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ABSTRACT
We study a classical system of identically charged counter-ions near a planar wall carrying a uni-
form surface charge density. The equilibrium statistical mechanics of the system depends on a
single dimensionless coupling parameter. A new self-consistent theory of the correlation-hole type
is proposed which leads to a modified Poisson–Boltzmann integral equation for the density pro-
file, convenient for analytical progress and straightforward to solve numerically. The exact density
profiles are recovered in the limits of weak and strong couplings. In contrast to previous theoretical
attempts of the test-charge family, the density profiles fulfil the contact-value theorem at all values
of the coupling constant and exhibit themean-field decay at asymptotically large distances from the
wall, as expected. We furthermore show that the density corrections at large couplings exhibit the
proper dependence on coupling parameter and distance to the charged wall. The numerical results
for intermediate values of the coupling provide accurate density profiles which are in good agree-
ment with those obtained by Monte Carlo simulations. The crossover to mean-field behaviour at
large distance is studied in detail.
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1. Introduction

Experiments with large macromolecules are often per-
formed in water, which is a polar solvent. This is the
case for many applications using colloids, including the
proteins in our bodies. This results in the release of low
valence micro-ions into the solution, so that the col-
loids acquire a surface charge density, opposite to the
charge of mobile micro-ions (coined as ‘counter-ions’).
The total surface charge can exceed thousands of ele-
mentary charges e. In the first approximation, the curved
surface of a macromolecule can be replaced by an infinite
planar wall.
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The charged macromolecule and the surrounding
counter-ions form a neutral electric double layer, see
reviews [1–3]. In turn, the double layer is paramount
in mediating the effective interactions between charged
bodies in solution. At large enough Coulombic coupling,
it is for instance known that like-charged macro-
molecules can effectively attract each other in some inter-
mediate distance range, as was observed experimentally
[4–9] and by computer simulations [10–13].

In a wealth of natural or synthetic systems, micro-
ions can be of both signs, with positively and negatively
charged species. In this paper, we restrict ourselves to
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simplified so-called salt-free (or deionised)Coulomb sys-
tems with counter-ions only. This is a convenient starting
point for analytical progress, where detailed computer
simulation results are also available [14–28]. Suchmodels
apply to deionised suspensions, see e.g. the experiments
reported in Refs. [29–33]. In the deionised limit, sys-
tems of counter-ions near charged surfaces have poor
screening properties, but the standard Coulomb sum
rules relating the one-body and two-body densities do
apply [34,35].

For the system of counter-ions near a charged wall,
the high-temperature (weak-coupling, WC) limit is
described by the Poisson–Boltzmann (PB) mean-field
theory [36] and by its systematic improvement via the
loop expansion [16,37,38]. The opposite strong coupling
(SC) limit was investigated within a field-theoretical for-
mulation of themodel by using a renormalised expansion
of virial type [17,18,39–42]. In the leading SC order and
in the present planar geometry, the counter-ions effec-
tively behave as non-interacting objects, as far as one is
not interested in the tail of the density profile; this factwas
confirmed numerically in a number of numerical studies
[43–48]. The first correction to the single-particle den-
sity profile, calculated within a fugacity expansion with a
renormalisation of infrared divergences [18], is correct in
its functional form, but with a wrong prefactor, departing
by orders of magnitude from its Monte Carlo (MC) esti-
mate [22]. Other SC approaches [49] emphasise the two-
dimensional Wigner crystallisation of mobile charges at
the wall surface for low temperatures. Recently [50], by
a perturbative approach around the Wigner crystal, the
single particle treatment was recovered in the leading SC
order. Moreover, the derived prefactor of the first SC cor-
rection is in excellent agreement with MC simulations,
also in the coupling range where no Wigner crystal is
formed (strongly modulated liquid regime). Noteworthy
are also field theoretic techniques, that allow to cover
the crossover regime between WC and SC, by a proper
splitting of the interactions between ions, discriminating
short and long distances [21,22,25,51].

For a system of identical charges with Coulomb repul-
sion, the pair correlation function is strongly depleted
at small distances. This gives credit to the image of a
correlation hole around each ion in the system, an idea
that turned useful in various approaches going beyond
the PB theory [21,22,25,40,52–56]. Recently [28], for a
dielectric interface, the single particle strong-coupling
view was combined with the idea of the correlation hole,
to obtain very accurate density profiles for strongly to
moderately coupled charged fluids. This latter contribu-
tion provides the most accurate theory available so far
for these systems. We emphasise that this approach is
not self-consistent and does not reproducemean-field PB

results at small couplings, two key differences with the
theory to be developed below.

In Ref. [20], an attempt has been made to establish a
universal theory which works adequately for any value
of the coupling. Based on a mean-field treatment of the
ions response to the presence of a test charge, the exact
density profile was reproduced in the limits of weak and
strong couplings. For intermediate values of the coupling,
the obtained approximate density profiles agree with MC
simulations, except for two shortcomings. First, the con-
tact theorem for the counter-ion number density at the
wall [57–59] is not satisfied.Second, although a crossover
from exponential to algebraic decay is observed at large
distances from the wall, there is an additional prefactor
to the mean-field PB solution which depends on the cou-
pling constant. This is in contradiction with the common
expectation thatmean-field should hold at large distances
from the wall [18,21,22,39,56,60], as the small density
of counter-ions should effectively drive the system into
the WC regime. Note that the loop corrections to the PB
solution [16,37,38] are consistent with this expectation.

In this work, we propose a self-consistent theory for
counter-ions near a charged planar wall, which is based
on the idea of a cylindrical correlation hole. As was the
case in the test-charge approach of Ref. [20], the exact
density profiles are recovered in the limits of weak and
strong couplings. But in contrast to that theory, at all
values of the coupling constant do the density profiles
fulfil the contact-value theorem. Moreover, the density
profiles are exactly of mean-field type at asymptotically
large distances from the wall, as expected. This allows
us to address the elusive question of the asymptotic large
distance crossover to mean-field in this geometry.

The article is organised as follows. In Section 2,
we introduce the basic notations for the model. The
correlation-hole approach is presented in Section 3. For
the sake of analogy and completeness, the derivation of
the PB theory is provided as well. Analytical progress was
made possible by an original rederivation of the contact
theorem that does not require the explicit resolution of
the theory under study. Section 4 derives a number of
exact results. The SC limit is worked out. Then, at arbi-
trary coupling parameter, the large-distance behaviour
of the density profile is shown to be exactly of the PB
mean-field type. In addition, we derive the subleading
contribution to the mean-field tail. Numerical results for
the density profile at specific values of the coupling con-
stant are comparedwith those obtained by the test-charge
method [20] and by MC simulations in Section 5. The
crossover distance from the wall to the mean-field alge-
braic decay of the density profile is determined too. A
short recapitulation and concluding remarks are given in
Section 6, where we present some results pertaining to an
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interacting two-plate system both in MC and within our
self-consistent scheme.

2. Basic formalism

We consider the one-wall geometry pictured in Figure 1,
with positions denoted by r = (x, y, z). A hard wall,
impenetrable to particles, is localised in the half-space
{r, z < 0}. In the complementary half-space {r, z > 0},
there areNmobile q-valent counter-ions (classical point-
like particles) of charge −qe, where e is the elementary
charge. The particles are immersed in a solution with the
same dielectric constant ε as the confiningwall, so that no
electrostatic image forces ensue. The infinite wall surface,
localised at z=0, carries a fixed uniform surface-charge
density σ e with σ > 0. The system as a whole is electro-
neutral, and the particles are in thermal equilibrium at
some inverse temperature β = 1/(kBT).

There are two relevant length scales in the model. In
Gauss units, two unit charges at distance r interact by
the 3D Coulomb energy e2/(εr); the distance at which
this energy coincides with the thermal energy kBT is the
Bjerrum length

�B = βe2

ε
. (1)

The potential energy of an isolated counter-ion of charge
−qe at distance z from the wall surface is given by

E(z) = 2πq e2σ
ε

z; (2)

Figure 1. The electric double layer with counter-ions of valence
q. The interface at z= 0 bears a surface charge σ e, so that the
system as a whole is electroneutral.

the distance at which this energy equals to the thermal
energy kBT defines the Gouy–Chapman length

μ = 1
2πq�Bσ

. (3)

The dimensionless coupling parameter �, reflecting the
strength of electrostatic correlations, is defined as the
ratio of the two length scales:

� = q2�B
μ

= 2πq3�2Bσ . (4)

Denoting by 〈· · · 〉 the canonical thermal average, the
particle number density at point r (with thus z ≥ 0) is
defined as n(r) = 〈∑N

i=1 δ(r − ri)〉. It depends only on
the distance z from thewall,n(r) = n(z). The electroneu-
trality condition corresponds to the constraint

q
∫ ∞

0
dzn(z) = σ . (5)

The contact density of counter-ions at the wall is related
to the surface charge density via the planar contact-value
theorem [57–59] as follows:

n(0) = 2π�Bσ 2. (6)

The averaged particle density will be often written in a
rescaled form with a dimensionless particle z-coordinate
considered in units of the Gouy–Chapman length μ:

ñ(z) ≡ n(μz)
2π�Bσ 2 . (7)

In terms of ñ, the electroneutrality requirement (5) and
the contact-value constraint (6) take the forms∫ ∞

0
dzñ(z) = 1 (8)

and

ñ(0) = 1, (9)

respectively. To avoid unnecessarily heavy notations, z
will in the remainder refer to the rescaled distance
z/μ, whenever it appears in an expression involving the
reduced density ñ.

The model is exactly solvable in two limits. In
the weak-coupling limit � → 0, the PB approach [36]
implies a slowly decaying particle density profile

ñPB(z) = 1
(1 + z)2

. (10)

In the strong-coupling limit � → ∞, the single-particle
picture of counter-ions in the linear surface charge poten-
tial [17,18,56] leads to an exponentially decaying profile

ñSC(z) = exp(−z). (11)
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3. The correlation-hole approach

At any point rwith z ≥ 0, the relation between the (aver-
aged) electric potential ψ and the charge distribution ρ
is given by the Poisson equation. For the present geome-
try, the electrostatic potential and the charge distribution
ρ = −qen depend only on the distance from the wall z,
so that

d2

dz2
ψ(z) = 4π

ε
qen(z). (12)

From the boundary condition at z=0, dψ(z)/dz =
−4πσ e/ε and the 1D relation d2|z|/dz2 = 2δ(z) with
δ the Dirac delta distribution, the electric potential is
expressible explicitly as

ψ(z) = −2π
ε
σ ez + 2π

ε
qe

∫ ∞

0
dz′(|z − z′| − z′)n(z′).

(13)
The interpretation of this expression is transparent: in
addition to the bare plate potential (first term on the rhs,
linear in z), the mobile counter-ions contribute to the
electric potential though the integral term. The potential
is determined up to an irrelevant constant; here we fixed
the ‘gauge’ ψ(0) = 0.

3.1. PB theory

In the PB approach, the dimensionless density is written
as

ñPB(z) = ñ0 exp[φPB(z)], (14)

where the PB reduced potential φPB = βqeψPB is given
by

φPB(z) = −z +
∫ ∞

0
dz′(|z − z′| − z′)ñPB(z′). (15)

Note the gauge φPB(0) = 0.
The normalisation constant ñ0 is determined by

the electroneutrality condition (8) through 1/ñ0 =∫ ∞
0 dz exp[φPB(z)]. There exists a simple way to obtain
the explicit value of ñ0; it will prove useful below and we
thus present it in its simplest clothing. We first differenti-
ate the φPB-potential (15) with respect to z:

d
dz
φPB(z) = −1 +

∫ ∞

0
dz′ñPB(z′)sgn(z − z′), (16)

where sgn denotes the standard signum (sign) function.
The integral∫ ∞

0
dz

(
dφPB
dz

+ 1
)
ñPB(z)

=
∫ ∞

0
dz

∫ ∞

0
dz′ñPB(z)ñPB(z′) sgn(z − z′) (17)

vanishes due to the anti-symmetric property of the func-
tion under integration in the rhs with respect to the
interchange transformation z ↔ z′. From (14), we get

ñPB(z)
dφPB
dz

= dñPB(z)
dz

. (18)

Consequently, we have from (17) that∫ ∞

0
dz

d
dz

ñPB(z) = −
∫ ∞

0
dzñPB(z). (19)

The density ñ(z) vanishes as z → ∞, so that

ñPB(0) =
∫ ∞

0
dzñPB(z) = 1, (20)

which is nothing but the contact-value theorem (9). We
see that, within the PB theory, the normalisation (8) auto-
matically ensures the contact-value theorem (9), and vice
versa. Under the gauge φPB(0) = 0, the contact-value
relation (20) fixes ñ0 = 1 in (14). It is easy to check that
under this normalisation, the PB solution (10) satisfies
Equations (14) and (15).

3.2. Inclusion of the correlation hole

In the single-particle SC solution (11), the only acting
potential is due to the fixed surface-charge density; this
potential is present also in the PB solution (14), but there
is an additional potential related to the mean particle
density profile. Thus in some sense, the SC solution is
simpler than its mean-field counterpart, since mutual
counter-ion interactions do not contribute to the lead-
ing order SC response. Yet, for large �, counter-ions are
strongly correlated in the (x, y) plane, because of their
strong mutual repulsion; this leads to a marked correla-
tion hole (‘Coulomb hole’), inaccessible to other charged
particles [18]. At smaller � value, the correlation hole is
less marked (in the sense that the pair correlation func-
tion does not vanish for distances smaller than the hole
size [18]), but a feature of depletion remains. In addition,
the form of the correlation hole depends on the dis-
tance from the wall of the particle under consideration.
It is expected, in the large � regime, that the correla-
tion hole is cylindrical if the particle is close to the wall,
and spherical for large distances from the wall (the bulk
region) [20]. In this work, independently of the particle
position with respect to the wall, we take as the correla-
tion hole an infinite cylinder, perpendicular to the wall
surface, whose axis passes through this particle. This pic-
ture is qualitatively related to that of a Wigner lattice of
counter-ions near the charged wall that would prevail
at very large coupling. Under smaller coupling param-
eters where no crystal is formed, a strongly modulated
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liquid may remain that retains an essentially two dimen-
sional feature. It shares with the crystal a well-defined
correlation hole around each ion, the size of which stems
fromelectroneutrality. The radiusR of the cylinder is thus
determined by the requirement that the total disc surface
of all cylinders πR2N equals the planar interface surface,
namely

R2 = q
πσ

= 2q2�Bμ. (21)

Note that, in units of the relevant Gouy–Chapman length
μ, R2/μ2 = 2�, and up to an irrelevant prefactor, simi-
lar choices weremade in [20,22]. Thismeans that in units
of μ, the correlation-hole radius R vanishes in the PB
limit, while it goes to ∞ in the SC regime. Here, it can
be stressed that μ is the relevant length scale for density
gradients, both in theWC and SC regimes, as revealed by
Equations (10) and (11).

The exclusion of other particles from the cylindrical
neighbourhood of the given particle localised at z mod-
ifies the electric potential ψ(z) (13) to ψch(z) = ψ(z)−
δψ(z), where

δψ(z) = 1
ε

∫ ∞

0
dz′

∫ R

0
dρ2πρ

−qen(z′)√
(z − z′)2 + ρ2

= 2πqe
ε

∫ ∞

0
dz′n(z′)

× [|z − z′| −
√
R2 + (z − z′)2]. (22)

We take ψch(z) as the mean-field potential which deter-
mines the counter-ion density via n(z) = n0eβqeψch(z).
We shift the reduced correlation-hole potential φ(z) =
βqeψch(z) by a constant to fix the gauge φ(0) = 0. Thus
the rescaled density profile ñ is given by

ñ(z) = ñ0 exp[φ(z)], (23)

where the reduced potential

φ(z) = −z +
∫ ∞

0
dz′ñ(z′)

× (
√
2�+ (z − z′)2 −

√
2�+ z′2) (24)

satisfies the gauge φ(0) = 0 and the normalisation con-
stant ñ0 is determined by the electroneutrality condi-
tion (8).

The explicit value of ñ0 can be derived in close analogy
with the above PB treatment. We first differentiate the φ-
potential with respect to z:

d
dz
φ(z) = −1 +

∫ ∞

0
dz′ñ(z′)

z − z′√
2�+ (z − z′)2

. (25)

The integral∫ ∞

0
dz

(
dφ
dz

+ 1
)
ñ(z) =

∫ ∞

0
dz

∫ ∞

0
dz′ñ(z)ñ(z′)

× z − z′√
2�+ (z − z′)2

(26)

vanishes due to the anti-symmetric property with respect
to the interchange z ↔ z′ of the function under integra-
tion in the rhs. Then the equality∫ ∞

0
dz

dñ
dz

= −
∫ ∞

0
dzñ(z) (27)

implies the contact-value theorem

ñ(0) =
∫ ∞

0
dzñ(z) = 1. (28)

We see that, as is the case within PB theory, the den-
sity normalisation automatically ensures the validity of
the contact-value theorem. This is a nontrivial and exact
property of our Coulombic system [61] that an approx-
imate or phenomenological theory may violate (in this
respect, it is thus remarkable that PB theory does fulfil
this condition). None of the theories presented in [20]
or [22] do obey the contact theorem. The gauge φ(0) =
0 fixes the normalisation constant ñ0 = 1. The density
profile then takes the form

ñ(z) = exp[φ(z)], (29)

where the reduced potential φ(z) is given by (24).
To summarise at this point, our key relation is (29),

supplemented by the closure relation (24). The latter
expresses the test-particle potential φ in terms of the
mean counter-ion density, in a self-consistent fashion.

4. Analytical results

To begin with, it is straightforward to realise that in the
weak-coupling limit � → 0, the reduced potential (24)
takes the PB form (15). Due to the same normalisa-
tion ñ0 = 1, our correlation-hole profile (23) reduces
to the PB one (14). In this section, we prove that our
correlation-hole theory also provides the exact density
profiles in the strong coupling limit, where a series expan-
sion is constructed to account for corrections to SC.
Then, we focus on the tail of the ionic profile, showing
that it is of mean-field type, and working out at arbitrary
� the corresponding large-z correction to the dominant
tail. All these results will be compared to numerical data
in Section 5.
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4.1. SC limit

In the SC limit� → ∞, assuming that ñ is short-ranged
(e.g. decaying exponentially) and all its moments exist,
we can perform in Equation (24) the expansion

√
2�+ (z − z′)2 −

√
2�+ z′2 ∼ (z − z′)2

2
√
2�

− z′2

2
√
2�
(30)

to obtain φ(z) = φSC(z) = −z. Inserting this one-body
potential due to the surface-charge density into (29)
reproduces the SC solution (11).

To construct an expansion around the SC limit, we
anticipate the systematic 1/

√
�-expansion of the density

profile of the form

ñ(z) = e−z

[
1 +

∞∑
k=1

fk(z)
(2�)k/2

]
(31)

with as-yet unknown functions fk(z). The contact
theorem (9) fixes the values of these functions at the wall,

fk(0) = 0, (32)

and the normalisation (8) fixes their integrals over z,∫ ∞

0
dzfk(z) = 0. (33)

Since φ(z) = ln ñ(z), we have

φ(z) = −z + ln

[
1 +

∞∑
k=1

fk(z)
(2�)k/2

]
. (34)

Consequently,

d
dz
φ(z) = −1 + 1

1 + ∑∞
k=1

fk(z)
(2�)k/2

∞∑
l=1

f ′l (z)
(2�)l/2

. (35)

At the same time, from (25) we get

d
dz
φ(z) = −1 +

∫ ∞

0
dz′e−z′

[
1 +

∞∑
k=1

fk(z′)
(2�)k/2

]

× (z − z′)√
2�

[
1 +

∞∑
l=1

(−1/2
l

)
(z − z′)2l

(2�)l

]
.

(36)

Comparing the last two relations, we obtain an infinite
iterative sequence of equations which relate f ′l (z) to all
fk(z) with k ≤ l − 1. It turns out that fk(z) is a polyno-
mial of order 2k, the absolute term is equal trivially to
zero because of the contact condition (32).

The first correction to the SC profile reads as

f1(z) = z2

2
− z. (37)

Writing formally the SC density profile plus the first
correction as

ñ(z) = e−z
[
1 + 1

θ

(
z2

2
− z

)]
, (38)

we have θ = √
2� = 1.414

√
�. This has to be compared

with the very accurate estimate based on the Wigner
crystal θ = 1.771

√
� [50]. A similar result θ ∝ √

� was
obtained in Ref. [25]. On the other hand, the finding
θ = � of the renormalised virial expansion [18] fails
in the dependence on �. Indeed, MC simulations fully
corroborate the θ ∝ �1/2 scaling [50].

The next expansion functions read

f2(z) = z4

8
− z3

2
+ z2

2
− z,

f3(z) = z6

48
− z5

8
+ z4

8
− z3

6
− z2

2
− z,

f4(z) = z8

384
− z7

48
+ z5

6
− 17z4

24
+ z3 − 3z2 − 3z,

(39)

etc. It is interesting that the normalisation constraint (33)
is automatically ensured by respecting the contact rela-
tion (32), which can serve as a check of algebra. Note that,
at arbitrary order of the expansion around the SC limit,
the density profile is decaying exponentially.

4.2. Large-distance decay: asymptotic validity of PB

For any finite value of the coupling � and at asymp-
totically large distances from the wall (z → ∞), the
exact density profile is expected to exhibit the PB power
law behaviour (10) [18,21,22,39,56,60], ñ(z) ∼ 1/z2. It is
worthwhile emphasising that this power law behaviour
implies that the (unscaled) counter-ion density becomes
independent of the surface charge density σ , thereby
revealing a universal behaviour. An important feature of
our theory is that this asymptotic behaviour indeed takes
place, at variance with the approach of Ref. [20].

To prove this fact, let us first assume that at large
distances

ñ(z) ∼
z→∞

a
z2

(40)

with some positive number a which might depend on�.
Since the positive density ñ does not exhibit divergent
singularities, it must be bounded from above at any point
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z by the function

ñ(z) ≤ A
(1 + z)2

, (41)

where A ≥ a. For � = 0 we can take A=1, while in
the SC limit � → ∞ we have A = 4/e = 1.47152 . . ..
The precise value of A is immaterial, as long as it is
finite. Writing−1 in Equation (25) as− ∫ ∞

0 dz′ñ(z′), the
potential derivative is expressed after simple algebraic
manipulations as follows:

d
dz
φ(z) = −2

∫ ∞

z
dz′ñ(z′)− I1(z,�)+ I2(z,�),

(42)
where

I1(z,�) =
∫ z

0
dz′ñ(z′)

[
1 − z − z′√

2�+ (z − z′)2

]
,

I2(z,�) =
∫ ∞

z
dz′ñ(z′)

[
1 − z′ − z√

2�+ (z − z′)2

]
.

(43)
Both ñ(z′) and the functions in square brackets are pos-
itive. Using the inequality (41), in the large-z limit the
integrals are bounded from above by

I1(z,�) ≤ A
�+ √

2�
z2

+ O
(
1
z3

)
,

I2(z,�) ≤ A
√
2�
z2

+ O
(
1
z3

)
.

(44)

Considering these bounds in (42), it holds that

d
dz
φ(z) = −2

∫ ∞

z
dz′ñ(z′)+ O

(
1
z2

)
. (45)

Sinceφ(z) = ln ñ(z), the asymptotic formula (40) implies
that φ′(z)∼z→∞ −2/z. Inserting this asymptotic rela-
tion together with (40) into Equation (45), one gets a=1.
Consequently, at any finite value of the coupling �, the
asymptotic large-distance behaviour of the density pro-
file is exactly of PB type, as was expected. This prop-
erty is confirmed also by a numerical treatment of our
correlation-hole equations in the following section.

4.3. Subleading asymptotic correction

It is possible to go one step further and to compute the
large-z correction to the mean-field asymptotics (large-z
analysis at fixed �). We use the electroneutrality condi-
tion (8) to rewrite the correlation-hole relation (25) as

follows:

d
dz
φ(z) = −2

∫ ∞

z
dz′ñ(z′)+ I(z,�), (46)

where

I(z,�) =
∫ ∞

0
dz′ñ(z′)

[
z − z′√

2�+ (z − z′)2
− z − z′

|z − z′|

]
.

(47)

To proceed, we change variables z → u = (1 + z)−1 and
perform a small u expansion in Equations (46) and (47).
Using the fact that I(u,�) = −�u2 + o(u2), writing
n(u) = u2 +
n(u,�) and keeping in mind that 
n is
o(u2) but not necessarily O(u3), we get

− ∂2
n
∂u2

+ 2
u
∂
n
∂u

+ 2�u + o(u) = 0, (48)

from which the correction to the PB asymptotics follows:

ñ(z) ∼ 1
(1 + z)2

− 2
3
�
log(1 + z)
(1 + z)3

. (49)

As the exact loop-derived correction, it is of order� and
decays at large z like z−3 log(z) [16,37,38]. Yet, our −2/3
prefactor for the correction in Equation (49) is not equal
to that reported in [16], which is −1. We mention here
that repeating the analysis of [16] leads us to a corrected
prefactor −1/2, closer to the present −2/3.

We shall see below that the predicted correction is
indeed found in the numerical treatment of our self-
consistent scheme. For large�, however, it becomes prac-
tically impossible to reach the relevant distance range,
and another contribution preempts that in Equation (49)
for the range of available distances. This is discussed
further below.

5. Numerical results

5.1. Themethods

The correlation-hole integral equation for the rescaled
density profile ñ, given in Equations (24) and (29), bears
some similarities with the non-linear PB formulation.
Solving it numerically is straightforward. In practice, an
efficient numerical scheme was found to be the follow-
ing. Rescaled distances z are first mapped onto a variable
x = (1 + z)−1/2, such that x ∈ [0, 1]. The resulting equa-
tions for φ(x) are then discretised on a regular grid with
N points (N up to 2 × 105). We initialise the density to
be of PB form, meaning that ñ(x) = x4 (which results in
an improved convergence), before an iterative resolution.
Convergence is typically achieved in 100 iterations if fine
properties are sought. It is important here to emphasise
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that from a computational point of view, the resolution
of our self-consistent equation is significantly faster and
more convenient than the test charge approach [20], or
the theory of Santangelo [22].

In parallel, we have performed a number of MC simu-
lations in a quasi-2D geometry. Ewald summation tech-
niques corrected for quasi-2D-dimensionality allow to
account for long-range electrostatic interactions (see the
Appendix, together with e.g. [62–64]). The MC results
provide the correct reference behaviour of our system of
point ions in the vicinity of a charged plate.

5.2. Comparison toMC results

The numerical results for the deviations fromPB profiles,
ñ − ñPB, are presented for the coupling constants� = 1,
� = 10 and � = 100 in Figures 2–4, respectively. Our
MC simulations are compared to the test-charge theory
[20], to the hybrid field theory of Ref. [22] where long and
short distances are treated separately and to the present
correlation-hole approach.We see that for the small value
� = 1, the accuracy of the test-charge and correlation-
hole theories is comparable. The hybrid field theory of
Ref. [22] (which is solved at the expense of enhanced
technical complexity) fares better at short distances, but
worse for z>2. For intermediate � = 10, the accuracy
of our approach is better. For relatively large � = 100,
our solid curve practically passes through MC data. The
accuracy of our results improves upon increasing�.

For the tail of the ionic profile, at larger distances
than those in the previous graphs, we see in Figure 5
that the correlation-hole picture captures qualitatively

Figure 2. Deviation from the PB density profile, ñ − ñPB, as a
function of the dimensionless distance z for the coupling constant
� = 1. Symbols correspond to the results of MC simulation, the
dashed curve is for the test-charge theory of Ref. [20], the dotted
curve is for the approach of Ref. [22], and solid curve shows the
present correlation-hole approach.

Figure 3. Same as Figure 2 for the coupling� = 10.

Figure 4. Same as Figure 2 for� = 100.

Figure 5. Large-distance counter-ion densities for � = 10 and
� = 100. MC data (symbols) are compared to the correlation-
hole results (solid curves) and those of the test-charge theory
of Ref. [20] (dashed lines). The dotted line is for the SC limiting
behaviour� → ∞.

the departure from SC behaviour, although in a dis-
tance range that is not close enough to the charged plate.
Yet, the test charge theory fails in getting the qualitative



MOLECULAR PHYSICS 9

Figure 6. Plot of Q(z) as defined in Equation (50) vs distance to
the charged wall. Equation (49) predicts that Q asymptotically
tends to�, indicated by horizontal dotted lines.

trend. For � = 100, the MC result clearly follows the
exponential profile at z̃ < 10 [18], then crosses over to a
longer range decay, following a trend that is reminiscent
of that observed within the correlation-hole approach
(same shape in the log–log plot presented). Observ-
ing properly the PB algebraic tail in 1/z2, with MC at
� > 100, would require significantly larger systems, a
relative accuracy on the profiles better than 10−6, and is
beyond our scope. For this reason and in order to study
nevertheless the crossover to mean-field, we will in the
remainder relinquish MC method and focus on the self-
consistent treatment, which is considerable simpler to
solve.

5.3. Discussion of asymptotic features

We wish to investigate the behaviour of ionic density at
large distances, to first test the relevance of the correc-
tion worked out in Equation (49), but also to discuss
the crossover to the mean-field regime. Figure 6 extracts
the correction to the PB profile and compares it to the
predicted functional form in� log(1 + z)/(1 + z)3. This
is achieved through the computation of the following
quantity:

Q(z) = ñ(z)− (1 + z)−2

−2/3 log(1 + z)/(1 + z)3
. (50)

It is observed that for � < 10, Q saturates at large dis-
tance close to the expected value �. For � = 50 (and
higher), the range of distances probed does not allow to
reach large enough z to observe the phenomenon.

For � > 50, the large-z density profile exhibits a new
property, that is only beginning to emerge in Figure 5.
This is illustrated in Figure 7: the expected exponen-
tial SC regime at short z and mean-field tail at large

Figure 7. Scenario for the density large-distance asymptotics.
The SC limiting behaviour on the left-hand side is displayed with
the dotted line. The inset shows the crossover distance zcross and
the effective Gouy–Chapman lengthμeff for� = 500.

z are connected by a plateau, starting at the crossover
length zcross, where the density is quasi-constant. To be
more specific, the existence of a plateau followed by a
z−2 decay is precisely the PB prediction, with an effective
Gouy–Chapman length μeff , and a density

ñ(z) = 1
(z + μeff )2

. (51)

Thus, for z < μeff (but z > zcross), the density profile
is flat, while for z > μeff , it decays algebraically. Keep-
ing in mind that by its definition in Equation (3),
a Gouy–Chapman length scales like the inverse plate
charge, it is natural to expect μeff to largely exceed the
bare Gouy–Chapman length. Indeed, the PB-like profile
sets in for z > zcross and subsumes all non-linear screen-
ing effects at work for 0 < z < zcross into an effective
plate surface charge, thus significantly smaller than σ .
We recall that z, zcross and μeff are dimensionless dis-
tances, measured in units of the actual Gouy-Chapman
length (3).

It can be noted that the large-z expansion of
Equation (51) yields ñ ∼ 1/z2 − 2μeff/z3. The resulting
correction to the 1/z2 tail is of smaller order than the
term in log z/z3 stemming from Equation (49). Hence,
the value of μeff cannot be simply extracted from the
asymptotic tail of the profile, but at smaller distances,
where Equation (51) is relevant.1 The plateau seen in
Figure 7 illustrates this point: for z > zcross, Equation (51)
states that ñ−1/2 increases linearly with distance, so that
the quantity displayed in Figure 8 offers a convenient
measure of the effective Gouy–Chapman length. It can be
observed in Figure 8 that for � = 10, one cannot prop-
erly extract a μeff , which is consistent with the data in
Figure 5 (absence of a well-defined plateau). The inset of
Figure 8, where the line shown has equation y= x+0.62,
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Figure 8. Extraction of the effective Gouy–Chapman lengthμeff,
from the plot of 1/

√
ñ − z, for � between 10 and 1000. The

plateau reached defines μeff. The inset shows how the resulting
effective length depends on the coupling parameter. The line has
slope 1.

then indicates that μeff changes with� as

logμeff ∼
√
�

2
+ cst. (52)

This in turn sets the crossover distance to be

zcross ∼
√
2�, (53)

by equating e−z with 1/μ2
eff at zcross. It does not come as a

surprise to recover here the value of the correlation-hole
size [20,22], see Equation (21) which reads R̃2 = 2�. The
effective length μeff diverges with �, such that logμeff
is linear in

√
�, a conclusion also reached in [22]. Large

values of μeff were observed numerically as well in the
case of counter-ions around charged cylinders [65].

Finally, we present an operational way to decide when
a system with an arbitrary� is in the mean-field regime.
The idea is to take advantage of the fact that the stress ten-
sor is divergence-free [66]. For mean-field theories, this
yields an extended contact theorem (not only at z=0, but
at any z). In the present planar geometry, this means that,
using dimensionless quantities

p(z) ≡ ñ(z)− 1
4 [φ

′(z)]2 = 0. (54)

To check for that identity with numerically obtained
results, one could compute the correct potential φ, from
integrating the charge density. However, keeping inmind
that we seek here a mean-field probe, it is more conve-
nient to assume φ = log ñ and we arrive at

p(z) ≡ ñ(z)− 1
4 [∂z log ñ]

2 = 0. (55)

Deviations of p(z) from 0 provide a (sufficient) condi-
tion for mean-field violation. The fact that p=0 within

Figure 9. Implementing our mean-field probe. The vanishing of
the local pressure p(z), as defined in Equation (55), signals the PB
regime. On the x-axis, distances have been rescaled by zcross =√
2�. A systemwith� < 1exhibits a flatp= 0 curve, sincemean-

field holds at all distances. For large enough �, p starts at 3/4
for small z (since ñ = exp(−z) locally holds), then reaches a min-
imum value close to −1/4, before vanishing on a scale zcross.
Symbols are forMC, and the curves for the correlation-hole theory.

a mean-field treatment is a consequence of the contact
theorem that reads p(0) = 0. It indicates that the pres-
sure vanishes in our setting (single-plate problem, corre-
sponding to a two-plate in interaction, in the limit where
inter-plate distance is infinite). Figure 9 corroborates the
existence of a PB tail, at large enough distances. Yet, a
word of caution is in order here. It can rightfully be
argued that a quantity such as p(z)may only distinguish
exponential profiles from algebraic ones, but that any
density of the type ñ ∝ (μeff + z)α yields p → 0 for all
α > 0, and not only α = 2. A possible solution would be
to consider the ratio of the two terms subtracted in (55),
rather than their difference; the ratio goes to a constant
for the PB behaviour only (α = 2). However, this has a
drawback: it amplifies the contribution of any residual
exponential tail in the density and requires larger dis-
tances to qualify the density as PB-like. A point to keep
in mind though is that our probe (55) is more interesting
for a two-plate systemwhere the real (e.g.MC) pressure P
is non-vanishing, rather than for the one-plate situation.
Indeed, in such a case, comparing p(z) to P can be viewed
as signalling the mean-field regime.

6. Concluding remarks

We have studied a system of identical counter-ions near
a wall carrying a uniform surface charge density, in ther-
mal equilibrium. This is probably the simplest model of
the electrical double layer, depending only on one param-
eter, the coupling constant �. It provides an interesting
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test-bench, since both Weak Coupling (WC) and Strong
Coupling (SC) limits are known.

We have proposed a method which combines physi-
cal ideas from both WC and SC regimes. From the WC
side, the particle density is determined by the Boltzmann
factor of the mean potential. From the SC side, there is
a cylindrical correlation hole around each particle, inac-
cessible to other particles, which modifies the value of
the mean potential. The theory is simple by its construc-
tion and leads to a non-linear integral equation, similar
to the PB one, which converges quickly in an iterative
scheme.

Remarkably, all exact constraints are respected by our
correlation-hole theory, for all coupling constants. The
contact theorem for the particle density at the wall holds.
The WC and SC limits are reproduced as well, and the
correction to the SC limit � → ∞ is proportional to
1/

√
�, in accordance with recent approaches and MC

simulations. For large distances from the wall and at
arbitrary �, the algebraic mean-field density profile is
recovered. Moreover, we showed that the correspond-
ing subleading correction, in � log z/z3, is of the same
form as found in a loop-wise field theoretic treatment
of fluctuations beyond Poisson–Boltzmann [16]. Focus-
ing on the approach to mean-field behaviour at large
distances, we showed that beyond a crossover distance
zcross (coinciding with the hole size), the density takes
a Poisson–Boltzmann form. This allows to define an
effective Gouy–Chapman length to describe the density
tail. In units of the bare length μ, it behaves as μeff ∝
exp(

√
�/2) and quickly grows with�. This is a signature

of efficient non-linear screening, leading to a small effec-
tive surface charge for the plate, as far as its large-scale
potential is concerned. Introducing a ‘mean-field probe’,
p(z) in Equation (55), we recover the results of a direct
analysis of the numerical profiles.

For the sake of completeness, we also considered
the situation of two parallel uniformly charged plates
(surface charge density σ e), at distance d, sandwich-
ing a slab of counter-ions. There, an ambiguity arises
when enforcing the idea of a correlation hole. Indeed,
we have to distinguish between the two limits d → ∞
and d → 0. Accepting the cylinder form of the correla-
tion hole, the cylinder radius is given by formula (21) if
d → ∞, i.e. σπR2∞ = q, and by 2σπR20 = q if d → 0.
A possible, d-dependent interpolation formula for the
correlation-hole sizemight be relevant, but for simplicity,
we took the same prescription as in the one-plate case,
Equation (21). The alternative choice turned out to be
slightly worse. The equation of state of this system, as
measured inMC simulations, is reported in Figure 10. To
test our correlation-hole approach (accurate at both small
and large couplings), we concentrate in Figure 10 on

Figure 10. Interplate pressure versus rescaled distance, for � =
1, 10, 50 and 100 (from top to bottom). MC results (symbols) are
compared to the prediction of the correlation-hole theory (lines).
The rescaled pressure is defined as P̃ = P/(kBT2π�Bσ 2) and is
measured from the contact theorem.

intermediate coupling strengths, where the phenomenon
of like-charge attraction sets in [3,17,19,56]. We see that
the qualitative features of the pressure are well captured,
with an agreement that is quantitative for small distances,
up to the range where like-charge attraction is maximal
(minimum of the pressure). The asymptotic decay to
vanishing pressure then takes place over too large dis-
tances, as compared to MC. The correlation-hole idea
there overestimates the SC non-mean-field features; cor-
recting for this deficiency is left for future work. Yet, it is
noteworthy that the present theory captures here also a
number of exact features. Not only is the proper equation
of state recoveredwhen� → 0 and� → ∞, but also the
pressure minimum arises at z ∝ �1/4, as found in MC
simulations [21,50].

Note

1. Yet, as alluded to above, reaching the z-range where the
log correction is relevant becomes in practice impossible
when increasing �. For instance, we would need z > 106
for � = 50 and already z > 1029 for � = 100. Thus, the
log correction can only be probed at� < 50.
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Appendix. MC simulations

MCMetropolis simulations were carried out by using 256 point
charges located between two hard and planar surfaces, one of
them having a surface charge density of eσ and the other being
uncharged, in a quasi-2D slab geometry at different separa-
tions. The simulation cells were periodic in all directions with
an extra vacuum slab in the z-direction inaccessible to the point

charges. This set-up allowed us to use standard Ewald simula-
tion techniques with only minor corrections for the imposed
quasi-2D geometry [62,63]. The vacuum slab was chosen large
enough such that it did not influence the results (i.e. the
periodic images in the z-direction were too far from each other
to influence each other), typically larger than a couple of thou-
sands of Gouy–Chapman lengths. The separation between the
surfaces was fixed to 4 · 103 Gouy–Chapman lengths, practi-
cally yielding a zero particle density at the uncharged wall.
Standard trial displacement moves were performed with an
acceptance ratio of around 30% over 105 MC cycles, where
oneMCcycle involved 256 trial displacements.MC simulations
were also performed for two parallel uniformly charged plates
using the same techniques as described above (with the excep-
tion of now having both surfaces charged). For this purpose, we
doubled the number of point charges. Pressures were collected
using the contact theorem by an interpolation of the densities
close to the surfaces and were sampled for various interplate
separations. Consistency checks were also performed by evalu-
ating the pressure over the mid-plane, which yielded the exact
same pressures.


