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Abstract. Combining cell and Jellium model mean-field approaches, Monte
Carlo together with integral equation techniques, and finally more demanding
many-colloid mean-field computations, we investigate the thermodynamic
behaviour, pressure and compressibility of highly-charged colloidal dispersions,
and at a more microscopic level, the force distribution acting on the colloids.
The Kirkwood–Buff identity provides a useful probe to challenge the self-
consistency of an approximate effective screened Coulomb (Yukawa) potential
between colloids. Two effective parameter models are put to the test: cell against
renormalized Jellium models.
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1. Introduction

Colloidal suspensions contain mesoscopically large particles from the nm to µm size regime,
the colloids, together with small solvent and solute molecules. These molecules are orders of
magnitude smaller than the colloids, and still they heavily influence the interactions between
the colloidal particles. Such microscopic species also significantly affect the thermodynamics
of the system. However, they often cannot be directly visualized and most experimental
techniques such as small angle x-ray or neutron scattering, probe the colloidal degrees of freedom
only. This stems from the wide separation of characteristic time and length scales between
microscopic and mesoscopic degrees of freedom, which therefore suggests to develop effective
approaches for the colloidal particles, integrating over their microscopic counterparts, that follow
adiabatically.

The focus of this paper will be on the behaviour of charge-stabilized colloidal suspensions
[1]–[3]. In the subsequent analysis, we will further restrict ourselves to a mean field treatment
where the correlations between microions are discarded. The resulting Poisson–Boltzmann (PB)
description is valid in aqueous solvents under usual conditions of temperature and for monovalent
micro-ions, because existing colloids do not allow us to reach the high Coulombic couplings
that are required to observe deviations from mean-field [3]. In the following, we therefore
focus on the more special case of charged colloids in a simple 1 : 1 electrolyte, adopt the
PB approach, and treat the micro-ions as point-like particles dissolved in a continuum of solvent
molecules.

Even within such a simplified framework, the solution corresponding to Nc interacting
colloids is a difficult problem from a numerical point of view [4, 5]. In principle, one has
to compute the density distribution of microions in space ρmicro(r) for any given colloidal
configuration. First one has to solve the PB equation around a large collection of Nc colloids.
One can then compute the corresponding stress tensor to obtain the force felt by each colloid,
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from which the colloidal configuration of the next time step can be found. This defines the loop
that has to be iterated—a numerically rather demanding task [4, 6, 7]. It is therefore still of
interest and common practice to map the multi-component Hamiltonian of the charge-stabilized
colloidal suspension onto a one-component model (OCM). In the OCM the colloidal particles
interact via effective pair-potentials ueff [1]–[3]—effective in the sense that these pair-potentials
reflect not only the true pair-potential between the ‘naked’ colloids, but also the indirect effect
that all the micro-ions and solvent molecules have onto the interacting colloids. As an advantage
of the OCM, the number of degrees of freedom is significantly reduced. If each colloid has
Z counter-ions, then a system with Nc colloidal particles has at least Z × Nc interacting species
(not to mention any additional salt ions or the solvent molecules), which in the OCM are reduced
to just Nc interacting colloids.

The effective pair-potentials between charged colloids are usually Yukawa-like (screened
Coulomb, see equation (1) below), but with effective charge and screening parameters whose
dependency on the colloid density makes the whole pair-potential density-dependent. There is
no rigorous way to ‘derive’ these effective parameters from first principles. However, a large
number of rather sophisticated recipes to determine effective parameters can be found in the
literature [1]–[3]; but no matter how sophisticated a scheme is, a heuristic element within these
theories can never be avoided. In section 2, we will briefly describe two rather simple approaches
to compute effective Yukawa-parameters, in the following referred to as the ‘PB cell model’ (see
e.g. [8]) and the ‘Jellium model’ [9].

Combining various numerical simulation techniques (Monte Carlo (MC), integral equation,
and Nc-body mean-field computations), we here investigate the performance of these effective
Yukawa potentials and the two effective-charge theories, the PB cell model and the Jellium
model. We will perform these tests in three different ways. (i) We first investigate if the form
of the effective Yukawa potential is able to reproduce the correct distribution of forces felt by
the colloids in various configurations. Such a comparison, that will be addressed in section 3,
requires the solution of PB problem around Nc colloids. One may anticipate that in situations
of high salt content, the Yukawa approximation will be operational, while the opposite low salt
regime deserves more attention. (ii) We then study the compressibility χ of the suspension as
a function of the colloid density. Both the PB-cell and the Jellium model not only provide us
with effective parameters for the Yukawa pair-potential, but directly predict the pressure and
compressibility of the suspension. The Kirkwood–Buff relation now allows us to check the
thermodynamic consistency of the effective-charge models; it relates χ to S(0), the infinite
wavelength limit of the colloid–colloid structure factor. While χ follows directly from the two
effective charge models, S(0) is related to the structure of the suspension which can be obtained
from the colloid–colloid pair-correlations calculated using the effective Yukawa forces of the
OCM. As these Yukawa forces again require the effective parameters of the two effective charge
models, the Kirkwood–Buff relation can be used for a stringent test of the consistency of the
effective charge models under scrutiny. Such a consistency check is performed in section 4. (iii)
The most direct way to check the quality of an approximation is to compare it to the results of more
rigorous approaches. In the third main section of this paper (section 5), we compute osmotic
pressure, compressibility and pair-correlations of the suspension for the two effective-charge
models and compare the results to primitive model (PM) calculations.
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2. Two models for effective charges and screening lengths

We start by outlining the two effective charge models that we here are concerned with. The idea
behind using effective parameters to incorporate effects of nonlinear screening in a pair-potential
based otherwise on linear theory, is explained and reviewed in [10].

Although the effective potential has an unambiguous definition, there is no rigorous
operational route to construct this object and it is common belief, under scrutiny here, that
a Yukawa form [1]–[3]

βueff(r) = Z2
effλB

(
exp(κeffa)

1 + κeffa

)2 exp(−κeffr)

r
, (1)

provides a reasonable description. Here a is the radius of the colloid (assumed to be a sphere), λB

is the Bjerrum length, kT = β−1 is the thermal energy, while Zeff and κ−1
eff are the effective charge

and screening length. Such a ‘DLVO’-like expression [11] would accurately reproduce the large
distance interaction of two colloids immersed in a salt sea [1]–[3] but it should be kept in mind that
it has to fail at short distances [1]. One should also keep in mind that even if one had the perfect
effective potential for two colloids, one cannot be sure that it is also the appropriate effective
pair-potential for a concentrated suspension of colloids, because in general these effective pair-
potentials cannot be superposed. Many-body interactions between the colloids must be taken
into account [12], as they can have a considerable impact on the structure of the suspension [13].
We also remark, that in the salt-free case, the validity of (1) is not obvious. Other limitations of
the concept of effective pair-potentials are discussed elsewhere [1]–[3], [14].

In appendix A, we recapitulate the essentials of the two empiric models (Jellium and
PB-cell model) used here to determine Zeff and κ−1

eff in theYukawa pair-potential. As emphasized
in the introduction, effective parameters can also be used to predict the osmotic pressure of
the suspension. We define the osmotic pressure from the pressure P and the reservoir pressure
Preservoir, as

� = P − Preservoir = P − 2cskT, (2)

where cs denotes the (monovalent) salt concentration in the reservoir. Furthermore, the osmotic
isothermal compressibility χ is defined via equation (2) as

χ−1 = ∂β�

∂ρc

∣∣∣∣
T,salt

, (3)

where the derivative with respect to the colloid density ρc is taken at constant salt chemical
potential (i.e. constant cs). Applying these two definitions, the osmotic pressure of the suspension
can be related to the effective parameters (see appendix A)

4πλBa2β�micro = κ2
effa

2 − κ2a2, (4)

with κ2 = 8πλBcs. The subscript ‘micro’ is explained further below. The compressibility then
reads

χ−1 = a

3λB

∂κ2
effa

2

∂η
, (5)
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in which η = 4πρca
3/3 is the colloid volume-fraction. In these expressions κ2

eff a2 is given either
by the PB-cell expression, equation (A.3) and (A.4), or the corresponding expression for the
Jellium model, equation (A.2).

While the Jellium model is implicitly based on the assumption that the colloid–colloid pair
distribution function g(r) � 1, the PB cell model originally takes the opposite view and assumes
a g(r) corresponding to a crystalline colloidal configuration. This latter assumption rests on the
observation that the repulsively interacting colloids arrange their positions such that each colloid
has a region around it which is void from other colloids and which looks rather similar for
different colloids. In other words, one model assumes a regular arrangement of the colloids in
the suspension and thus a rather solid-like structure, while the other model assumes no structure
at all—a situation typical of fluids at low density. In that sense, the two models chosen are
complementary to each other.

The effective charges as a function of the bare colloid charge Zbare go to Zbare for low bare
charges, and to a saturated effective charge Zsat

eff for high charges, and can therefore be roughly
approximated by

Zeff(Zbare) ≈
{
Zbare Zbare < Zsat

eff

Zsat
eff Zbare � Zsat

eff

. (6)

Except in section 5, we will mostly concentrate on the saturated regime that is most suited to
describe colloidal suspensions [15] (for a discussion of the crossover behaviour between low and
high bare charges see [16] for symmetric electrolytes and [17] for 1 : 2 and 2 : 1 electrolytes). By
choosing in all our calculations a Zbare large enough to ensure saturation of the effective charges,
we can thus get rid of the additional parameter Zbare.

We have plotted the effective saturated charges as a function of η in figureA.1 of appendixA.
One can identify a regime in η where salt-ions dominate the screening, leading to effective charges
that are practically independent of the volume-fraction.At other values of η however counter-ions
outnumber the salt-ions; this is the regime where screening is dominated by the counter-ions.
As the number of these counter-ions depends on the number of colloidal particles, the effective
charges become η-dependent when the counter-ions dominate the screening. One may estimate
from equation (A.2) of the appendix the volume-fraction η∗ where one may expect to find the
crossover between both screening regimes,

η∗ � κ2a3

ZeffλB
. (7)

We remark that this threshold value η∗ was derived within the Jellium framework. We have no
clear definition like this for the cell model and we have determined the η∗ for the cell model
empirically (see subsection 4.2). Empirically, as will be discussed in subsection 4.2, the crossover
volume fraction for the cell model is found to be much smaller, η ≈ 0.2η∗.

Working in the regime of saturated effective charges, we are left with in total only two
independent input parameters: the volume fraction η and the salt concentration κa of the salt
reservoir. Multiplying Zsat

eff with λB/a and the osmotic pressure with 4πλBa2, as we have done
in equations (A.2), (A.5) and (4), we avoid λB/a as an additional independent parameter.
However, the colloid–colloid pair correlation function g(r) does not exhibit the same scaling
behaviour as �micro so that it is important to precise which value of λB/a has been used in the
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Figure 1. Volume-fraction dependence of the reduced osmotic pressure �micro

according to the Jellium model (symbols) and the PB-cell-model (lines). Symbols
and lines as defined in the legend. The scale in the plot is logarithmic, while the
inset shows the same on a linear scale.

simulations. Unless otherwise specified, we have considered λB/a = 0.01, a reasonable value for
colloidal systems in an aqueous environment (smaller values are also met in experiments). As for
η we have stopped our calculations at high volume fraction when the liquid started to solidify,
while for κa we have worked in between two extremes, κa = 1.5 (high-salt regime) and κa = 0.0
(no salt).

Figure 1 compares the pressure prediction �micro of both models. The curves are based on
equation (4) in combination with (A.3), (A.4) and (A.2). In the no-salt case both models have the
same low-dilution behaviour, but different limiting behaviour in the presence of salt ions where
we have an algebraic decrease for the Jellium, but an exponential one for the PB cell model. The
agreement between Jellium and PB-cell is excellent in the no-salt case, up to volume fractions
around 0.1 which is remarkable in view of the differences in the effective charges.

Before proceeding we wish to emphasize that many more effective-charge approaches can
be found in literature, including density functional theory (DFT)-based schemes (e.g. [18]), MC
solutions of the cell model (e.g. [19, 20]), and other mean-field models with various criteria for
the effective charge (see reviews in [10, 14]). We here have selected both the Jellium and the
PB-cell models because they are complementary to each other and because they are probably
the two most practical effective-charge models; they are sufficiently accurate, well-established
in literature, quite simple and rather straightforward to implement (see the appendix of [21]).

3. Test 1: many-body forces versus Yukawa forces

We are now in the position to perform the first test. We recall that the interactions among colloids
in a suspension are mediated by the micro-ions and are therefore in origin complex many-
body interactions. Integrating the micro-ions out, the force on any given colloid depends on
the positions of all other colloids in the system. It is not straightforward that this force can be
written as a sum of pairs only. In principle, one has to sum over pairs, triple, . . . and over all
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Figure 2. Histogram of ratio between the moduli of Yukawa pair forces FYU

and the correct many-body forces FMB for (A) high salt concentration (κa = 1.5)
and for (B) no added salt. A few particle configurations are obtained from MC
simulations with 4000 and 6000 particles at the volume fraction η = 0.0001.
FYU is evaluated with both effective parameters approximations, the PB cell
and the Jellium. FMB is obtained by solving the nonlinear PB equation in
the given colloidal configurations. The bare charge is such that ZλB/a = 50,
which is large enough to effectively reach the saturation regime. We have also
performed the calculations at larger volume fraction η = 0.01 and found very
similar distributions to the ones shown here at η = 0.0001. (C) The distribution
of relative angles between the correct solution FMB and the two effective pair
pictures. All graphs are presented in a linear-log scale.

many-body configurations. To test how important the higher many-body contributions are, the
true many-body forces have to be compared to the forces obtained by summing up the effective
pair interactions.6 This is done in this section.

We arbitrarily selected a few typical colloidal configurations from a MC simulation of
4000 Yukawa particles and solved the nonlinear PB equation in the region between the colloidal
spheres of this colloidal configuration using our multi-centred PB solver described in detail in
[6]. As in [6] we integrated the stress-tensor around each colloidal sphere to obtain the force
acting on each colloid. These forces FMB—which include all many-body forces acting on the
individual colloid—can now be compared to the forces FYU one obtains by summing pair-forces
derived from Yukawa-potentials, equation (1), with effective PB-cell or Jellium parameters. We
have evaluated the ratio of the magnitudes FYU/FMB and the (cosine) angles between the forces
FYU · FMB/FYUFMB for each particle and have plotted the corresponding histograms, that have
been averaged over a few configurations. The results of these calculations are shown in figure 2
for the salt-free case and for the high salt case, κa = 1.5.

We see from figure 2(A) that the ratio between the forces is very close to one and has
a narrow delta-like distribution in the high salt case, as we should expect, since the Yukawa

6 A somewhat similar idea has been worked on in [22], where a multidimensional fit has been used to find the
effective parameters of the pair Yukawa interaction that optimally agree with the results of the density functional
theory. However, the individual forces have not been analysed and directly compared, which is the main idea in our
Test 1.

New Journal of Physics 8 (2006) 277 (http://www.njp.org/)

http://www.njp.org/


8 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

one-component picture has already proven to be applicable at such parameters. Interestingly, in
the no-salt case, the force ratio shows a broader distribution but is still quite peaked, although
not centred at unity, see figure 2(B). The forces based on the Yukawa one-component picture
are therefore on average larger (cell) or smaller (Jellium) than the correct many-body forces.
We may then anticipate that when used in the OCM, Jellium parameters will underestimate
the structure, while cell data will lead to an overestimation (see figure 7(B)). Despite these
deficiencies, both models seem to reproduce the forces reasonably well, which is especially true
for the angular distribution displayed in figure 2(C). An interesting result is the bump observed
in figure 2(B) at low force ratios: here not any of the effective-charge models, but the Yukawa
pair-force model as such fails dramatically, predicting a total force that is five times smaller in
magnitude than the correct many-body force. We have investigated the local structure around
the colloids feeling these forces. They are always located in regions of larger local density.
Here, the local mean-distance between the colloidal particles is relatively short (compared to
the suspension-wide mean distance) and the Yukawa pair potential is thus probed at rather short
inter-particle distance. However, at these distances expression (1) is bound to fail, as we have
indicated already in section 2. The extent of this failure is now quantified in figure 2(B).

4. Test 2: thermodynamic consistency and the Kirkwood–Buff relation

Having seen in the previous section that the distribution of forces felt in situ by the colloids in the
mixture can in most cases be captured by a Yukawa effective pair potential, we now turn to the
second test of these potentials and relate the compressibility of the suspension to its structure as
computed within the OCM. The way to do so is to apply the Kirkwood–Buff relation introduced
further below.

�micro of both the PB-cell and the Jellium model is depicted in figure 1. It provides an
excellent approximation to the total pressure of salt-free suspensions: both models lead to a
pressure that is in very good agreement with existing experimental data [23] and PM simulations
[24],7 see e.g. [9, 25].8 The Kirkwood–Buff relation (10) now allows for a test of the effective
potential chosen: ueff should lead to a colloid structure, embodied in a long-wavelength structure
factor S(0) computed within the OCM, that is compatible with the compressibility following
from �micro. As the same effective parameters appear both in the Yukawa-forces leading to S(0)

and in �micro of equation (4) this provides a critical consistency test of our effective-charge
models.

We will also report results at medium and high salt concentrations, where it does not seem
possible to test the effective potential as severely as in the no-salt case, but where it is still of
interest to compare the different pressures introduced in this section.A similar idea has previously
been worked out by Lobaskin et al [28] who checked the consistency of thermodynamic and
structural properties of an asymmetric electrolyte containing macroions with 60 elementary
charges and monovalent counterions. Primitive-model results have been compared with different
more approximate theories such as the cell model (within mean-field and even beyond). Finally,
technical details may be found in appendices B and C.

7 To be specific, the cell or Jellium model pressure Pmicro gives an excellent approximation to the full PM pressure
P as e.g. computed in [24]. For a coupling z3Zbareλ

2
B/a2 > 1, non mean-field effects become important [3, 26].

Here Zbare is the colloidal bare charge and z the counter-ions’ valency.
8 This agreement deteriorates upon attempting to improve the original mean-field formulation, as proposed e.g.
in [27].
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We start this section with an outline of the theoretical background and present the actual
results of our second test in subsection 4.2.

4.1. Theoretical background

4.1.1. The osmotic pressure of a charge-stabilized colloidal suspension. Our problem is best
treated in a semi-grand canonical ensemble. Nc colloids are confined to a certain volume V

which the small solvent molecules and additional micro-ions are free to leave; they are coupled
to a reservoir fixing their chemical potentials. For the moment, we need not distinguish between
the different types of small molecules, but may denote them collectively by an index s, while
the colloidal degrees of freedom are referred to by the index c. The total internal energy of the
system can then be written as U = Ucc + Uss + Ucs where the index combinations indicate over
what degrees of freedom the bare interactions have to be summed. The force on particle i (i ∈ c, s)
then is F i = −∇iU and the total pressure of the colloidal suspension can be obtained using the
virial

P = ρkT +
1

3V

〈∑
i∈c,s

ri · F i

〉
s,c

, (8)

where the thermal average has to be taken over the colloidal as well as solvent/solute degrees of
freedom. The first term, the ideal-gas term, is just the sum of densities of all components.

Within the OCM, the pressure reads

POCM = ρckT +
1

3V

〈∑
i∈c

ri · F eff
i

〉
c

, (9)

where the forces are obtained from the gradient of the effective potential and the summation runs
over the Nc colloids only.

By definition, the effective potential ueff reproduces the same pair (colloid–colloid)
distribution function g(r) as that of the original mixture, assuming a pair-wise Hamiltonian,
see e.g. [1]. However, there is no guarantee that the corresponding sum of effective pair forces
coincides, for a given colloid i in a given colloidal configuration, with the micro-ion average
of −∇iU which provides the true force. The comparison between both forces has been made
in section 3. For the sake of the discussion, we assume here that they coincide. Equation (9)
then uncovers one severe deficiency of the OCM picture: POCM only provides a contribution
to the total pressure given by equation (8). In particular, in the limit of low salt the micro-ions
are known to dominate the overall pressure of the suspension: that is the reason why �micro of
figure 1 provides such an excellent approximation to the total pressure. This implies on the other
hand that POCM is a very poor approximation for P . The density derivatives of both pressures
are however intimately connected, under all conditions, as we discuss in the following section
(see equation (14)).

4.1.2. The Kirkwood–Buff relation. The Henderson theorem [29] guarantees that every pair-
correlation function g(r) can be uniquely associated with one pair-potential. As for the system
considered here, this implies that for any given colloid density, there exists in principle one,
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and only one, effective pair-potential leading to a g(r) within the OCM that is in perfect
agreement with the correct colloid–colloid pair correlation of the full multi-component system.
Unfortunately, this does not guarantee that in such a multi-component system the higher-order
correlation functions are equally well reproduced (see for example [13] where pair-, but not
triplet correlations of a many-component colloidal systems could be reproduced within a simple
pair-interaction picture).

However, there is one important quantity one can still derive if the correct colloid–
colloid g(r) is known: the osmotic isothermal compressibility χ defined in equation (3). The
Kirkwood–Buff relation relates this thermodynamic quantity to the infinite wavelength limit of
the colloid–colloid structure factor S(q) [30]

χ = ∂ρc

∂β�

∣∣∣
T,salt

= S(0), (10)

where S(0) is related to g(r) via

S(0) = 1 + ρc

∫
(g(r) − 1) dr. (11)

Remarkably, equation (10) is exact: nothing about the micro-ion–micro-ion correlations or the
micro-ion–colloid correlations needs to be known, but only the colloid–colloid pair correlations
are required to compute the correct osmotic compressibility of the full multi-component system.
By contrast, the full compressibility of the system, defined as χ−1 = ∂βP/∂(ρs + ρc) with P from
equation (8), depends on the pair correlations of all components [1].

Connecting thermodynamic to structural information, equation (10) is of central importance
in the present work. In many colloidal suspensions the micro-ions determine the thermodynamics,
while the macro-ionic degrees of freedom are more important for the structural properties of the
system. In these cases equation (10) is also well suited to bridge the gap between the micro-ion
and the macro-ion oriented viewpoints, thus providing a severe test for the quality of the effective
potential. Indeed, though having a clear-cut definition, an effective potential is nevertheless a
difficult object to compute and one often postulates its functional form, just as we have done in
equation (1). With equation (10) we can investigate a posteriori the relevance of the underlying
ad hoc assumptions made in deriving the effective potentials. Regarding the effective-charge
concepts under scrutiny here, equation (10) describes a route how to connect ueff with �micro. As
the same effective parameters appear in both quantities, this relation also provides a consistency
test of our effective-charge models.

4.1.3. On the various contributions to the total pressure. So far we have introduced three
different pressures: P from which the osmotic pressure � follows, POCM, and finally Pmicro,
the latter quantity being for instance the pressure found in the cell or in the Jellium models, see
equation (4). At this point, it seems worth discussing the non-trivial connection between these
three pressure expressions, at the expense of introducing a fourth quantity: we define a ‘colloidal’
pressure Pcoll from the difference between the total pressure P and Pmicro

P = Pcoll + Pmicro. (12)

The pressure Pmicro can be considered as arising from so-called ‘volume terms’ in the total free
energy of the system, see e.g. [31, 32].
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In the situation where the system is confined in a closed box of volume V (ρc = Nc/V ), it
can be shown that 9 ,10

P = ρckT +
1

3V

〈∑
i∈c

ri · F eff
i

〉
+

kT

3V

〈∮
box

ρmicro(r)r · d2S

〉
, (13)

The third term on the right-hand side in (13), for which the surface integral with normal
oriented outward runs over the box confining the system, accounts for the direct coupling
between colloids and micro-ions. It is precisely this quantity that the micro-ionic cell-model
approaches aim at computing. In other words, this third contribution may be identified with
Pmicro in (12) so that remembering equation (9), we obtain Pcoll � POCM. However, a closed
cell is not the most convenient configuration (in particular, the effective potential of interaction
not only depends on the relative distance between two colloids, but also on the distance to the
confining walls), and from a computational perspective, it is often more desirable to work with
periodic boundary conditions systems. Unfortunately, equation (13) which provides a physically
transparent interpretation to Pcoll in the confined case (close cell), breaks down with periodic
boundary conditions. This failure is discussed at length in [33], together with the fact that in
low salt (or no salt) conditions, one has Pcoll � Pmicro which implies P � Pmicro (see [34] for a
related discussion).

From the previous discussion, it appears that the connection between POCM and P is not
straightforward. The simplest relation between both quantities follows from the remark that the
colloidal structure within the OCM is of course the same as in the original mixture (assuming
the effective potential to be the correct one). Equations (10) and (11) then dictate that the
compressibilities in both approaches coincide:

∂P

∂ρc

∣∣∣∣
T,salt

= ∂POCM

∂ρc

∣∣∣∣
T,potential

, (14)

where it is crucial to compute the OCM compressibility at constant potential of interaction
ueff , i.e. discarding any density dependence of the effective potential. In a region of parameter
space where the density dependence of ueff is absent or weak enough, the ‘salt’ and ‘potential’
subscripts in the partial derivatives of equation (14) correspond to the same constraint, since ueff

then only depends on the salt chemical potential, besides relative distance. It is then possible to
integrate equation (14) to obtain P � POCM. Such a situation is met in the salt dominated regime
to be discussed below.

4.2. Applying the Kirkwood–Buff relation

We next apply equation (10) to the case at hand and expect to find the following: In the no-
salt case where the total pressure is very close to Pmicro we should obtain within the OCM a
long-wavelength structure factor S(0) compatible with ∂ρc/∂(βPmicro). Any difference between
both quantities indicates a lack of consistency in the (somewhat uncontrolled) procedure leading

9 See e.g. equation (65) in reference [1].
10We emphasize again that the effective force felt by colloid i, defined as the micro-ion average instantaneous force
for a given colloidal configuration, does not necessarily coincide with the force derived from the gradient of the
effective potential ueff , even in the hypothetical situation where the latter is exactly known.
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Figure 3. Compressibility versus volume fraction, for different salt conditions
and applying different approximations as discussed in the text. Dashed line:
χmicro(PB), solid line: χOCM(PB) and empty circles: the colloid–colloid S(0) from
figure B.1. Dashed-dotted line shows 1/Zsat

eff(PB), which is a valid approximation
at all densities without salt, and holds at high densities only, when salt is present.

to the effective Yukawa potential (1) chosen here. Such an inconsistency may take its roots
in an incorrect computation of effective parameters (charge and screening length) or more
fundamentally in the functional screened Coulomb form taken.

We have calculated S(0) within the OCM as a function of η as described in detail in the
appendices B (MC simulation) and C (integral-equation theory). Both methods lead to identical
results, shown in figure B.1 of appendix B. Such sets of S(0) curves had to be computed twice,
using once the PB cell model parameter and once the Jellium model parameter within the effective
Yukawa pair-potential. Figures 3 (PB-cell) and 4 (Jellium) show the corresponding S(0) curves.
Each figure consists of three graphs, corresponding to κa = 1.5, κa = 0.5 and κa = 0.0. In
each graph, we compare S(0) to the compressibility χmicro following from the ρc derivative of
pressure Pmicro (or equivalently �micro). To distinguish between the two effective charge models
used to compute �micro via equation (4), we introduce the notation χmicro(PB) and χmicro(Jell).
Alternatively, one may compute the OCM pressure POCM, defined in (9), and obtains then the
compressibility χOCM as the ρc derivative of POCM. If PB-cell model (Jellium model) parameters
have been used in the effective Yukawa potential, we denote the resulting compressibility by
χOCM(PB) (χOCM(Jell)). These quantities, and in addition the inverse of the saturated effective
charges, are also graphed in figures 3 and 4.
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Figure 4. Same as figure 3, but with effective parameters derived from the
Jellium model. Dashed line: χmicro(Jell), solid line: χOCM(Jell), empty circles:
S(0), dashed-dotted line: 1/Zsat

eff(Jell).

4.2.1. No salt. We observe that χmicro, in the no-salt case, is close to S(0). The agreement seems
to be slightly better for Jellium compared to cell parameters at low density, while the opposite
holds at higher densities. This finding is consistent with the fact that the probability distribution
shown in figure 2(B) (where η = 10−4, a low value) is slightly more peaked for the Jellium
than for the cell. On the other hand, the inadequacy of χOCM for κa = 0 is expected: POCM has
here nothing to do with the total pressure P ; the resulting compressibility is about a factor of
two larger than S(0). This question is addressed in [33] and for completeness, we adapt the
argument in appendix D. As can be seen in figures 3 and 4, the no-salt compressibility is close
to the inverse effective charge. This stems from the fact that at least within the Jellium, one
has βPmicro = Zeffρc for cs = 0 and since the density dependence of Zeff is mild (logarithmic,
see [9]), one has χmicro � 1/Zeff . Within the cell model, βPmicro = Zeffρc is no longer exact, but
accurate enough to lead again to χmicro � 1/Zeff .

4.2.2. Added salt. In the first two figures in figures 3 and 4 (the ones with κa > 0) we can see
two regimes. At low volume fraction the OCM compressibility χOCM is a good approximation
and the micro-ionic χmicro fails, while at high enough volume fraction the reverse is true, χmicro

is good and χOCM fails.
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The derivative involved in the computation of χOCM includes the density dependence of
the effective parameters. There are however situations where these parameters are virtually
independent of ρc (see figure A.1). This is the case for example at low density or high enough
salt concentration. Looking back at equation (14), one realizes that in these cases the constant
potential of interaction constraint coincides with that of constant cs. Then equation (14) dictates
that χOCM must be equal to S(0). It is therefore not a surprise, nor a deep finding, that in
figures 3 and 4 the S(0) coincides with χOCM in all those situations where the effective parameters
have no ρc dependence, i.e., at high enough salt concentration and at low density.

Such an agreement notwithstanding allows us to compute the full pressure P when the
effective potential is density independent. Remembering that at high salt content, the effective
forces following from ueff are very close to their ‘exact’ counterpart (see figure 2), we expect
POCM to provide there a good approximation to P , at least at not too high densities, i.e. in the
salt-ion dominated screening regime when η � η∗ with η∗ from equation (7).

At high η the counter-ions dominate the screening. Thus, no matter how large κa is, there
is always a regime at high enough η where the salt-ions can be neglected and where the results
become independent of κa. That implies that curves differing in κa must approach the same value
at high enough η. That can be observed, for example, in figures A.1(A) and B.1, where all curves
show the same high η behaviour. The same applies to figures 3 and 4. At high densities, all curves
approach the zero-salt curves and go to 1/Zeff , which is the same for all κa in this counter-ion
dominated limit. On the other hand, for η → 0 the compressibilities for κa �= 0 approach the
ideal-gas limit.

We have already remarked that for κa = 0, χmicro coincides with the OCM S(0). Since, for
large η (i.e. η > η∗) all κa �= 0 curves must approach the κa = 0 curve, we expect to find that at
high enough η, χmicro coincides with S(0), since then the system is close to the salt-free regime.11

This is indeed the case in figure 3 (and to a lesser extent in figure 4 where only the trend is
visible). This limiting behaviour seems to be a natural self-consistency requirement to impose
to any effective potential.

For the Jellium model, we have already defined the crossover volume fraction η∗

(equation (7)) separating the salt and counter-ion dominated screening. The dependence of η∗

on the salt concentration κa and on the volume fraction η is graphed in figure 5 (solid line). This
graph is meant to summarize our findings of figures 3 and 4. For the Jellium model, the counter-
ion dominated regime (η > η∗) is to the right of the solid line. Here, the OCM S(0) is found from
figure 4 to be consistent with χmicro. The other regime (the salt-ion dominated regime) where we
can observe from figure 4 that S(0) is consistent with χOCM is unfortunately not located to the left
of the solid curve, but rather to the left of the dashed line empirically determined as η∗

s = 0.2η∗.
This means that in frame of the Jellium model there is a gap between the salt dominated region
and counter-ion dominated region (η∗

s < η < η∗).At these intermediate volume fractions neither
χmicro(Jell) nor χOCM(Jell) is consistent with S(0).

Such a gap is not found using parameters from the PB-cell model. For the PB cell model
we have no analytical prediction for the value of the crossover volume fraction and have to read
the values from the results in figure 3. Empirically we have found the crossover volume fraction

11In the salt-free case, the suspension behaves as if it were permanently in the ‘large’ η-limit and S(0) shows a
weak η dependence only because of the η-dependence of Zsat

eff . This special feature of the zero-salt case can also be
appreciated from the pair-correlation functions displayed in figure A.1(B). Plotting these functions over the distance
in units of the mean separation, they largely resemble each other for all η considered, indicating a degree of particle
correlation that is almost independent of η.
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Figure 5. A diagram showing the regions in parameter space of salt dominated
screening and counter-ion dominated screening for both models. In the salt
dominated screening regime (left from the dashed line) the OCM compressibility
χOCM is consistent with S(0), while in the counterion dominated screening regime
(right from the dashed line for the cell model and right from the solid line for the
Jellium) χmicro is consistent with S(0). On the solid line, η is equal to η∗ defined
in equation (7), while on the dashed line η is equal to 0.2η∗.

of about η ≈ 0.2η∗, which is the same as the previously defined η∗
s for the Jellium model. This

is plotted as a dashed line in figure 5. For the PB-cell model, we may then summarize figure 3
as follows. For system parameters lying on the right-hand side of the dashed curve, S(0) is
consistent with χmicro(PB), for those system parameters on the left hand side S(0) is consistent
with χOCM(PB).

We emphasize at this point that with salt at high η, a better self-consistency is not necessarily
synonymous with the fact that Pmicro is in itself a better approximation for P . The situation is
different for κa = 0 where we have the extra piece of knowledge that P � Pmicro, that comes
from comparison with experiments or PM computations (see also section 5).

After this discussion, we can summarize the results of our Kirkwood–Buff consistency
check of the effective Yukawa pair-potentials and the two effective charge models, as follows:

1. For κa = 0, we find consistency essentially for both effective-charge models where the
agreement is better for the Jellium model at low densities and for the PB-cell model at high
densities.

2. For κa = 0, the compressibility derived from POCM is inadequate and not compatible with
the OCM S(0). The OCM approach with the Yukawa potential as effective pair-potential
seems to produce correct results for the structure of the suspension, but not for the pressure.

3. The no-salt compressibility is close to the inverse effective charge. This offers a convenient
way to estimate compressibilities χmicro at κa = 0.

4. For κa �= 0 and low volume fraction (η < η∗
s ), consistency is found between χOCM and S(0),

but not between χmicro and S(0). The OCM approach makes sense for calculating both the
structure and the pressure.
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Figure 6. Comparison between the PB cell model pressure and the associated
PS(0) (computed within the OCM with PB cell effective parameters in ueff ), for
κa = 0 (left panel) and κa = 1.5 (right panel).

5. For κa �= 0 and high volume fraction (η > η∗ for Jellium, η > η∗
s for PB-cell), we get back

to the zero-salt case where S(0) is consistent with χmicro, but not with χOCM.

6. The value of η∗
s = 0.2η∗ has been empirically determined at the constant value of λB/a =

0.01. This result might depend on the value of λB/a, which has not been studied in scope
of this paper.

In cases where we have reason to assume that the OCM S(0) is close to the correct χ, we
can of course estimate the pressure PS(0) from integrating the OCM S(0)

βPS(0)(ρ) =
∫ ρ

0

1

S(0)(ρ′)
dρ′. (15)

To illustrate this idea, we have performed this integration in figure 6 for κa = 0 and κa = 1.5,
using the PB-cell effective parameters. The resulting curves can then be compared to �micro from
equation (4) (again with the PB-cell parameters), which for κa = 0 we know to be an excellent
approximation to the full pressure of the suspension. We have data for S(0) starting at volume
fraction η0 ≈ 10−8, which is used as the lower bound of integration in equation (15). A small
constant is then added to the right-hand side of (15), so that the result coincides with �micro at
η0. The figure demonstrates that PS(0) agrees well with �micro, surprisingly, not only for κa = 0
but also for κa = 1.5. However, at very low η, the agreement is excellent for κa = 0, but not
for κa = 1.5, as one would expect from figure 3. Note that a hypothetical discrepancy between
Pmicro and PS(0) here could not be considered as a lack of self-consistency, since the contribution
Pcoll in P = Pcoll + Pmicro can be non-negligible.

5. Test 3: comparison to PM data

P Linse has carried out a full PM simulation of a salt-free charge-stabilized colloidal suspension
and computed the pressure P as a function of volume fraction η [24], see also [28]. The highest
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Figure 7. (A) Osmotic pressure of a salt-free colloidal suspension according to
the PM simulations of [24], compared to the PB-cell and Jellium predictions
of equation (4). All data are computed for Zbare λB/a = 14.2 and λB/a = 0.35.
The effective charges are not saturated. If they were, one would obtain the
PB cell pressure marked by the dashed-dotted line. (B) Colloid–colloid pair-
correlation functions from Linse’s PM simulation (symbols) and from MC
Yukawa simulations with effective PB-cell (solid lines) and Jellium (dashed
lines) parameters, see also [28]. From left to right, the packing fractions are
η = 0.08, 0.04, 0.01, 0.0025, 0.00125. (C) Compressibilities derived from the
data in (A) via equation (3) and from the colloid–colloid S(0) as indicated.

colloidal charge considered in this work does not lead to fully saturated effective charges
(Zbare λB/a � 14.2). Figure 7(A) shows the osmotic pressure as a function of η from [24]
and compares it to Pmicro (= �micro if κa = 0). Pmicro is given by equation (4) with either PB-
cell or Jellium model data. For comparison, we also added the cell-model pressure one would
obtain if the charges were saturated. This figure illustrates the quality of PB-cell and Jellium
Pmicro in the de-ionized limit, which has been repeatedly emphasized in the previous analysis.
Figure 7(C) shows the corresponding compressibilities, and as expected from figure 7(A), it
can be seen that χmicro is very close to the correct PM compressibility. Figure 7(C) supports our
findings of the previous sections: at low density, the Jellium effective potential leads to a S(0) that
fares slightly better than its cell counterpart. The PB cell and Jellium S(0) respectively provide
lower and upper bounds for the true compressibility, and correspondingly, respectively upper
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and lower bounds for the pair distribution function g(r) (see figure 7(B)). This can be traced
back to the force distribution seen in figure 2(B) where the Jellium effective potential leads
to a slight underestimation of the ‘exact’ force distribution, while the opposite holds for cell
data. Somehow, considering an appropriate mean of Jellium and cell effective parameters would
improve the quality of the predictions. A step forward in this direction has recently been made
in [35]. Of course, at very high Coulombic couplings, non-mean-field effects would spoil the
scenario put forward here, see e.g. [36] for an illustration, where a phase separation is reported).

6. Summary and conclusion

The forces between colloids in a charge-stabilized colloidal suspension are commonly
approximated by a sum of pair forces derived from the gradient of a screened Coulomb potential
ueff with effective charge and screening length. A number of models can be found in literature
on how to determine these effective parameters. We here computed them either from the PB cell
model supplemented with the Alexander et al recipe [37, 38], or from the renormalized Jellium
model [9, 39]. The effective parameters are therefore not fitted but derived from a well defined
although difficult to control procedure. It was our main motivation to assess the relevance of this
procedure, be it in the Jellium or in the cell case. To this end, we have performed three tests.

Test 1: we have performed in situ measurements of effective forces in typical colloidal
configurations, from the solution of a multi-centre PB theory (with Nc = 4000 colloids). We are
not aware of similar measurements in the literature (see footnote 6). The distribution of these
forces has been compared to forces obtained from summingYukawa effective forces. Under high
salt conditions, the pair-wise and many-body approaches gave very similar force distributions
(the test was performed under conditions where cell and Jellium effective parameters are very
close). In the no-salt regime, the agreement is less quantitative but still quite good given that the
system is there always strongly correlated, with strongly overlapping double-layers. Jellium(/cell)
forces slightly underestimate(/overestimate) the ‘true’ force. We also found situations where the
Yukawa pair-force model fails dramatically, predicting a total force that is up to five times smaller
in magnitude than the correct many-body force (bump observed in figure 2(B) at low force ratios).

Test 2: we have used the Kirkwood–Buff identity to check the consistency in the procedure
leading to the effectiveYukawa potential ueff and the two effective charge models. On the whole,
the consistency of ueff is remarkable given the simplicity of the underlying procedures. Our
findings in detail have already been summarized at the end of subsection 4.2. The most important
results are:

1. In the salt-free case, we find consistency for both effective-charge models. The micro-ionic
contributions χmicro are consistent with the OCM S(0). The Jellium potential is slightly
better at low densities, but performs less than its cell counterpart at higher volume fraction.
By contrast, the compressibility derived from POCM is not compatible with the OCM S(0)

and consequently the OCM virial pressure POCM is far from the true pressure P .

2. With added salt, the POCM provides a good approximation to the total osmotic pressure if
the volume-fraction η is lower than the threshold value 0.2η∗, (η∗ of equation (7)). This is
the case essentially if ueff is density independent, i.e., at low enough colloid density and/or
high enough salt content.
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3. At κa �= 0 and if η 	 η∗, the system should recover a salt-free-like state: the cell rather than
Jellium effective potential leads to a structure that is more consistent with the isothermal
compressibility χmicro.

Test 3: we compared our data to PM data. PB-cell and Jellium both lead to a Pmicro and
χmicro that is in excellent agreement with the corresponding PM pressure data. The OCM cell
and Jellium S(0) respectively provide lower and upper bounds for the true compressibility, and
correspondingly, respectively upper and lower bounds for the pair distribution function g(r).

Thinking in more practical terms, we finally recommend:

1. To use our empirical value 0.2η∗ to find the regions where POCM can be taken as a good
approximation of the true pressure and where thus the OCM picture is valid both with
respect to the structure and to the thermodynamics.

2. To always compute effective parameters applying both the Jellium and the PB model and
then to take the results as an upper and lower bound. This latter remark is based not only on
the results of the third test, but also on our observation that the correct forces (figure 2(B)
have always been located between the forces predicted by both models.

3. To use the PB cell model to calculate the pressure Pmicro(PB) at volume fractions above the
threshold η > 0.2η∗. This proves to be a remarkably consistent approximation (which does
not necessarily mean correct !) of the true pressure P in this parameter region.
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Appendix A. Effective charge models

A.1. The Jellium model

The Jellium model [9, 39, 40] assumes the effective charges of Nc − 1 colloidal spheres to
be smeared out in space to form a homogeneous background charge −ρback = −Zbackρc. This
background charge adds to the charge distributions of co- and counter-ions, ρ± = cs exp(∓eβφ),
in the radial PB equation, to be solved about one central colloidal particle. Deriving now Zeff by
comparing the solution of the PB equation with the known far-field expression for the electrostatic
potential φ(r), one can again compute a colloidal background charge Zback which differs from
the previous one. The whole procedure is iterated until self-consistency is achieved, that is,
until Zeff(Zback) = Zback. This consistency requirement was absent in the original formulation
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proposed in [40]; it is however an important ingredient to account for nonlinear screening effects.
Zeff thus determined is used to calculate

κ2
eff = 4πλB

√
Z2

effρ
2
c + 4c2

s , (A.1)

which may be rewritten as

κ4
effa

4 =
(

3
ZeffλB

a
η

)2

+ κ4a4, (A.2)

where η = 4πρca
3/3 is the colloid volume fraction while κ2 = 8πλBcs is the squared inverse

screening length in the reservoir.

A.2. The PB cell model

The PB cell model [21, 37] rests on the observation that the repulsively interacting colloids
arrange their positions such that each colloid has a region around it which is void from other
colloids and which looks rather similar for different colloids. In other words, the Wigner–Seitz
cells around two arbitrarily selected colloids are comparable in shape and volume. One now
assumes that the total charge within each cell is exactly zero, that all cells have the same shape,
and that one may approximate this shape such that it matches the symmetry of the colloid,
i.e., spherical cells around spherical colloids. The cell radius R is chosen in consistency with the
colloid volume fraction, and the PB equation within the cell is solved with appropriate boundary
conditions at the cell edge and the colloid surface. Thus, through the finiteness of the cell plus the
boundary conditions, the presence of all those colloids not inside the cell are taken into account.
For a more detailed description of the cell model approximation see [8].

From the numerical solution of the PB equation, one obtains the electrostatic potential at
the cell edge φR, and can now proceed to compute the effective screening parameter

κ2
effa

2 = κ2a2 cosh φR, (A.3)

if κ2a2 > 0 and

κ2
effa

2 = µ2 exp(−φR), (A.4)

if κ2a2 = 0 where µ2 appears in the PB equation ∇2φ = −µ2e−φ of the salt-free case and is
determined from the electro-neutrality condition. Then, the effective charge following Alexander
and collaborator’s recipe [37] is given by [15, 21, 41]

Zeff
λB

a
= γ0f(κeffa, η−1/3), (A.5)

where γ0 = tanh φR in the salt case and γ0 = 1 in the no-salt case, and where the function f(x, y)

is given by

f(x, y) = 1

x
{(x2y − 1) sinh(xy − x) + x(y − 1) cosh(xy − x)}. (A.6)
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Figure A.1. (A) Effective saturated charges as a function of the volume fraction
of a charge-stabilized colloidal suspension, for three different salinities, according
to the Jellium model (symbols) and the PB-cell model (lines). We can discriminate
the salt dominated regime η < η∗ and the counter-ion dominated regime η > η∗.
(B) The radial distribution function plotted versus the scaled distance d/dnn for
no-salt systems at four different volume fractions: 0.00125 (the lowest peaks),
0.005, 0.02 and 0.08 (the highest peaks). There are some differences, but in
the first approximation the curves superimpose. Inset: the ratio 1/(κeffdnn) of
the double layer thickness (derived from the cell approximation) and the mean
distance between particles as a function of the colloid volume fraction η at three
different salt concentrations.

A simple approximation valid for large bare charges is given in [38]. We emphasize here that
following such a route to define Zeff and κeff , a ‘natural’ relation such as that embodied in
equation (A.1) is lost, except in certain particular limits [21] (low density, or high density, or
low charge). We also note that it has been shown recently that the cell model effective charge is
accurately reproduced by a dynamical rule which defines the condensed micro-ions through a
bound on their total energy [42], a criterion that may also be considered when mean-field breaks
down.

Figure A.1 serves to discuss and compare the two effective charge models in the (κa, η)-
parameter space. Figure A.1(A) compares the volume-fraction dependence of the saturated
effective charges. The change from salt-ion to counter-ion dominated screening (occurring at
η � η∗) can be recognized from the onset of a η-dependence of the effective charges. For the
no-salt case screening is always due to the colloidal counter-ions, and, indeed, both models
predict a strong η-dependence of the effective charges even in the limit η → 0. At low η, a
suspension of charged colloids with no extra salt will always be correlated regardless of how
low a volume fraction is considered. The reason is that the thickness of the double layer then
grows faster than the mean-distance between the particles, that is, the ratio of the double-layer
thickness 1/κeff and the mean distance dnn = ρ−1/3

c grows with decreasing volume fraction,
as opposed to the case with external salt where this ratio decreases (see [1] and the inset of
figure A.1(B)).
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Figure A.1(A) demonstrates that the two effective charge models agree inasmuch as the
η → 0 limiting behaviour is concerned,12 but disagree in the opposite limit with the Jellium
model generally predicting an earlier change from the salt-ion to the counter-ion dominated
screening and smaller effective charges. For high η, the curves for all three values of κa must
ultimately converge for each model when the contribution of salt-ions to the screening ceases to
be significant. A rather special feature of the Jellium model is the pronounced minimum in Zsat

eff
at intermediate volume fractions observed for all values of κa, something that is not present in
the PB cell model for the salinities investigated, but that would be observed at lower salt.

Appendix B. Numerical procedures

Technical details for the calculation of the effective charges and screening parameters are given
in [9, 39]. Within the OCM picture, we have performed MC simulations, typically with 10 000
particles in a simulation box of side length Lbox applying periodic boundary conditions. We have
carried out 5 × 106 MC cycles to reach thermal equilibrium and another 2 × 107 cycles for the
averages. The pressure has been obtained from equation (9), the structure factor directly from

S(q) = 1

N

〈(∑
i

cos(q · ri)

)2

+

(∑
i

sin(q · ri)

)2〉
, (B.1)

and S(0) has then been approximated by S(qmin) where qmin = 2π/Lbox.13 Special care has been
taken that the value converges with the system size. As an independent check we computed the
static structure factor S(q) from the g(r) by Fast Fourier Transform and checked that the value
at qmin was the same.

Much faster than MC simulations are structure calculations using the Ornstein–Zernike
(OZ) equation [43], see appendix C. This integral equation has been solved using the well-tested
Rogers–Young (RY) closure [44]. Computing thus g(r), we obtain S(0) from the integration in
equation (11) supplemented with finite size scaling, and the pressure from

βPOCM = ρc − ρ2
c

6

∫
rg(r)βu′

eff(r) dr. (B.2)

To assess the validity of both MC and integral equation routes, we show in figure B.1 the
results of our S(0) calculations in which the PB-cell effective parameters have been taken in the
Yukawa potential. The results of the MC simulations compare favourably with the solutions of
the OZ equation for all values of κa considered. Equally good agreement between the results of
both methods was found for all other curves presented in this work, but in order not to overload
the graphs, we have shown only the OZ results.

12With salt, both models provide the same η → 0 limit, by construction. However, the fact that they give close
results also without salt in the same low density regime is non-trivial.
13Nicer convergence is obtained at a higher q than qmin. The value q = 4π/Lbox has been utilized in the calculations
of S(0). The results have converged with system size.
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Figure B.1. Comparison of the large wavelength limit of the structure factor S(0)

as calculated by MC simulations and by OZ integral equations method. The cell
model approximation is used to obtain the effective parameters. The symbols
represent the MC results, the solid lines OZ values.

Appendix C. Integral equations theory

The structure of a fluid can be obtained by experimental techniques, computer simulations, or by
solving numerically the OZ equation. The inhomogeneous OZ equation for a mono-component
fluid is given by [43]

h(r1, r2) = c(r1, r2) +
∫

V

dr3c(r1, r3)ρ(r3)h(r1, r3), (C.1)

where h(r1, r2) and c(r1, r2) are the total and direct correlation functions, respectively, between
a particle located at r1 and a particle located at r2. ρ(r3) is the local density of particles in
the system. In an homogeneous and isotropic system the total and direct correlation functions
depend only on the relative distance between particles and the local density takes the average
value ρ(r3) = ρ, where ρ is the mean density of particles. Then, equation (C.1) reduces to

h(r) = c(r) + ρ

∫
V

dr′c(|r − r′|)h(|r − r′|). (C.2)

The total correlation function is related to the local structure of the system by means
of the relation h(r) = g(r) − 1, where g(r) is the radial distribution function. Also, h(r) is
connected with the structure factor, S(q), through the relation S (q) = 1 + h̃(q), where h̃(q)

is the Fourier transform of h(r). The structure factor can be measured, for example, by light
scattering experiments.

Equation (C.2) is an integral equation with two functions, h(r) and c(r), which needs an
additional relation between the total and direct correlation functions to close the set of equations.
The general closure relation for the equation (C.2) is given by [43]

h(r) = exp [−βu(r) + h(r) − c(r) + B(r)] − 1, (C.3)
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where βu(r) is the pair potential between particles and the function B(r) is the so-called
bridge function, which depends on particle density and, in general, is unknown. There are
many approximations to the bridge function, such as Percus–Yevick (PY), hyper-netted chain
(HNC) and RY closure relations [43, 44]. It is well-known that the HNC and RY relations work
well when the interaction between particles is only repulsive beyond the hard-core interaction.
The RY approximation [44] is given by

h(r) = exp [−βu(r)]

[
1 +

exp [(h(r) − c(r))f(r)] − 1

f(r)

]
− 1, (C.4)

where the function f(r) = 1 − exp(−αr). The RY closure is a mixture between the PY and HNC
closure relations. For example, when α = 0 equation (C.5) reduces to PY approximation. As α

increases, f(r) approaches 1, and equation (C.4) reduces to HNC approximation. The mixture
parameter, α, is fixed by demanding that the isothermal compressibility from the virial route,
1 − ρc̃(q = 0) = S(q = 0), and from the compressibility route (see equation (3)), are both equal.
In the case of density-dependent potential of interaction, as is the case here, it is important to
compute the density derivatives leading to the above compressibilities at constant potential of
interaction.

For a given density ρ the integral equation (C.2), together with the RY closure relation,
is numerically solved by converting the OZ equation in an algebraic equation. This is done by
taking the Fourier transform of equation (C.2),

h̃(q) = c̃(q)

1 − ρc̃(q)
. (C.5)

Then, by applying the inverse Fourier transform to equation (C.5) we get the desired solution.
However, for strongly interacting systems, as in our case, the direct application of equation (C.5)
gives noisy solutions. Then, we divide the density ρ in small steps of size ρ. For each given
sub-density we solve iteratively the OZ by using a five-parameter version of the Ng-method [45]
until the desired density is reached. At each step of the iteration, the pair distribution function is
determined and used together with the RY closure relation in order to compute the new direct
correlation function, c(r). To ensure rapid convergence, the value of c(r) at the previous step is
taken as an initial guess.

Appendix D. A simple approximation for the OCM pressure

We concentrate on the salt-free case. With a potential given by equation (1), a straightforward
computation of POCM as given in (B.2) leads to [1, 33]

βPOCM = −ρ2
c

6

∫ ∞

r=2a

g(r)
dβueff(r)

dr
r d3r = 2π ρ2

cZ
2
effλB

κ2
eff

{
1 +

(κeffa)2

3(1 + κeffa)2

}
,

+
ρ2

c

6

∫ ∞

r=2a

[g(r) − 1](1 + κeffr)βueff(r)d
3r, (D.1)

where the ideal gas contribution present in (B.2) is a small quantity (whenever Zeff 	 1 which
is the case for highly-charged colloids where Zeff is typically of order 10a/λB) and has been
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discarded. In (D.1), the dominant term is the first one, arising from the long-range behaviour of
the pair correlation function (g → 1 at large distances). In this term, the curly brackets may be
safely approximated by 1 since at low densities, κeffa � 1. Therefore

βPOCM � 2π ρ2
cZ

2
effλB

κ2
eff

. (D.2)

Within the jellium, we have κ2
eff = 4πλBZeffρc and βPmicro = Zeffρc (that are approximately

correct within the cell model), so that

βPOCM � 1
2Zeffρc = 1

2βPmicro. (D.3)

Hence the factor of 2 between χOCM and χmicro, roughly observed in figures 3 and 4 in the κa = 0
case. The fact that χOCM �= S(0), or in other words, that the virial and the compressibility routes
do not coincide, is a well known deficiency of density-dependent pair potentials, see e.g. [46]
for a general discussion. Remaining at the OCM level, improving the reliability of the virial
route—which takes POCM to approximate the total pressure—is possible by formally including
a density derivative of the effective potential into the forces from which the virial is computed,
see e.g. subsections 4.2 of both [1] or [46]. We do not follow such a route here, since the purpose
is not to test improvements of the virial route by changing POCM while neglecting Pmicro, but to
test the internal consistency of a procedure (cell or jellium) that leads both to Pmicro and to the
effective potential ueff .

Equation (D.2) also offers a clear illustration of Kirkwood–Buff identity (14). To compute
the right-hand side of (14), we have to fix Zeff and κeff while computing the derivative, so that

∂POCM

∂ρc

∣∣∣∣
T,potential

� 4π ρcZ
2
effλB

κ2
eff

� Zeff . (D.4)

On the other hand, since P � Pmicro,

∂P

∂ρc

∣∣∣∣
T,salt

� Zeff + ρc
∂Zeff

∂ρc

∣∣∣∣
T

, (D.5)

where the second term on the right-hand side is negligible, as already argued in section 4.
We consequently see that equation (14) is fulfilled, within the approximations invoked.
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