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Abstract
While compressing a colloidal state by optical means alone has been previously achieved through a
specific time-dependence of the trap stiffness, realizing quickly the reverse transformation
stumbles upon the necessity of a transiently expulsive trap. To circumvent this difficulty, we
propose to drive the colloids by a combination of optical trapping and diffusiophoretic forces,
both time-dependent. Forcing via diffusiophoresis is enforced by controlling the salt concentration
at the boundary of the domain where the colloids are confined. The method takes advantage of the
separation of time scales between salt and colloidal dynamics, and realizes a fast decompression in
an optical trap that remains confining at all times. We thereby obtain a so-called shortcut to
adiabaticity protocol where colloidal dynamics, enslaved to salt dynamics, can nevertheless be
controlled as desired.

1. Introduction

Shortcut to adiabaticity protocols have been introduced as fast alternatives to otherwise time consuming
transformations, where the parameters controlling a system are slowly (adiabatically) changed [1, 2].
Applied to quantum systems, they allow for manipulation on timescales shorter than the decoherence time,
with applications in metrology and interferometry [2]. They are also useful when applied to classical
devices, providing for instance a better control of micromechanical oscillators, with applications in faster
atomic force imaging techniques [3]. Shortcut to adiabaticity protocols have consequently been studied and
tested successfully in different systems [4–15]. In these approaches, one or two control parameters are
engineered such that the equilibrium is reached in a chosen short time, using processes which are not
necessarily heat-exchange-free nor isothermal. A beneficial feature of these methods lies in the multiplicity
of admissible protocols, which allows to select those with desirable properties, in terms of robustness or
optimality [2, 16, 17]. It is worth stressing that we use here the word ‘adiabaticity’ in the quantum
mechanics inspired meaning of ‘slow enough’; it should thus not be confused with the thermodynamic
meaning of being heat-exchange free [18].

The present work is devoted to manipulating trapped colloidal systems. It is related to the engineered
swift equilibration (ESE) protocol presented in reference [19]. Following this framework, it will be here
assumed that the colloidal dynamics is overdamped, which proves to be an experimentally very accurate
approximation [18]. By appropriately tuning the trap stiffness as a function of time, a fast compression of a
colloidal state was achieved, with a close to 100-fold acceleration compared to the bare relaxation time [19].
During the process, the probability distribution function of the colloid position is kept Gaussian while the
trapping potential remains quadratic, facilitating reaching the equilibrium at the final time. Generalizations
to the underdamped regime, and to two hydrodynamically interacting colloids have been worked out in
references [20, 21]. Besides, variants have been proposed allowing for non-conservative forces [22], or
transitions between non-equilibrium steady states [15].

A drawback of ESE protocols appears when comparing compression and expansion of systems involving
confinement with optical tweezers. A state can be compressed by adequately choosing the time dependence
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of the intensity of the trapping laser; increasing the speed of the transformation simply requires a larger
laser intensity range [19]. On the other hand, expanding a trapped system in a quick fashion requires to
create, transiently, an expulsive rather than confining potential [19, 20]. This is necessary to guarantee a fast
displacement of the colloids toward their statistically relevant end position. In other words, the trap stiffness
not only needs to follow a precise time dependence, but also to be negative during some time window. This
is a difficult experimental challenge, for instance when trapping is realized with optical tweezers [23]. A
partial solution to this shortcoming was proposed with the method worked out in reference [24], where
protocols conditioned to using non-negative stiffness have been derived, optimizing furthermore the
(mean) work performed by the operator. Here, we shall explore a different venue for effectively achieving
transient negative stiffness. Our proposition is an alternative to the thermal bath engineering strategy put
forward in reference [25]. There, an externally controlled noise is applied to the center of the trap,
mimicking a time-dependent effective temperature that necessarily exceeds that of the bath in which the
system is immersed (say water). The possibility to decompress the system under study without repulsive
potentials ensues: advantage is taken of an enhanced diffusion. Yet, this technique does not suit for ESE
compression [26]. On the contrary, the present combination of optical and phoretic forces is operational
not only to allow for decompression, but can be as well transposed to compression. Our approach also
differs from the optical feedback trap realizations proposed in [23], in so far as we do not operate any
retro-action on the system, but proceed in a purely feed-forward manner.

Since achieving fast decompression ESE paves the way toward possible application in designing or
improving the performance of small-scale heat engines [27–30] and thermodynamic cycles in Brownian
and active systems [30–37], we search for operational procedures of augmented ESE, to circumvent the
decompression bottleneck. We propose here a protocol which takes advantage of the diffusiophoresis of
colloids. Diffusiophoresis refers to the migration of colloids and macro-molecules immersed in a solution
under a gradient of solute, that is driven by a direct surface–solute interaction [38, 39]. Recently,
diffusiophoretic forces emerged in various microfluidic applications [40], for enhancing transport rate of
flow [41] and designing novel types of active microswimmers [42–44], as well as for industrial applications
such as underground oil and gas recovery [45]. Other applications include the effective and long-lasting
cleaning or removal of particles and droplets from deep pores [46, 47], and enhanced oil recovery from
deep wells [48–50]. A particular feature of diffusiophoresis emerges in electrolytes (i.e., ionic solutions
where the solute is a salt) where the ions and the particle surface interact through electrostatic forces: the
colloidal (mean) velocity becomes proportional to the gradient of the logarithm of the solute concentration,
i.e., VDP ∝ ∇ ln C, at variance with neutral solutions where this dependency is linear in the concentration
gradient [39]. This feature allows for efficient driving of colloids [51, 52], and guarantees significant forcing
even in regime of small solute concentrations. It also opens the possibility of trapping colloids and
macro-molecules via osmotic forces, as recently achieved [53, 54].

In this paper, we propose an ESE strategy that takes advantage of diffusiophoresis. As the phoretic force
direction depends on both the solute gradient direction and the solute–surface interaction, creating a
repulsive potential is achievable by appropriately tuning the solute concentration on the boundaries of the
system as a function of time [54, 55]. Accordingly, our approach allows for both an accelerated expansion or
an accelerated compression of a colloid state in harmonic or non-harmonic confinement. Our analysis
restricts to low density systems, where colloidal dynamics does not result from colloid–colloid interactions,
but from other types of forces. This logic can be pushed further, considering that a single colloid is being
manipulated, in a repeated fashion in order to gather statistics and generate the distribution functions that
will be object of interest here. So was the situation in the experiment reported in reference [19].

The rest of the paper organizes into six sections. We address the basics of ESE protocols in the
overdamped regime and present its governing equations in section 2. Section 3 is devoted to the key
equations of diffusiophoresis. Then, we combine the ESE method with diffusiophoresis to introduce the
diffusiophoresis driven protocol in section 4 for Gaussian colloidal density and harmonic trapping
potentials. In section 5, we discuss the consistency of these results. We consider non-Gaussian states and
non-harmonic potentials in section 6, while concluding remarks are presented in section 7.

2. ESE for Gaussian distributions

The system under study is a (overdamped) Brownian colloidal particle in water, trapped in a harmonic
potential U = κr2/2, where r is the distance to the trap center. This external potential is usually established
by optical tweezers. We seek for a transition where the stiffness κ is changed from an initial value κi to a
final value κf in a given time tf . The idea is to find a suitable function for the stiffness κ(t) such that, as
demonstrated in figure 1, the system evolves from an equilibrium state with initial variance σ2

i = kBT/κi to
the final value σ2

f = kBT/κf. This should be achieved faster than the natural relaxation time τ relax = γ/κf ,
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Figure 1. Schematic decompression of a colloidal state via ESE where x denotes a Cartesian coordinate of the position r. At
initial time ti , the colloids are at equilibrium with a Gaussian distribution ρ(r, ti) having variance σ2

i = kBT/κi , trapped in a
harmonic potential U(r, ti). The aim is to find a suitable scheme to expand the system to a final equilibrium state with variance
σ2

f = kBT/κf, in a time tf shorter than the relaxation time τ relax. Since the whole analysis is performed at single colloid level, it is
assumed that the concentration of colloids is small enough so that inter-colloidal interactions are negligible. Alternatively, one
can envision all transformations as pertaining to a single trapped colloid, with an experiment repeated a large number of times to
gather statistics [19, 21]; in doing this, the colloid initial position, when the transformation begins, samples the distribution
ρ(r, ti).

that would be required to reach equilibrium after a sudden change of stiffness from κi to κf . Here, γ is the
colloid drag coefficient, related to the diffusion coefficient of the colloid Dc through γ = kBT/Dc, where kB

and T represent the Boltzmann constant and the water bath temperature, respectively. The system is in
equilibrium at initial and final times, but not during the process. The bath temperature is constant. Note
that with the above relations, the relaxation time can also be written τrelax = σ2

f /Dc: it corresponds to the
time needed to explore diffusively a region of space of linear size σf .

2.1. The formalism
The overdamped Langevin equation describes the dynamics of the colloid at position r relative to the trap
center at position 0, as

γ
˙
r = −∇U(r, t) + ξ(t) = −κ(t)r + ξ(t), (1)

where ξ(t) is a random force, a white noise with 0 mean and correlation 〈ξi(t)ξj(t′)〉 = 2γkBTδijδ(t − t′).
This very treatment, neglecting colloidal–colloidal interactions, thus holds for dilute enough systems, a
situation often met experimentally. Accordingly, the colloidal density ρ(r, t) is governed by the
Fokker–Planck equation:

∂tρ(r, t) = ∇ ·
(

Dc∇ρ(r, t) +
1

γ
∇Uρ(r, t)

)
. (2)

Control is achieved here by changing of the stiffness κ(t) such that the density remains Gaussian at all times

ρ(r, t) =

(
α(t)

π

)n/2

exp(−α(t)r2), (3)

where n refers to the system’s dimension. The inverse variance α(t) can be chosen arbitrarily, fulfilling the
equilibrium boundary conditions α(0) = κi/(2kBT),α(tf ) = κf/(2kBT), to which we add the smoothness
conditions α̇(0) = α̇(tf) = 0, experimentally more friendly than discontinuities (which are, strictly
speaking, possible and do indeed arise when optimal features are sought [16, 24, 56]). Non-Gaussian
distributions will be addressed in section 6. We do not need to specify the colloid’s radius, which enters
implicitly in the friction coefficient γ.

In order to obtain the time-dependent forcing κ(t), we follow reference [19] and substitute equation (3)
into the Fokker–Planck equation (2), and obtain:

nα̇(t)

2α(t)
− α̇(t)r2 =

κ(t)

γ
(n − 2α(t)r2) − 2α(t)Dc(n − 2α(t)r2), (4)

which holds for any position r. This implies that

κ(t) =
α̇(t)

2α(t)
γ + 2kBTα(t), (5)

irrespective of dimension n. This indicates how to tune the trapping laser intensity with time. This led to an
operational protocol in reference [19], whereby a colloidal state was compressed with a close to 100-fold
gain in the time required to reach the desired equilibrium.
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Figure 2. The gradient of ions concentration that should be applied to the system to establish a repulsive diffusiophoretic force
required for a quick decompression. Depending on the sign of the phoretic mobility Γc, the gradient should exhibit larger
concentrations at the center (Γc < 0) or at the boundaries (Γc > 0).

Before discussing the difficulty met when transposing this idea from compression to decompression, we
point out the relevant dimensionless parameter quantifying acceleration. It is given by the ratio of time
scales A = τrelax/tf = σ2

f /(Dctf) and measures the desired acceleration factor. Noting that α̇ has to be
negative for a decompression processes, it follows from equation (5) that for sufficiently fast
decompressions (A � 1), the potential should become transiently ‘expulsive’ (κ < 0), irrespective of the
choice of α(t). While feedback-based protocols have been proposed to this aim [23], achieving
time-dependent and transiently repulsive confinements remains experimentally problematic, which
motivates us to propose an alternative.

3. Diffusiophoresis for manipulating colloids

Diffusiophoresis is an out of equilibrium phenomenon by which colloids immersed in a solution migrate in
response to a gradient of the solute concentration ∇C(r, t). The solute gradient combined with direct
interaction of particle–solute results in an osmotic pressure gradient in the thin interacting layer around the
colloid. This pressure gradient creates a fluid flow and, consequently, colloid motion with velocities
proportional to the solute gradient [38, 39]. Moreover, an interesting feature occurs in the case of
electrolytes (a salt as a solute) and charged colloids, when the salt–colloid interaction potential has
electrostatic nature. In this particular case, the thickness of the interacting layer (diffuse Debye layer) is
inversely proportional to the ions concentration. This leads to a colloids’ velocity that is proportional to the
gradient of logarithm of the ions concentration [38, 39]

VDP = Γc∇ ln C(r, t), (6)

where Γc is the phoretic mobility of colloidal particles. This quantity is related to the interaction potential
between colloids and salt, and can be positive or negative1. Accordingly, the diffusiophoretic force exerted
on the colloid and the corresponding potential energy have the same log-dependency [57],

FDP = γΓc∇ ln C(r, t), UDP = −γΓc ln C(r, t). (7)

According to this relation, the direction and strength of FDP can be tuned by the concentration gradient
and the phoretic mobility Γc. This feature yields the possibility of creating a repulsive force required for an
ESE decompression protocol. Therefore, to make the colloids migrate away from the center of the system
(i.e., to realize an expansion), a concentration gradient in the direction toward (respectively away from) the
center should be applied for the case of negative (respectively positive) phoretic mobilities. It means that, as

1 The phoretic mobility in symmetric Z:Z electrolytes (with cations and anions of charges ±Ze), is given by

Γc =
ε

4πη

(
kBT

Ze

)2 [
Λζ − 2 ln

(
1 − tanh2 ζ

4

)]
,

in the thin Debye layer limit. Here, ε and η are the dielectric constant and the viscosity of the solution, respectively, and ζ ≡
Zeζ/(kBT) represents the scaled zeta-potential of the colloid. The first term originates from the difference of ionic diffusivities
Λ = (D +−D−)/(D ++D−). It can be negative or positive, depending on the sign of Λ as well as of the zeta-potential. However,
the second term is always positive regardless of sign of zeta-potential. Therefore, when the diffusion coefficients of anions and cations
are equal, i.e. Λ= 0, the phoretic mobility Γc is always positive. For different diffusion coefficients of anions and cations, one needs to
replace Ds in the diffusion equation (8) by 2D+D−/(D+ + D−), as long as the thin Debye layer approximation remains valid [39].
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depicted in figure 2, the concentration on the boundaries φ(t) should be decreased (with respect to the
concentration at the center) for the case of negative phoretic mobilities, and be increased for positive
phoretic mobilities. Interestingly, thanks to the log-sensing, when time and position dependencies of the salt
concentration C(r, t) factorize, ∇ ln C = ∇C/C becomes independent of time. This happens in the long
time limit when salt diffuses out of the system, so that C → 0 [51, 53], with the surprising consequence that
the force acting on the colloid is maintained while the solute at its origin fades away.

To complete the diffusiophoresis discussion, we note that for small colloidal charges (Debye–Hückel
approximation) and in the thin Debye layer limit (i.e., with extension much smaller than colloid size), the
concentration of positive and negative ions outside the Debye layer are approximately equal and governed
by the diffusion equation [39]

∂tC(r, t) = Ds∇2C(r, t). (8)

This is supplemented with initial and boundary conditions as follows:

C(r, 0) = C0, C(r, t)|B = φ(t), (9)

where C0 is the initial uniform ions concentration. Here, B refers to the boundaries of the system. For
simplicity, we assume that the diffusion coefficient of positive and negative ions are equal and given by
Ds

1.
Finally, we note that the simplest way to establish a concentration gradient is to set a vanishing

concentration φ(t) such that φ(t � 0) = 0. Any choice of φ(t) that verifies φ = 0 for t � 0 is possible. For
example, one option is setting φ(t) suddenly to zero at t = 0 from a given value C0. As alluded to above, this
leads after a salt-characteristic relaxation time (τ s) to a time-position factorized salt concentration, with an
associated time-independent forcing, see appendix A. However, although the resulting procedure is
admissible for accelerating decompression, the final state is not controllable: the resulting stiffness is system
size dependent, but cannot be tuned, as discussed in appendix A for a 1D system. Moreover, the
configuration under study establishes a salt gradient toward the center r = 0. Hence, as sketched in figure 2,
this method can be used to decompress colloids with negative phoretic mobility (and compress colloids
with positive phoretic mobility), but it is not a versatile approach for shortcutting adiabaticity, and we
search for another route, where φ(t) will be deduced rather than imposed.

4. Diffusiophoresis driven ESE: Gaussian states

We next combine optical and diffusiophoretic drivings to establish our ESE protocol. The colloidal system is
subject to optical confinement that can be time-dependent, and is furthermore in an electrolyte that can be
controlled through the boundaries of the system, as performed in references [53, 55]. It might be thought
that such a surface driving through the boundary concentration φ(t) does not provide enough command
over the system, since salt invariably diffuses in the bulk of the solution, but we will see below that the
present setting nevertheless offers interesting means to shape shortcutting protocols.

The total potential acting on the colloid is composed of a harmonic optical and a diffusiophoretic
contribution, as

U = Uop + UDP =
1

2
κop(t)r2 − γΓc ln C(r, t). (10)

Both contributions are time dependent; in line with our underpinnings, we set the constraint κop > 0 for
the optical contribution. In addition, we assume isotropy (so that C only depends on r = |r|) and
analyticity. The concentration, extremum at r = 0, can then be expanded at small r to yield

U =
1

2

(
κop(t) − γΓc∂

2
r ln C(r, t)

∣∣
r=0

)
r2 +O(r4)

� 1

2
κ(t)r2, (11)

(up to a position-independent shift in the potential origin, which is not relevant here) with the
diffusiophoretic contribution to stiffness

κDP(t) ≡ κ(t) − κop(t) = −γΓc∂
2
r ln C(r, t)|r=0. (12)

We demand that the total stiffness κ(t) follows the rule given by equation (5), for a chosen α(t). While the
sum κDP + κop is hence known, the choice of κop enjoys some flexibility, and has to be specified in a
convenient way. The simplest choice is arguably κop = κi, the only temporal dependant term in the total
stiffness being borne by κDP(t). Obtaining a steady non vanishing value for κDP requires that φ(t > tf ) = 0:
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otherwise, salt diffuses to reach a uniform concentration across the system, which cancels out the
diffusiophoretic force. However, demanding a priori a vanishing φ(t > tf ) is a somewhat nontrivial
constraint (see below). We will follow a different strategy where the signal φ(t) is the end product of the
calculation, rather than an input; we will rather use the freedom of having a time-dependent optical
potential, such that the diffusiophoresis provides a negative total stiffness (repulsive force), and the optical
tweezers tune the initial and final states.

From equation (5) and the diffusion equation (8) which relates ∂2
r to ∂t, we get the following constraint

for the concentration at the center (see appendix B for details)

− γΓc

nDs
∂t ln C(0, t) =

α̇(t)

2α(t)
γ + 2kBTα(t) − κop(t). (13)

Solving for C(0, t) yields

C(0, t) = C0

(
α

αi

)− nDs
2Γc

exp

(
−nDs

γΓc

∫ t

0
(2kBTα(τ) − κop(τ))dτ

)
. (14)

Finally, the concentration φ(t) at the boundary (r = R), is extracted from a Taylor expansion of the
density at r = 0:

φ(t) = C(r = R, t) =
∞∑

j=0

1

j!
Rj∂ j

rC(r, t)|r=0

=

∞∑
j=0

1

(2j)!
R2j∂2j

r C(r, t)|r=0

=

∞∑
j=0

R2j

(2j)!Dj
s

(
j∏

m=1

2m − 1

2m − 2 + n

)
∂

j
tC(0, t). (15)

Here, we have made use of

∂2j
r C(r, t)|r=0 =

(
j∏

m=1

2m − 1

2m − 2 + n

)
1

Dj
s

∂
j
tC(0, t), (16)

which is obtained by taking successive derivatives of the diffusion equation (8) and invoking ∂
j
rC|r=0 = 0

(for j odd).
To summarize the procedure, the operator starts by the choice of α(t), which is proportional to the

inverse variance of colloidal density (more precisely, σ2 = (2α)−1). Then, a suitable function for the optical
stiffness κop(t) should be chosen, see the next section. Next, by calculating C(0, t) from equation (14), we
subsequently obtain φ(t) from equation (15), truncating the infinite summation appropriately. There is at
this point no guarantee that φ(t) and, consequently, C(r, t) be positive. Working for the parameter range
where both functions are non-negative sets a limitation to the approach, that will be assessed. To this end,
we will provide in the next section a phase portrait for φ(t) as a function of the acceleration factor A
(= τ relax/tf ) and the ratio of initial and final stiffnesses κi/κf .

There are three time-scales in our problem: the relaxation time of the colloidal particle τrelax = σ2
f /Dc,

the operation time tf , and the salt diffusion time τ s = R2/Ds (where R denotes the system size, see also
appendix A). Due to the size asymmetry, the diffusion coefficient of ions is much larger than that of
colloidal particles (Ds � Dc). Moreover, we cannot suppress the Brownian diffusion of ions (salt).
Therefore, the final time tf should be larger than τ s in order for the diffusion of ions not to perturb the final
state reached at tf : any remaining non equilibrium ionic dynamics for t > τ s would impinge on the
colloidal state and make it non stationary. Therefore, we impose that τ s < tf  τ relax, which means that
R2/Ds  σ2

f /Dc. This sets an upper bound for the system size R, which controls the time scale for salt
dynamics, and should be kept low for our approach to be operational [58].

As a final remark, we stress that we have cut the infinite Taylor expansion equation (15). To assess the
possible resulting loss of precision for the whole scheme, we shall test the consistency of the results. To this
end, having the boundary condition for salt concentration, φ(t), we solve the diffusion equation (8)
numerically and obtain C(r, t). We then check that φ(t) is reasonably close to C(r = R, t). Next, having
C(r, t), we can calculate stiffnesses (κ(t) and κDP(t)) and compare them with the target functions, as given
by equations (5) and (12). Finally, we need to evaluate the final variance σ2

f =
∫

r2ρ(r, tf)dnr which should
be equal to kBT/κf .

6
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5. Results in one dimension: Gaussian states

5.1. Characterizing the acceptable protocols
Before putting the scheme to the test for a one dimensional confined system −L/2 � x � L/2, we discuss
the choice of the inverse variance of the colloid’s position through α(t), with which the whole procedure
starts. Any function that verifies the initial and final conditions of a prescribed α with vanishing first
derivative, can be taken. The simplest choice is polynomial in time and reads

α(1)(t) =
1

2kBT

(
κi + (κf − κi)(3s2 − 2s3)

)
, (17)

where s = t/tf . Here again, other choices that fulfill the boundary conditions are possible and a more
suitable variant turns out to be

α(2)(t) =
1

2kBT

(
κi + (κf − κi)(1716s7 − 9009s8 + 20020s9

− 24024s10 + 16380s11 − 6006s12 + 924s13)
)
. (18)

Indeed, the protocol stemming from α(1) is less accurate than its α(2)-counterpart: the reason for this lies
in the smoothness of α(2)(t), rather than α(1)(t), at initial and final times, as illustrated in figure 3: the first 6
derivatives of α(2) do vanish at initial and final times, as compared to the first derivative only with α(1). This
smoothness leads to a soft running of concentration before tf . Then, the ions are offered more time to reach
the uniform state before finishing the process, reducing the ion diffusion effect on the colloid’s final state.
This results in an enhanced stability of the whole scheme, as explicit comparison for both protocols reveals,
see appendix C for the α(1) calculation.

Besides, it proves convenient to take

κop(t) = 2kBTα(t), (19)

so that from equation (5) we get

κDP =

˙
α(t)

2α(t)
γ. (20)

Note that this choice, in the quasi-static limit where tf →∞, would lead to a consistent adiabatic protocol
without the need of any diffusiophoretic assistance [59]. In doing so, it can be considered that the non
adiabatic contribution to the protocol is entirely borne by the diffusiophoretic drive. Then, from
equation (14), C(0, t) takes the simple form

C(0, t) = C0

(
α

αi

)− nDs
2Γc

. (21)

Equation (5) subsequently indicates how the total stiffness κ acting on the colloid should depend on time.
This stiffness has an optical and a diffusiophoretic contribution. The optical contribution has been chosen
to be κop = 2kBTα(t), and it remains to be seen what is the corresponding time dependence for κDP. This is
a rather subtle task, since what is supposed to be experimentally controllable is the salt concentration φ(t) at
the boundary of the domain (assumed for simplicity to be position independent while in principle, it could
also exhibit a non trivial spatial dependence). Thus, we look for the φ(t) that would guarantee that UDP in
equation (7) is quadratic close to the origin, and with curvature κDP(t).

Before calculating φ(t), we discuss how fast the procedure can be run. As pointed out in section 4,
enforcing the rule given in equation (5) may give rise to negative concentrations, particularly so when high
speed is sought: this sets a lower bound for the operating time tf when a given compression ratio κi/κf is
targeted or conversely, an upper bound for κi/κf when tf is fixed. These bounds are shown in figures 4(a)
and (b). The green regions show the accessible final states where φ(t) is positive during the whole process
0 � t � tf . However, the states in the white regions are not achievable since they lead to a negative φ(t) at
least once in the time interval 0 � t � tf .

Figure 4 illustrates that the extent of the allowed region is smaller for negative phoretic mobility than for
positive ones. This is related to the sketch of figure 2, and the fact that when Γc < 0, the smaller salt
concentrations should be in the vicinity of the domain’s boundary (inwards salt gradient), see also panels
(c) and (d) in figure 4. The state point for panel (c) lies on the boundary of the allowed region in panel (a)
(see the black dot in panel (a)) and it is indeed observed that the time profile φ(t) in panel (c) does vanish
for t � tf/2. The gist of our proposal is to compute the driving φ(t) to be imposed as the salt concentration
at the boundary. Figures 4(c) and (d) provide us with an explicit answer for the illustrative parameters
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Figure 3. Two different choices for α(t): α(1) (in red) and α(2) (in blue) as a function of rescaled time t/tf . The difference in their
behavior for small t � 0 and for t � tf is at the root of their distinct efficiency.

Figure 4. (a)–(b) Phase plots of accessible state points as a function of A = τrelax/tf and the compression factor κi/κf , for
different phoretic mobilities: (a) Γc = −0.2Ds and (b) Γc = 0.2Ds. The green regions show the values for which φ(t) is positive
at all times, i.e. in the whole interval [0, tf ]. Conversely, the white regions are for those states for which φ(t) takes a negative value
at least once during the protocol. The plots correspond to α(t) = α(2)(t) given by equation (18) and optical stiffness
κop = 2kBTα(t), with Dc = 0.002Ds, and a system size L = 10σf . The hatched region shows the accessible states obtained by any
ESE protocol with an ever non-negative stiffness (given by equation (34) in reference [24]). The non-hatched green region
therefore helps visualizing the benefits of the present protocols over that of reference [24]. Panels (c)–(d) show the boundary salt
concentration φ(t) for the same parameters, for A = 10 and κi/κf = 2, corresponding to the black dots in panels (a)–(b). This
quantity is supposed to be externally controlled in the experiment; it is our driving field. The blue curves show the results
obtained by the Taylor expansion (15), truncated at order j = 16: it is the computed driving concentration to be applied to the
system’s boundary. On the other hand, the red dots show the concentration obtained by numerically solving the diffusion
equation (8), i.e., C(±L/2, t), imposing φ(t) at the boundary. The two functions should coincide, as they do here; a lack of
accuracy or self-consistency in the treatment would lead to a mismatch.

chosen. When C(0, t) is known, we use the truncated expansion (15) to get the boundary concentration
φ(t); truncation at order j = 16 leads to an acceptable balance between accuracy and simplicity.

In figure 4, the separatrix between the green (allowed) and white (forbidden) regions determines a
‘speed limit’ of the expansion [18]. This separatrix is the locus of state points for which the required salt
concentration φ(t) becomes negative. The fact that φ(t0) = 0 for some time t0 (with 0 � t0 � tf ) gives a

8
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Figure 5. Salt concentration C(x, t) at different scaled times s = t/tf for two phoretic mobilities (a) Γc = −0.2Ds (b) Γc = 0.2Ds

obtained by solving the diffusion equation (8) numerically, imposing the boundary condition given by φ(t) in figures 4(c)–(d).

Figure 6. Total (κ) and diffusiophoretic (κDP) stiffnesses calculated by solving the diffusion equation (8) numerically, as a
function of time for the same parameters as figure 4, i.e. in particular Γc = ±0.2Ds. The inset shows the total stiffness at late
times. The deviation of κ from the target value after finishing the process is negligible.

relation between A and κf , of the form

A � C1

κf − κi
+ C2, (22)

where the constants C1 and C2 depend on the choice of α and the phoretic mobility. This yields the
boundary line between the allowed and forbidden regions in figure 4.

5.2. Checking consistency
To assess the protocol quality, we need to check for the results consistency. Indeed, our calculation of the
driving field φ(t) relies on an expansion that connects information pertaining to the system center to
information at the boundary. We thus solve numerically the diffusion equation for salt density, and obtain
the concentration profile C(x, t), from which all quantities of interest follow, from colloidal forces to
observables like the colloidal position variance σ2. A first stringent test is to verify that the target φ(t),
worked out analytically, coincides with the salt concentration at the boundary, measured from the
numerical solution C(x, t). This self-consistency requirement is well obeyed in figures 4(c) and (d), see the
blue curves and red dots. This confirms that the proposed α(t) is a suitable choice, and that we have
retained enough terms in the Taylor truncation. Appendix C indicates that self-consistency is somewhat
better when working with α(2) rather than α(1).

The numerically computed ions concentration profiles C(x, t) are shown in figure 5. The concentration
is uniform at the initial and final times. In between, a gradient sets in, which is toward the center for Γc < 0
and away from the center for Γc > 0, as sketched in figure 2.

The next results that should be bench-marked are the stiffnesses. The total stiffness κ(t) and
diffusiophoretic stiffness κDP are shown in figure 6. Starting from κi = 2κf , we see that κ(t) reaches its
target value κf at t = tf . It is observed that κDP(t), which originates from the salt concentration gradient,
vanishes at the initial and final times because of the uniform salt distribution. In between, it is negative as
embodied in equation (12). Besides, by construction, we have chosen that not only κ but also κop be
directly related to α(t). Hence, the dynamics of κ and κop are independent of the sign of the mobility Γc, as
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Figure 7. Colloidal density ρnum(x, t) calculated by solving the Fokker–Planck equation (2) numerically, at the final time
s = t/tf = 1.0 and some time after finishing the process (s = 8.0). The driving potential acting on the colloids, U in
equation (10), is obtained from solving numerically the salt diffusion equation (8). The achieved density overlaps with the target
Gaussian distribution ρf = ρ(x, tf ) given by equation (3). At other times, the agreement is equally good. The panels correspond
to (a) Γc = −0.2Ds and (b) Γc = 0.2Ds for α(t) and κop(t) given by equations (18) and (19), respectively. The insets represent
ρnum/ρf near the system center. The densities differ slightly from the target Gaussian distribution.

illustrated in figure 6. Note from figure 5 that the required salt profiles, however, do strongly depend on the
sign of Γc. Furthermore, a more careful inspection with the inset plots reveals that at t = tf , the salt profile
is not completely steady, which results in an undesired force on the colloids: as discussed in section 4, the
diffusion of ions for t > tf leads to a small error for the measured stiffness, compared to the target value. A
perfect protocol would lead to κ = κf exactly at tf , without any variation afterward. Note however the
smallness of the mismatch (distance to unity) in the inset of figure 6.

Having the concentration profile C(x, t), one can solve numerically the Fokker–Planck equation,
equation (2), to obtain the colloid density ρnum(x, t) in order to compare with the target Gaussian
distribution ρ(x, t) given by equation (3). The results for the density in different times are demonstrated in
figure 7. The density keeps its Gaussian distribution during the whole process. One observes that at the time
tf , and also after that t > tf , the density differs slightly from the final target distribution. However, as the
inset figures show, the differences are small.

Finally, we compute the variance of the colloid σ2(t) to ensure that the target expansion is realized.
Recall that σ2 = (2α)−1 and that the time dependence of α is chosen from the outset. The variance is
plotted as a function of time for two phoretic mobilities Γc = ±0.2Ds in figure 8. The variance calculated
numerically, i.e.

∫ +∞
−∞ x2ρnum(x, t)dx, is close to the target one 1/(2α(t)); however, it deviates slightly at long

times. This is due to the density mismatch displayed in figure 7. It turns out that σ2 is a rather sensitive
probe for the small imperfections of the protocol, and reveals possible defects more clearly than the
quantities reported hitherto. At any rate, the difference between the desired and observed variances is less
than a few percents at all time, and stabilizes to a value very close to the target variance. Besides, although
we have assumed that the colloid density is Gaussian, the non-quadratic terms in the potential,
equation (7), may cause non-Gaussianity. In appendix D, we quantify the deviations from Gaussian
distribution and show that they also remain relatively small.
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Figure 8. Variance σ2 of the colloidal position distribution as a function of time. (a) Γc = −0.2Ds and (b) Γc = 0.2Ds for
α(t) = α(2)(t) and κop(t) given by equations (18) and (19). Same parameters as in figure 4. The variance calculated numerically,
i.e., σ2

num =
∫

x2ρnum(x, t)dx, is compared to the target 1/[2α(t)]; it deviates slightly from this quantity, with a maximum
mismatch at tf . The insets show the evolution for longer times, where a stable value is reached for t � 20tf , which shows a good
match with the target value.

6. Manipulating non-Gaussian states

The previous sections were devoted to shortcutting the dynamics of a system confined in a harmonic
potential, enforcing the colloidal state to be Gaussian at all times. We address here the situation of a
non-harmonic confinement. A non-Gaussian distribution ensues. We will consider a quartic confining
potential Ueq ∼ x4 as an illustrative example. At equilibrium, we then have ρeq ∼ exp(−αx4). The aim is to
drive the system from an initial state with variance σi to a final state with increased variance σf , in a
processing time tf , arbitrarily shorter than the relaxation time τrelax = σ2

f /Dc. To this end, we again follow
the ESE procedure, as done in section 4 and in reference [19], working out in one dimension, and driving
the system through the control of salt concentration φ(t) at its boundaries (x = ±L/2). We will demand
that the colloid density be at all times of the form

ρ(x, t) =
α1/4(t)

2Γ(5/4)
exp(−α(t)x4), (23)

where Γ(x) represents the Gamma function and the prefactor of the exponential stems from normalization.
Variance and kurtosis of the distribution are

σ2 =
N

2
√
α

, K =
〈(x − 〈x〉)4〉

σ4
− 3 � 0.812, (24)

where N = Γ(3/4)/(2Γ(5/4)) � 0.678 is a numerical factor. It can be shown that a suitable driving
potential reads

U(x, t) =
1

4
δ(t)x4 +

1

2
κ(t)x2. (25)

This potential should match the equilibrium potential in x4 at the initial and final times, so that
κ(0) = κ(tf ) = 0. The function α(t) can be chosen arbitrarily, fulfilling the equilibrium boundary
conditions α(0) = δi/(4kBT) and α(tf ) = δf/(4kBT). Thus, the variance of final state is

11



New J. Phys. 23 (2021) 063028 P Bayati and E Trizac

Figure 9. Non-Gaussian situation. Total and diffusiophoretic stiffnesses, calculated by solving the diffusion equation (8)
numerically, as a function of rescaled time t/tf , for the same parameters as in figure 4 and two phoretic mobilities Γc = ±0.2Ds

where κ0 = NkBT/σ2
f and δf = N2kBT/σ4

f . Here, α = α(2) as given in equation (18), from which κop(t), and δop follow, see
equations (27) and (31). The insets show a close-up of the total stiffnesses near the final time. The deviation of κ and δ from the
target value after finishing the process is negligible.

σ2
f = N

√
kBT/δf ≡ Nσ2

0 . Moreover. We choose α(t) such that α̇(0) = α̇(tf) = 0 to have a smooth function
at initial and final times. As with the harmonic situation, we restrict to continuous functions.

Substituting ρ(x, t) and U(x, t) into the Fokker–Planck equation (2) gives:

α̇

4α
− α̇x4 = Dc(−12αx2 + 16α2x6) +

1

γ
(3δx2 + κ) − 4α

γ
x3(δx3 + κx), (26)

which is valid for any position x. This implies that

κ(t) =
γ

4

α̇(t)

α(t)
, δ(t) = 4kBTα(t). (27)

Therefore, choosing an appropriate function for α(t) also sets the stiffness coefficients κ(t) and δ(t),
through equation (27). A decompression results in having α̇ < 0, so that κ(t) < 0. As a result, the potential
U in (25) features a double-well form for 0 < t < tf [19] (α and thus δ are positive).

The density of bathing salt solution C(x, t) satisfies the diffusion equation (8) with boundary condition
given by equation (9). Here again, the goal is to work out the salt concentration at the boundary of the
system, that will lead to the diffusiophoretic force in the bulk that is precisely of the form leading to the
desired dynamics in equation (23). As before, the colloidal dynamics is enslaved to that of salt through the
Fokker–Planck equation, while salt itself obeys pure diffusion.

With both optical and diffusiophoretic potentials, the total potential acting on the colloid is:

U = Uop + UDP =
1

2
κopx2 +

1

4
δopx4 − γΓc ln C(x, t). (28)

We thus consider here that the non linearity of the optical trapping leads to a quartic term in U, in addition
to the standard harmonic term. While this is routine experimental practice for the quadratic term in κop, we
also assume that the quartic term can be tuned over time by the operator, which may prove difficult. The
present analysis, compared to that of the previous sections, is for this reason more speculative. In line with

12



New J. Phys. 23 (2021) 063028 P Bayati and E Trizac

Figure 10. Non-Gaussian situation. Colloidal density ρnum(x, t) calculated by solving the Fokker–Planck equation (2)
numerically, for different times. ρf shows the target non-Gaussian distribution given by equation (23). α(2)(t), κop(t), and δop(t)
are given by equations (18), (33) and (35), respectively. The other parameters are the same as in figure 4. The insets represent the
ratio ρ/ρf with a zoom onto the center x = 0. The densities very slightly differ from the target distribution.

the previous analysis, we take κop(t) and δop(t) as non-negative for all times. In addition, we assume

isotropy and analyticity, which implies here ∂ j
x ln C|x=0 = 0 for j odd. Thus, the expansion near the system

center gives

U � 1

2

(
κop − γΓc∂

2
x ln C(x, t)|x=0

)
x2 +

1

4

(
δop −

1

6
γΓc∂

4
x ln C(x, t)|x=0

)
x4. (29)

Then, the diffusiophoretic stiffnesses are

κDP(t) ≡ κ(t) − κop(t) = −γΓc∂
2
x ln C(x, t)|x=0,

δDP(t) ≡ δ(t) − δop(t) = −1

6
γΓc∂

4
x ln C(x, t)|x=0.

(30)

Combining with equation (27) and using the diffusion equation (8), we obtain the following differential
equation for the density at the center C(0, t) and optical stiffnesses:

κDP(t) = −γΓc

Ds
∂t ln C(0, t)

= −κop(t) +
γ

4

α̇(t)

α(t)

δDP(t) = −1

6

γΓc

D2
s

(
−2(∂t ln C(0, t))2 + ∂2

t ln C(0, t)
)

= −δop(t) + 4kBTα(t). (31)

For a chosen α(t), the total quadratic and quartic stiffnesses κ and δ are known, while κop or δop are
arbitrary function with no other constraint than being positive.
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Figure 11. Non-Gaussian situation. Same as figure 10 for the variance of the distribution. The inset emphasizes late time
dynamics.

Obtaining φ(t): as in the Gaussian case, there is some flexibility in the choice of α(t) and also κop(t). We
take a similar function for α(t) as equation (18), that led previously to accurate protocols:

α(2)(t) =
1

4kBT

(
δi + (δf − δi)(1716s7 − 9009s8 + 20020s9

− 24024s10 + 16380s11 − 6006s12 + 924s13)
)

, (32)

with again s = t/tf . As far as κop(t) is concerned, it proves convenient to choose

κop(t) = −κ(t) = −γ

4

α̇(t)

α(t)
. (33)

Solving equation (31) for C(0, t) and δop(t) yields

C(0, t) = C0

(
α(t)

αi

)− Ds
2Γc

(34)

and

δop(t) = 4kBTα(t) +
1

12

kBT

DcDs

(
α̇2

α2

(
1 − Ds

Γc

)
− α̈

α

)
. (35)

An interesting feature of the choice made for κop is that we recover the exact same dynamics for C(0, t) as
for Gaussian states, and thus we can recycle the corresponding results, in particular the computation of
φ(t). Indeed, our choice results in

κDP =
γ

2

α̇

α
, (36)

which coincides with equation (20). As a consequence, the phase diagram in figure 4, together with the
underlying salt density profile shown in figure 5 also apply here, at the expense of replacing the compression
factor κi/κf by δi/δf . Differences between the harmonic and non-harmonic confinement will nevertheless
appear when considering the force applied onto the colloids, as discussed next.
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Figure 12. Same as figure 11, for the reduced fourth moment of the distribution (kurtosis).

Note that we have assumed that δop should remain positive. This is not guaranteed, since the second
term on the rhs of equation (35) may take negative values. Yet, remembering that α is of order σ−4

f , the
ratio of the second and the first terms in equation (35) is of order A2Dc/(10Ds). As in typical electrolytes
Dc/Ds ∼ 10−3, we conclude that δop > 0 as long as A < 100, or more generally A <

√
10Ds/Dc. It should

also be emphasized that as compared to the Gaussian situation, the present method is experimentally more
challenging from the optical trapping point of view, since not only the quadratic stiffness κop needs to be
controlled in time, but also the quartic stiffness δop.

The stiffnesses κ(t) and δ(t) are displayed in figures 9(a) and (b). Once the diffusion equation has been
solved for salt dynamics, the stiffnesses follow from equations (27) and (31). We can see that as required,
not only κ but also κDP (and thus κop = κ− κDP), do vanish both at t = 0 and t = tf . Besides, κDP and κ

are negative in the meantime, in order to generate the double-well form for the potential, required to
achieve the decompression. This is purely driven by diffusiophoresis. The fact that κ > κDP signals that the
optical contribution κop is always positive. As with harmonic confinement, we have chosen the time
dependence of κ and κop to be blind to the sign of mobility Γc. Thus, κDP inherits from this property. A
similar comment holds for δ(t), while one needs to study δDP to discriminate positive from negative Γc. The
inset of figure 9 indicates that a residual late time dynamics slightly impinges on the forcing, and causes a
small error in the measured stiffnesses.

We next turn to the colloid density ρnum(x, t), obtained from solving numerically the Fokker–Planck
equation, equation (2). The results are shown in figure 10. The density keeps the desired non-Gaussian
distribution during the whole process, as shown at tf in the figure. The agreement with the prescribed
density is striking and outperforms what had been obtained at Gaussian level. For times exceeding tf , a
slight drift exists, as displayed in the inset. To ensure that the target expansion is realized, we calculate
numerically the variance of the colloid σ2

num(t) =
∫ +∞
−∞ x2ρnum(x, t)dx. The results are plotted as a function

of time for two phoretic mobilities Γc = ±0.2Ds in figure 11. The variance measured from the solution to
the Fokker–Planck equation appears very close to the target variance, σ2 = N/(2

√
α(t)). The maximum

error is observed for t � tf and is below 0.1%; the mismatch then quickly decays to zero (see the inset). The
plots confirm that we achieve a better control of non-Gaussian states than Gaussian ones (comparing
figures 8 and 11). The reason is that the present treatment accounts for non harmonic contributions to the
potential U, while they are discarded in sections 4 and 5. Finally, for completeness, we evaluate the kurtosis
of the colloidal density. This quantity, as shown in figure 12, is nearly constant and changes in time only on
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a small scale, such that K � 0.8116 ± 0.003. This confirms that the colloidal density follows the target
self-similar non-Gaussian distribution given by equation (23) during the whole procedure. The kurtosis
remains negative for both positive and negative mobilities, as a consequence of light tails in the target
distribution equation (23).

7. Discussion and conclusion

By a proper combination of optical and phoretic forcing, we have proposed a family of decompression
protocols for manipulating colloidal states. These protocols are free of the difficulty that plagues an all
optical method, namely the fact that the trap stiffness in the vicinity of its center should become negative,
expelling colloids away, in some time window. Here, diffusiophoretic forces provide the required
deconfining forces; they are monitored by an externally controlled salt buffer, that bathes the exterior of the
system under study. In other words, we drive our system by the (time-dependent) salt concentration φ(t) at
its boundary, as it was realized in a series of experimental works [51, 53]. It is a rather non trivial result that
in doing so, we achieve the precise bulk forcing that is required to manipulate the colloidal states under
consideration. We take advantage here of the fast salt dynamics, as compared to the slower colloidal
response time. This is the key factor that allows to decompress the colloidal state with a significant speedup
compared to the intrinsic response time. We have shown that the method is operational not only in a
situation of harmonic confinement, but also in a quartic external potential.

After having derived analytically the appropriate drive φ(t), we have put our predictions to the test by
first solving exactly the salt diffusion equation from which the diffusiophoretic forces acting on the colloids
follow; these forces are then injected into the Fokker–Planck equation ruling colloidal dynamics. An
excellent agreement has been reported between the resulting colloidal densities, and their (time-dependent)
targets. For times larger than the protocol duration tf , all evolution has to stop, and it is indeed what has
been observed. The colloidal dynamics is enslaved to that of salt through the Fokker–Planck equation, while
salt itself obeys pure diffusion, irrespective of colloidal arrangement. This is an approximation, valid for a
low colloidal density. This is implicitly the limit in which we worked, since all colloid–colloid interactions
are neglected. An experimental way to achieve such a limit is to work with a single colloid, and gather
statistics by repeating the experiment [19, 21]. A simpler alternative deals with trapping a colloidal
suspension, under the proviso that the maximal volume fraction remain small.

For simplicity, we have presented results in a one dimensional system, but we checked that the idea is
also operational in two dimensions. Besides, it is possible to use a similar method to compress the system
rather than decompress it. While the added value of our protocol for compression is less clear, since an all
optical device may achieve a similar result in a possibly more direct way, the present idea may nevertheless
be used for speeding compression if the laser intensity cannot exceed some threshold, to avoid damaging
the colloids.

The present contribution enriches the field of shortcut to adiabaticity protocols [2], extending its
underpinnings to non optical forcings in soft matter systems. While our method is approximate, we have
tested its accuracy. We also charted out the configurations (state points) that are amenable to our treatment,
and accessible for a given acceleration factor A. Indeed, some state points (outside the green region in
figure 4) are not accessible. Yet, we did not attempt at optimality in any sense. There is thus room for
improved protocols, that would for instance enlarge the accessible region in parameter space (green regions
in figure 4), or aim at the best stability with respect to a slight miscalibration of initial parameters, through
a careful choice of the—to a large extent arbitrary—function α(t).

An open question deals with the possible challenges raised by the experimental realization of the present
ideas, starting with the precise time control of the driving concentration φ(t), that may require some
experimental ingenuity. Besides, the question of optical stiffness anisotropy should be addressed. For
instance, we have assumed the coincidence of the point of zero optical force, with that of zero
diffusiophoretic force. We briefly discuss in appendix E the consequences of a misalignment, with the
conclusion that the protocols is relatively immune to a modest mismatch between the centers of optical and
diffusiophoretic drivings. Besides, one needs to change the salt concentration in a buffer that bathes from
the exterior the system of interest, without perturbing hydrodynamically the colloidal bead’s motion. When
addressing these questions, one should keep in mind that we made no attempt at optimizing the proposed
protocols, which leaves a useful flexibility that can be taken advantage of to minimize a given artifact.
Optimization here also amounts to selecting the relevant time-dependence for the positional variance,
through the choice of the function α(t). We also note that a priori detrimental salt concentration
fluctuations, that could affect the diffusiophoretic drive, can be reduced by increasing the initial uniform
salt concentration C0. It is also quite clear that implementing the non-Gaussian protocol leads to enhanced
difficulties, since the joint control of quadratic and quartic stiffness coefficients is required.
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Appendix A. Fast expansion beyond ESE

As discussed in section 3, fast decompression is possible making use of diffusiophoretic forces in an
otherwise time-independent optical potential, i.e., κop = κi. To obtain a non vanishing diffusiophoretic
contribution to the confining stiffness, we need φ(t � 0) = 0. Without loss of generality, we consider again
a one-dimensional system. The analytical solution of the diffusion equation (8) in 1D for a system confined
in −L/2 � x � L/2 reads

C(x, t) =
4

L

∞∑
n=0

(−1)n cos(λnx)e−λ2
nDst

(
1

λn
+ λnDs

∫ t

0
eλ

2
nDsωφ(ω)dω

)

= φ(t) − 4

L

∞∑
m=1

(−1)m 1

Dm
s

∞∑
n=0

(−1)n

λ2m+1
n

cos(λnx)

(
dmφ(t)

dtm
+ e−λ2

nDst dmφ(t)

dtm

∣∣∣∣
t=0

)
, (A.1)

where λn = (2n + 1)π/L and φ(t) = C(±L/2, t) is the boundary concentration, playing the role of the
driving field in our analysis and monitored by the experimentalists. Considering φ(t � 0) = 0, we have for
t � τ s ≡ L2/Ds, C(x, t) ∝ cos(πx/L)exp(−π2Dst/L2) which features factorized x and t dependencies. The
diffusiophoretic potential follows as

UDP(x) = −γΓc log
(

cos
(πx

L

))
. (A.2)

Close enough to x = 0, this can be Taylor expanded, and UDP therefore emulates harmonic trapping with
stiffness

κDP = γΓc
π2

L2
, (A.3)

which only depends on the system size L. The time-scale required to reach such a state is τ s.
The potential energy close to the trap center, with optical and diffusiophoretic terms, is then

approximated by U � 1
2 (κop + γΓcπ

2/L2))x2. The density ρ(x, t) evolves according to the Fokker–Planck
equation (2) which for the one dimensional system, at long times t � τ s, and near the center |x|  L,
reduces to

∂tρ(r, t) � ∂x

(
Dc∂xρ(x, t) +

(
κop

γ
+ Γc

π2

L2

)
xρ(x, t)

)
. (A.4)

With an initial Gaussian density ρ(x, 0) (variance σ2
i ), ρ(x, t) remains Gaussian in a harmonic trap, and as

long as |x|  L the solution reads

ρ(x, t) =

√
g(t)

2πσ2
f

e
−g(t) x2

2σ2
f , (A.5)

where g(t) = κi/
(

(κi + (κf − κi)e−2Dst/σ2
f

)
. Particularly, we have

ρ(x, t →∞) =

√
1

2πσ2
f

e
− x2

2σ2
f , (A.6)

with σ2
f = kBT/κf. Linearization of relation (A.2) is thus justified as long as σf  L.

We conclude here that we have realized a fast decompression, on a time scale τ s, where nevertheless the
final position variance is determined by L, the system size, through the effective stiffness

κf = κop + κDP = κop + γΓc
π2

L2
. (A.7)
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Figure C1. Same as figure 4 with α(t) = α(1)(t) rather than α(t) = α(2)(t). All parameters are the same, while we also took
κop(t) = 2kBTα(t). The state points corresponding to panels (c) and (d) are shown with a black dot in panels (a) and (b).

Moreover, we can see that κDP takes negative values only for Γc < 0, which would not allow to decompress
a system with Γc > 0. Therefore, the present method lacks control and generality, and another route has
been explored in the main text.

Appendix B. Constraint on C(0, t)

In this appendix, we present the calculations behind equation (13). The assumptions of isotropicity and
analyticity of C(r, t) imply ∂

j
rC|r=0 = 0 for j odd, so that expansion of C(r, t) at r = 0 gives

C(r, t) = C(0, t) + ∂2
r C(r, t)|r=0

r2

2
+ ∂4

r C(r, t)|r=0
r4

4!
+O(r6), (B.1)

which reveals that 1
r ∂rC|r=0 = ∂2

r C|r=0 (although ∂rC|r=0 = 0). Then, for ∇2C in n-dimensional system at
r = 0 we have

∇2C|r=0 = ∂2
r C(r, t)|r=0 +

n − 1

r
∂rC(r, t)|r=0

= n∂2
r C(r, t)|r=0. (B.2)

Substituting this relation into the diffusion equation (8) gives

∂tC(r, t)|r=0 = Dsn∂
2
r C|r=0. (B.3)

Thus, we have

∂2
r ln C(r, t)|r=0 =

1

C
∂2

r C(r, t)

∣∣∣∣
r=0

− 1

C2
(∂rC(r, t))2

∣∣∣∣
r=0

=
1

nDs

1

C
∂tC(r, t)|r=0 =

1

nDs
∂t ln C(0, t). (B.4)

Combining this equation with equations (12) and (5), we obtain a differential equation for the
concentration at the center C(0, t) as

− γΓc

nDs
∂t ln C(0, t) =

˙
α(t)

2α(t)
γ + 2kBTα(t) − κop(t). (B.5)
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Figure C2. The stiffnesses κ(t) and κDP(t), as a function of time for parameters A = 10, κi = 2κf, Dc = 0.002Ds,
κop(t) = 2kBTα(1)(t) and for two phoretic mobilities: Γc = ±0.2Ds; here, α(t) = α(1)(t). The two graphs are for different sizes
(a) L = 10σf and (b) L = 5σf . Note the undesired time-dependence of the quantities displayed, for t > tf . The data collapse in
panel (b) is indicative of a better accuracy of the protocol, as confirmed by the near constancy of the stiffnesses for t > tf .

Appendix C. Results for α(1)(t)

In the main text, we presented results for the situation where the inverse variance of colloidal positions,
encoded in the function α(t), is given by α(2) in equation (18). We work out here the method with another
choice (s = t/tf ),

α(t) = α(1)(t) =
1

2kBT

(
κi + (κf − κi)(3s2 − 2s3)

)
, (C.1)

that highlights the importance of the steadiness of α, essentially near the end point t = tf . Here also, we
suppose κop(t) = 2kBTα(t). The resulting phase portrait, the counterpart of figure 4, is shown in figure C1.

Two comments are in order. First and for Γc < 0, the α(1) protocol extends the reach of the method as
compared to the α(2) protocol. The reverse conclusion holds for Γc > 0. Second, and more relevant, the
accuracy does not fare favorably to that shown in panel (c) of figure 4. With positive mobilities (panel (d))
we observe a better collapse of the analytically computed φ(t) shown with the line, and the symbols
resulting from the numerical resolution of the salt diffusion equation. In panel (c), the lack of accuracy is in
particular already visible at t = 0, where φ slightly departs from C0, the salt buffer concentration. This is a
consequence of our Taylor expansion truncation, not only to get φ(t), but also the potential U, that may
feature non-harmonic contributions. These shortcomings are made more apparent when looking at the
dynamics of the resulting stiffness κ, or κDP as in figure C2. It is seen that for t > tf , these quantities are not
steady. Besides, the effect of the sign of the mobility Γc, at variance with the programmed solution (see
figure 6), is another illustration of the imperfections at stake here. As expected and observed in comparing
the two graphs in figure C2, the protocol works better when applied to a smaller system.

Appendix D. Non-Gaussian features of would-be Gaussian states

In sections 4 and 5, we have supposed that the colloid density remains Gaussian during the protocol. In this
appendix, we question the validity of this assumption. To this end, we calculate numerically the kurtosis,
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Figure D1. Kurtosis of the colloidal position distribution as a function of time for the target Gaussian states. The panels
correspond to (a) Γc = −0.2Ds and (b) Γc = 0.2Ds for α(t) given by equation (18) and the same parameters as in figure 4. The
insets show the dynamics for long times.

Figure D2. Quartic stiffness coefficient δDP as a function of time for the Gaussian states for two phoretic mobilities. The panels
correspond to the same parameters as in figure 4 and α(t) given by equation (18).

which measures the non-Gaussianity of the colloidal density. While the skewness remains zero by symmetry,
the kurtosis does not strictly vanish, at variance with an exact Gaussian density. The numerically calculated
result Knum(t) =

∫ +∞
−∞ (x − 〈x〉)4ρnum(x, t)dx/σ4 − 3 is shown in figure D1. This non-zero kurtosis

originates from the quartic term in the total potential energy and leads the colloid density to deviate from
Gaussian distribution. However, the maximum kurtosis is around 0.2 which is rather small.

Furthermore, the kurtosis depends on the phoretic mobility. This is explained by considering the quartic
term in the potential energy (δDPx4/4), where δDP(t) = − 1

6γΓc∂
4
x ln C(x, t)|x=0. As shown in figure D2,

unlike the quadratic term, δDP(t) depends on the phoretic mobility. For Γc < 0, δDP is mostly negative. This
pushes the colloids further toward the exterior (enhanced expulsive contribution). Thus, there will be an
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Figure E1. Results for non-aligned optical and diffusiophoresis forces: (a)–(b) colloid density (c)–(d), mean value of colloid
position 〈x(t)〉, (e)–(f) skewness, and (g)–(h) kurtosis of the colloid distribution, for the same parameters as figure 4 and
x0 = 0.1σf . For the kurtosis, the subscripts A and NA refer to the aligned and non-aligned situations.

overpopulation at larger distances and a positive kurtosis. For Γc > 0, the argument is reversed (mostly
positive δDP, mostly negative kurtosis).

Appendix E. Consequences of misaligning of the optical and diffusiophoretic forces

We address here a possible experimental limitation, coming from the fact that it may prove difficult to have
a perfect coincidence between the minimum of the optical potential created, and the point of symmetry of
the salt driving, where the diffusiophoretic forces vanish. We therefore assume that the optical and
diffusiophoretic forces are centered at x = 0 and x = x0 �= 0, respectively. Then, the total potential energy is
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Figure E2. Force bias at the origin of the non-vanishing skewness for optical and chemical forcing non-alignment. Optical forces
are symmetric around x = 0 while diffusiophoretic forces are centered around x = x0 > 0, which leads to the salt density
visualized by the red shade.

given by

U =
1

2
κop(t)x2 − γΓc ln C(x − x0, t)

� 1

2
κ(t)x2 − κDP(t)x0x, (E.1)

where κ(t) = κop + κDP, as in the main text, with

κDP(t) = −γΓc∂
2
x,x ln C(x, t)|x=x0 . (E.2)

This results in a time-dependent trap center, located at x = κDP(t)x0/κ(t). The assumptions of isotropicity
and analyticity of C(x, t) still hold with ∂

j
r C|x=x0 = 0 for j odd. This potential leads to a Gaussian colloidal

position distribution with a time-dependent mean value 〈x(t)〉:

ρ(x, t) =

√
α(t)

π
e−α(t)[x−〈x(t)〉]2

. (E.3)

Substituting ρ(x, t) into the Fokker–Planck equation, equation (2), in addition to the rule given by
equation (5) for κ(t), we obtain a differential equation governing 〈x〉 as

γ ∂t〈x(t)〉 = κDP(t)x0 − κ(t)〈x(t)〉. (E.4)

Solving for 〈x(t)〉 with initial condition 〈x(t = 0)〉 = 0 yields

〈x(t)〉 =
∫ t

0
dτ

κDP(τ)x0

γ
e−

∫ τ
0 dt′ κ(t′)/γ. (E.5)

Since non-aligning does not change the evolution of κ(t) in equation (5), the protocol remains the same as
presented in the main text for the aligned case with κop(t) = 2kBTα(t) and α(t) given in equation (19).
Hence, the variance does not change and corresponds to figure 8. We consider the changes of other
moments. The colloidal density ρnum is obtained by solving numerically the Fokker–Planck equation (2).
The result is shown in figures E1(a)–(b) for the same parameters as in figure 4 and x0 = 0.1σf . It is seen,
especially in the inset plots, that the other moments, i.e., the mean value, skewness and kurtosis, are subject
to changes. Then, we evaluate 〈x〉 either from equation (4), or by calculating numerically
〈x〉num =

∫∞
−∞x(t)ρnum dx. As figures E1(c)–(d) and also the inset plots in panels (a)–(b) show, 〈x〉 starts

from zero at initial time and reaches a maximum value. According to equation (E.5), the maximum value of
deviation from initial trap center is given by 〈x〉max = κDP(t∗)x0/κ(t∗) at t∗, when both the time dependent
trap center xtrap (∇U(xtrap, t) = 0) and the mean value overlap. At the end of the protocol when t = tf , 〈x〉
differs slightly from the target trap center at x = 0. This deviation is as a result of the inertia of the colloid:
although the ions concentration is uniform at t = tf and the diffusiophoretic force vanishes, the colloid is
on average slightly away from the optical potential minimum at x = 0, which results in a further drift.

To investigate if the colloid density remains Gaussian, we calculate the skewness Snum = (x − 〈x〉)3/σ3

and the kurtosis. The skewness is shown in figures E1(e) and (f). Non-alignment leads to a non-vanishing
value, which is expected because of the mismatch between the center of diffusiophoretic forcing at x0 and
the optical center at x = 0. Moreover, the skewness depends on the phoretic mobility such that it is positive
for Γc > 0 and negative for Γc < 0. The sketch in figure E2 explains that a negative skewness ensues for a
positive x0 when Γc < 0, while the converse holds for Γc > 0. Finally, as figures E1(g) and (h) shows and as
expected, non-alignment does not affect the kurtosis. The kurtosis here (red symbols) is almost the same as
the one for the aligned case (shown by a solid gray curve).
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[3] Le Cunuder A, Martínez I A, Petrosyan A, Guéry-Odelin D, Trizac E and Ciliberto S 2016 Appl. Phys. Lett. 109 113502
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