [black – Equation (60) without the correction in
ζ (3), valid on the left-hand side] and thick [blue – Equation (77)]
cases.

numerical values of the lattice sums S∗
1 and S∗

2 , we find

ρ̃(Ra) = f 2
M

(
1 + s

√
�

ξ

)
�
(

1 + s

√
�

ξ

)

with s := −S∗
1 + S∗

2

2c
� 0.391066. (78)

To leading order and for the sake of comparison with results
in spherical geometry, this can be rewritten as

ρ̃(Ra) = n(Ra)

2π�Bσ 2
a

� 1 +
√

q

πσa

s√
2
C, (79)

where C = 1/Ra is the curvature of the colloid.
We have assumed here the lattice on the cylinder to be

arranged such that sites separated by a distance a lie on the
circumference of the cylinder. One could also consider that
the lattice is arranged so that the sites on the circumference
are separated by

√
3a, that is, the previous lattice rotated

by π /2. The individual sums S1 and S2 change. For instance
the regularised equivalent of S1 will be

S∗∗
1 =

+∞∑
n=−∞

⎡⎣ +∞∑
j=−∞

3n2

(3n2 + j 2)3/2
− 2

⎤⎦ . (80)

Although the individual sums are different, their sum S∗
1 +

S∗
2 is the same, yielding the final result (77) unchanged.

To put this prediction to the test, we plot in Figure 11 the
contact density in a way that clearly evidences the correction
embedded in expression (77). When ξ >

√
� (the thick

cylinder range), the agreement is noticeable. This analysis
confirms the relevance of the parameter ξ/

√
� as ruling the

strong coupling large � regime.

10
0

10
10

0,5

1

1,5

2

Ξ=0.1 
Ξ=102 

Ξ=103 

ρ
| r=

R
a

ξ

Figure 12. (Colour online) Contact density at r = Ra versus
Manning parameter ξ for � = 0.1, 102, and 103; here Rb/Ra =
e300 and N = 300. The symbols are for the Monte Carlo data. The
dashed line shows the mean-field (Poisson–Boltzmann) prediction
(54), very accurate for small �. The dotted curve displays the
leading order form Equation (60), which does not depend on �.
The solid red and green curves represent the ‘thick’ prediction
from (78), respectively, for � = 102 and 103. The solid arrowed
horizontal lines represent the asymptotic infinite ξ needle (top)
and thick (bottom) limits. Note that at large enough �, the planar
limit (large ξ ) is approached from above, with contact densities
always larger than unity, at variance with mean-field behaviour.

Figure 11 exemplifies the crossover between the thin
and the thick cylinder limiting cases. A further illustration is
provided by Figure 12, showing the contact density. At small
�, it is not a surprise to see the mean-field result hold. At
large � (102 and 103 on the figure), the behaviour depends
on the ratio ξ /�1/2. If it is small, the thin cylinder formula
applies (dotted line), and leads to a rescaled contact density
which increases with ξ , at fixed �. On the other hand, for
ξ > �1/2, the thick cylinder phenomenology takes over and
leads to a decrease of contact density. The maximum of the
curve corresponds to the crossover between both regimes,
that is again found to take place at ξ/

√
� ≈ 0.4. It appears

that for all fixed �, no matter how large, the limit of large ξ

invariably leads to ρ̃(Ra) = 1. This was expected, since this
is nothing but the contact theorem for a planar interface,
which holds for all values for �.

To conclude this study of screening in cylindrical ge-
ometry (with 3D Coulombic interactions in 1/r between
particles), we have summarised in Figure 5 our main find-
ings pertaining to the contact density. In all the present
subsections, the system size Rb/Ra can be considered as
(exponentially) large, so that the results presented apply to
an isolated charged macro-cylinder.

5. Application II: Screening of a spherical
macro-ion and effect of Coulombic coupling

After having focused on the screening properties of cylin-
drical macro-ions, we will address the case of spheres in
d = 3. We start by the strong coupling limit, where mean
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field breaks down, and then turn to the weak coupling limit.
It will be shown that the effect of curvature on the con-
tact density is opposite in these two limiting cases. This
conclusion also holds for cylinders.

5.1. Strong coupling

The analysis of Section 3.2 provides a convenient start-
ing point for discussing strong coupling effects for spher-
ical colloids, a topic of interest [3,15,16,46]. In particular,
Monte Carlo simulations have been performed [47], where
the density of counterions in contact with a spherical macro-
ion is reported at various couplings. The system studied is
salt free, so that we resort to Equation (28). The Coulombic
coupling within an ensemble of colloidal spheres is mea-
sured again as � = 2π�2

Bq3|σa|; it may be enhanced by
increasing the valency q and we consider the often studied
case σ b = 0 and σ a �= 0.

In general, the mean Hamiltonian, which appears in
(28), is not known explicitly, but a useful simplification
occurs when � becomes large enough (roughly speaking,
larger than 50). Indeed, most counterions lie in the immedi-
ate vicinity of the colloids, and form a strongly modulated
2D liquid or crystal, if � exceeds the crystallisation thresh-
old. In these conditions, a one-component plasma picture
may be invoked (with a Wigner hexagonal crystal of coun-
terions in a neutralising 2D background), and an excellent
approximation for the energy 〈H〉 is given by its ground-
state value U, which reads [48]

βU = −M �B

2Ra

Q3/2
a q1/2, (81)

where M � 1.10 is some Madelung constant [3]. In the
above equation, curvature effects have been neglected, and
the energy is expressed from its planar limit. This requires
that the number of charges Qa = 4πR2

aσa is somewhat
larger than unity, a condition that is easily met in practice.
Enforcing 〈H〉 = U in Equation (28), we arrive at

n(Ra)

2π�Bσ 2
a

� 1 + M
(

q

Qa

)1/2

+ 6
Ra

qQa�B

[
P

Pid
− 1

]
,

(82)

where it was remembered that βP = n(Rb) is the pressure of
the system, and Pid is the ideal gas reference pressure (βPid

= Qaρc/q, where ρc is the colloidal mean density). The
contribution in R3

b n(Rb), giving rise to the term in P/Pid <

1, in (82) usually is negligible at large couplings, except at
very large colloidal concentrations, so that we have

ρ̃(Ra) = n(Ra)

2π�Bσ 2
a

� 1 + M
(

q

Qa

)1/2

− 6
Ra

qQa�B

.

(83)

To test this prediction, we consider that parameter set in
Ref. [47] exhibits the largest coupling: Qa = 60, q = 3,
Ra = 2.2 nm [49]. Upon changing the density of colloids by
a factor of 8, the ionic density at contact n(Ra), as given in
Table II of Ref. [47], is remarkably constant, between 4.9
and 5 × 10−6 nm−3. Making use of Equation (83) gives
5 × 10−6 nm−3, in excellent agreement. This correspond
to an increase of the contact density, compared to the planar
limit, by an amount of 14%. Indeed, in Equation (83), the
dominant correction on the right-hand side isM (q/Qa)1/2,
and thus positive: the effect of curvature is here to enhance
ionic density at contact (we are in a limit where the presence
of the outer boundary at r = Rb does not affect the profile at
r = Ra). A way to decrease curvature, at fixed surface
charge σ a, would be to increase Ra, and given that Qa ∝ R2

a ,
Equation (83) yields the expected unity on the right-hand
side in that limit. We stress here that the simulations in Ref.
[47] were not performed with the cell model restriction,
but for a collection of 80 colloids (with thus their 80 ×
60/3 = 1600 counterions). The agreement found not only
assesses the strong coupling approach [50], but also the cell
viewpoint as such.

For comparison with results pertaining to the cylindrical
geometry, it is convenient to rewrite Equation (83) as

n(Ra)

2π�Bσ 2
a

� 1 +
√

q

πσa

1

Ra

(M
2

− 3√
2�

)
. (84)

It is a strong coupling–weak curvature expansion, which
reads, to dominant order in coupling

n(Ra)

2π�Bσ 2
a

� 1 +
√

q

πσa

M
4

C, (85)

where C = 2/Ra is the curvature of the colloid. Given that
the quantity s introduced in (78) fulfills s/

√
2 = M/4, it

appears that expression (85) coincides with (79), valid for
weakly curved, strongly charged cylinders. We therefore
surmise that relation (85) is valid for all curved objects
under strong coupling �, provided that the local radius of
curvature is large compared to

√
q/σa , the lattice constant

that would be formed at vanishing temperature. The reason
for the positive sign of the curvature correction is quite clear
by considering a contrario a negatively curved macro-ion
where curvature brings counterions closer to each other than
in the planar case. The opposite happens here for positively
curved objects, and curvature is thus conducive to ionic
condensation onto the macro-ion.

5.2. From strong to weak couplings

We have seen that compared to a plate of similar surface
charge, the ionic density at contact is enhanced due to cur-
vature for both spheres and cylinders. This has been shown
explicitly in the strong coupling limit � � 1, but there are
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hints from simulations [47] that the opposite conclusion
may hold in the mean-field (Poisson–Boltzmann) regime
� � 1. For consistency with Section 5.1, we take again
σ b = 0 and the question is now to know the sign for the
quantity n(Ra) − 2π�Bσ 2

a − n(Rb), which identically van-
ishes in the planar case. We start from the exact relation
(28)

n(Ra) − 2π�Bσ 2
a − n(Rb) = −β〈H 〉

4πR3
a

+
[(

Rb

Ra

)3

− 1

]
n(Rb) − 3|σa|

qRa

, (86)

that holds both under small or large couplings. While one
has in general 〈H〉 < 0, and Rb > Ra by construction, the
last term on the right-hand side is negative, so that no con-
clusion can be drawn at this stage concerning the sign of
the right-hand side of the equality, even assuming � small.
To proceed, another type of argument is necessary, and (86)
must be relinquished. The idea is to invoke the Poisson–
Boltzmann equation itself, fulfilled by the mean-field elec-
tric potential [3], from which the ionic density follows:

∇2φ = −4π�B

∑
α

qαn0
αe−qαφ. (87)

This is the most general form for a mixture, where the
ionic density for species α is n0

α exp(−qαφ) and φ is
dimensionless. We can treat here on equal footings the
cylindrical d = 2 and the spherical d = 3 cases, which only
differ from the expression of the Laplacian ∇2. We assume
φ to be radially symmetric, multiply both sides of Equation
(87) by ∂φ/∂r, and integrate with respect to r. This yields

n(Ra) − 2π�Bσ 2
a − n(Rb) = −(d − 1)

∫ Rb

Ra

1

r ′

(
∂φ

∂r ′

)2

dr ′,

(88)

which is therefore negative, as anticipated. Thus, at
mean-field level, the effect of curvature is to decrease the
contact ionic density at Ra. This is the opposite scenario
compared to that occurring under strong coupling (see
Section 5.1). We also note that whenever σ b �= 0, relation
(88) holds provided the left-hand side is replaced by
n(Ra) − 2π�Bσ 2

a − n(Rb) + 2π�Bσ 2
b . We stress again that

the conclusion on the sign also holds in two dimensions,
and for d = 1 (planar case), the right-hand side of (88)
vanishes, see the constraint (3), that is (remarkably) also
valid within mean field. For d = 2, it was already seen
in Figure 12 that the � = 0.1 results were below unity,
meaning that n(Ra) < 2π�Bσ 2

a (we are there close to the Rb

→ ∞ limit for which n(Rb) → 0, with furthermore σ b = 0).
A further comment concerning Poisson–Boltzmann

theory is in order. Within the mean-field premises, the in-

ternal energy of the system may be expressed

β〈H 〉 = 1

2

∫
cell

1

e
ρtot(r)φ(r) dr, (89)

where the integral, running over the entire cell, involves
the total ionic density ρ tot, and also includes the charged
boundaries at Ra and Rb. Inserting this relation in Equa-
tion (86), we obtain a ‘sum rule’, that holds at the level
of Poisson–Boltzmann theory only, but that can be proven
starting directly from (87) [51]. This is another confirma-
tion, in a limiting case, for the validity of the expressions
we have derived.

6. Conclusion

The exact contact relation

na − 2π�Bσ 2
a − nb + 2π�Bσ 2

b = 0 (90)

does only hold in the planar case, when classical ions in-
teracting by Coulomb forces are confined in a slab of two
parallel walls, bearing surface charge densities σ ae and
σ be. In itself, this relation is remarkable, for it does not
depend on the strength of Coulombic coupling. It therefore
equally applies to weakly, moderately, and strongly coupled
situations, and is therefore fulfilled, in particular, by the
Poisson–Boltzmann mean-field theory [52]. Our primary
motivation was to investigate how it should be modified
when dealing with curved interfaces. To this end, we con-
sidered a cell model approach where a macro-ion of surface
charge density σ ae is enclosed in a concentric confining cell
of similar geometry, cylindrical or spherical (with charge
density σ be). New exact relations were derived. Quite ex-
pectedly, the 2D results (i.e. when charges interact through
a log potential) are more explicit than their 3D counterpart.
Our results provide a convenient starting point to discuss
the strong coupling limit of the contact densities under
study. In particular, it was shown (for σ b = 0, but with
presumably no loss of generality), that the left-hand side of
Equation (90) is positive for weak curvatures, with an ex-
pression that is the same for both spherical and cylindrical
macro-ions, see Equation (85) which embodies the exact
strong coupling correction to the planar case. For cylindri-
cal macro-ions, the situation of strong curvature was also
worked out (referred to as the needle or thin cylinder limit).
On the other hand, in the mean-field limit, that is when the
Coulombic coupling measured by a parameter of the form
�2

Bσa is small, the quantity on the left-hand side of Equa-
tion (90) becomes negative, a phenomenon that does not
seem particularly intuitive. To proceed, we have discarded
the effects of hard-core repulsion, which are harmless for
salt-free systems, but require a study on their own when
dealing with salt.
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Appendix 1: Derivation of equation (30)

Let

W1/e
2 =

〈∑
i<j

qiqj

r⊥
ij

2

r3
ij

〉
(A1)

= 1

2

∫ ∑
αγ

qαqγ nαnγ (1 + hαγ (r⊥
1 , r⊥

2 , z1 − z2))

× |r1 − r2|⊥2

|r1 − r2|3 dr1dr2. (A2)

We have

W1/e
2 = lim

L→∞
L

2

∫
d2r⊥

1 d2r⊥
2

∫ L/2

−L/2
dz
∑
αγ

qαqγ nαnγ

× (1 + hαγ (r⊥
1 , r⊥

2 , z))
r⊥

12
2(

r⊥
12

2 + z2
)3/2

. (A3)

Using

∫ L/2

−L/2

dz(
r⊥

12
2 + z2

)3/2
= 2L

r⊥
12

2
√

r⊥
12

2 + L2

→ 2

r⊥
12

2
, (L → ∞),

(A4)

we find

W1/e
2 = 1

L
(Qa + Qb)2 + L

2

∫
d2r⊥

1 d2r⊥
2

∫ L/2

−L/2
dz

×
∑
αγ

qαqγ nαnγ hαγ (r⊥
1 , r⊥

2 , z)
r⊥

12
2(

r⊥
12

2 + z2
)3/2

.

(A5)

The virial average is then

〈W 〉/e2 = 1

L
(Q2

b − Q2
a) + L

2

∫
d2r⊥

1 d2r⊥
2

∫ L/2

−L/2
dz

×
∑
αγ

qαqγ nαnγ hαγ (r⊥
1 , r⊥

2 , z)
r⊥

12
2(

r⊥
12

2 + z2
)3/2

.

(A6)

Inserting this result in Equation (21), we find Equation (30).

Appendix 2: Screening of cylindrical macro-ions :
condensed fraction of ions

Our starting point is the contact balance equation Equation (66).
We then introduce the potential of mean force � such that

ρ̃(r) ∝ e−β�(r). (B1)

As such, the potential carries contributions from the charged rod,
the bound (B), unbound (U) charges as

β�(r) = 2ξ log
r

Ra

+ β�B(r) + β�U (r), (B2)

with 2ξ log r the energy due to the cylinder, and �B and �U ,
respectively, to the ions. With these notations:(

Rb

Ra

)2
ρ̃(Rb)

ρ̃(Ra)
= exp

(
2 log

Rb

Ra

+ β�(Ra) − β�(Rb)

)
= exp

(
− 2(ξ − 1) log

Rb

Ra

+ β(�B(Ra) − �B(Rb))

+ β(�U (Ra) − �U (Rb))

)
. (B3)

The difficulty is now to obtain relevant expressions for the poten-
tials �B and �U . This is the purpose of the following calculations.

The contribution �U stems from the very dilute cloud of
unbound ions, far from the charged cylinder, and is of mean-
field type. It can thus be obtained analytically, see below. On the
other hand, the contribution from bound ions is more difficult
to estimate, and we will resort to a near-field expansion, when
Coulombic coupling is large. Considering a perfectly formed 1D
Wigner crystal at r = Ra (inner cylinder), the approach consists
in taking the single particle variant energy formulation [34]; thus,
we may write for the bound contribution

β�B(r) = 2ξf G
( r

a′

)
= 2ξf G

(
ξ 2f

�

r

Ra

)
, (B4)

with a′ the lattice spacing parameter of the crystal [see
Figure 5(a)], related to the parameters through [34] Ra/a′ = ξ 2f/�.
Here, G(x) is defined as

G(x) :=
∞∑

j=1

(
1√

j 2 + x2
− 1

j

)
. (B5)

An approximate evaluation can be obtained through direct inte-
gration of Equation (B5) using Euler–Maclaurin’s formula. The
result for G(x) is

G(x) � − log
1 + √

1 + x2

2
− γ

(
1 − 1√

1 + x2

)
. (B6)

Note that the small x behaviour for G(x), which is G(x) ≈
−ζ (3)x2/2, is responsible for the corrections to the profile to lead-
ing order at Ra [15,34]. For large x, its behaviour is given by G(x) ≈
−log x + log 2 − γ .

The contribution from the unbound ions can be obtained under
the assumption that the behaviour of such ions is mean field like.
This population is subjected to the dressed potential of the inner
cylinder, with an effective charge ξ eff = ξ (1 − f) that is smaller than
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unity as we have seen from previous results [34]. Such evaluation
is possible directly from the mean-field density nMF, through

eβ(�U (Ra )−�U (Rb)) = nMF(Ra)

nMF(Rb)
− 2ξeff log

Rb

Ra

. (B7)

Notice, we have substracted the contribution due to the effective
cylinder as it is already accounted for in (B2). Using Equation (4)
from [34], we obtain

β(�U (Ra) − �U (Rb)) = 2(1 − ξeff) log
Rb

Ra

+
⎧⎨⎩ log

[
(ξeff−1)2−α2

1−α2

]
, ξeff ≤ ξc

log
[

(ξeff−1)2+α2

1+α2

]
, ξeff ≥ ξc

. (B8)

Here, ξ c is the Fuoss critical parameter defined as

ξc = log Rb

Ra

1 + log Rb

Ra

, (B9)

and α is defined through a transcendental equation depending on
ξ eff and log (Rb/Ra).

Our interest in the computation of the condensed fraction of
ions lies in the dilute regime, where f tends to fM, or equivalently
when log (Rb/Ra) is large. In this range, we may take ξ eff ∼ ξ c

(close to unity) where α = 0. Hence,

β(�U (Ra) − �U (Rb)) ≈ −2

(
log

[
log

Rb

Ra

]
− 1

)
+O

[
1

log(Rb/Ra)

]
. (B10)

Gathering results

β�B(Rb) − β�B(Ra) � −2f ξ log
Rb

Ra

+ 2f ξ [log � − 2 log ξ − log f + log 2 − γ ] ,

(B11)

β�U (Rb) − β�U (Ra) � −2

(
log

[
log

Rb

Ra

]
− 1

)
,

(B12)

where γ is Euler–Mascheroni constant. Equation (B3) then be-
comes

(
Rb

Ra

)2
ρ̃(Rb)

ρ̃(Ra)
= exp

⎛⎝2(1 − ξ + f ξ ) log
Rb

Ra

+ 2 log

[
log

Rb

Ra

]

− 2 − 2f ξ (log � − 2 log ξ − log f + log 2 − γ )

⎞⎠. (B13)

This last equation, together with the contact balance equation (66),
gives the fundamental relationship for the fraction f, Equation (67)
in the main text.
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