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Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France

Edited by Robert H. Austin, Princeton University, Princeton, NJ, and approved November 15, 2019 (received for review June 24, 2019)

Brownian escape is key to a wealth of physico-chemical processes,
including polymer folding and information storage. The frequency
of thermally activated energy barrier crossings is assumed to gen-
erally decrease exponentially with increasing barrier height. Here,
we show experimentally that higher, fine-tuned barrier profiles
result in significantly enhanced escape rates, in breach of the intu-
ition relying on the above scaling law, and address in theory the
corresponding conditions for maximum speed-up. Importantly,
our barriers end on the same energy on which they start. For
overdamped dynamics, the achievable boost of escape rates is,
in principle, unbounded so that the barrier optimization has to
be regularized. We derive optimal profiles under 2 different reg-
ularizations and uncover the efficiency of N-shaped barriers. We
then demonstrate the viability of such a potential in automated
microfluidic Brownian dynamics experiments using holographic
optical tweezers and achieve a doubling of escape rates compared
to unhindered Brownian motion. Finally, we show that this escape
rate boost extends into the low-friction inertial regime.

Kramers problem | diffusion | variational optimization |
holographic tweezers

Arrhenius law, a key principle of reaction kinetics, posits that
chemical reactions become exponentially slower, the higher

the activation energy barrier that reactants have to overcome†.
In 1940, Kramers published a comprehensive theory for Arrhe-
nius’ scaling, introducing a framework for thermally activated
transitions in an energy landscape. Importantly, in his theory,
the system is coupled to the environment through friction and
thermal noise. Further research has since revealed that swift
thermal escapes from local potential energy minima require
an intermediate friction magnitude such that motion is neither
sluggish nor deterministic (2–6). However, influences of barrier
shapes on escape rates and conditions of optimality thereof have
been hitherto overlooked in the literature. In this paper, we
theoretically optimize static barrier profiles, calculate the corre-
sponding speed limit of escape, and demonstrate experimentally
that higher, optimized barriers paradoxically result in increased
escape rates, in contrast to intuition based on Kramers law. Since
the maximum achievable escape rate is infinite, the barrier opti-
mization has to be constricted, e.g., by placing an upper bound
on the barrier height or curvature. In addition, we demonstrate
experimentally a doubling of escape rates compared to unhin-
dered Brownian motion, which proves that our predicted barrier
profiles can indeed be realized. Furthermore, we show that the
rate boost applies over a range of friction values, extending
from the overdamped into the inertial regime. Our results indi-
cate that fine-tuned free-energy landscapes of higher amplitude
may increase reaction rates. In the context of protein folding,
a carefully rate-optimized free-energy landscape may thus well
exhibit a larger number of intermediate states despite additional
necessary escapes (7).

We believe that this paper will invigorate a search for Brown-
ian optimality and inform the design of systems where thermal
excitation plays a role, such as adatom diffusion (8), chem-
ical dynamics (9), polymer folding (10), and magnetic infor-

mation storage where thermal fluctuations limit capacity (11,
12). The question of optimizing the potential profile becomes
timely in view of the spectacular experimental progress made in
controlling confining features for colloidal objects (13–15).

The rate of progress of Brownian or other stochastic processes
is not easily quantifiable. One way to measure the “speed” of
Brownian motion is the mean first-passage time (FPT) to a given
distance (16, 17). In Kramers’ escape problem, the reciprocal
of the escape rate corresponds to the time of first passage to
leave the initial state. A lower bound for the achievable FPT,
e.g., of the reaction coordinate of a folding molecule, therefore
corresponds to a speed limit of the ensemble reaction rate (18).

Introductory Example
To illustrate the speed-up of the mean FPT across potential bar-
riers, we consider the triangular barrier profile in Fig. 1A. This
profile has been shown to decrease first-passage times of over-
damped Brownian motion, relative to a linear potential (19).
Importantly, this profile-induced speed-up does not require any
expense in energy‡ : The effect also appears in energy-neutral
potential profiles, constructed in such a way that initial and final
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Fig. 1. (A) Simple potential profile, characterized by its height ∆U and the
curvature of the associated potential well ω. The 2 key timescales in the
overdamped exit process are the Kramers’ escape time¶ and the slide time.
For such a profile and provided that ∆U is large enough, the exit time sim-
plifies into τ ' τKramers + τslide. Increasing ∆U (to decrease τslide) and ω in
the appropriate fashion leads to enhanced “squeezing” of the well and
to a decrease of τ (shown in B). In doing so, ∆U diverges while τ can be
made as small as desired. Thus, imposing the constraint |U(x)|<Umax or dis-
cretizing space will lead to a nonzero optimal time τ (cases/constraints A
and B in main text). This regularizes the vanishing of τ , that is, a speci-
ficity of the overdamped description. The underdamped regime does not
require regularization. We generally understand “underdamped” as mean-
ing “nonoverdamped.” The overdamped regime is such that there are
infinitely many potential shapes that lead to the optimal escape time τ = 0.
A constrained (regularized) problem is such that τ 6= 0. (C) Sketch of the
holographic optical tweezers setup used to measure escape times over opti-
mized barriers that are shaped by creating intensity and phase profiles
inspired by predicted optimal potential profiles.

energy levels coincide§ . The particle in Fig. 1A is initialized at
x = 0 in the narrow well (red region), and our interest goes to
the first passage at x =L. The movements are bounded by a
reflecting barrier at x = 0 and an absorbing boundary at x =L.
The mean escape time from the narrow well is given by Kramers’
result τKramers∝ eβ∆U/ω with β= 1/(kT ) denoting the inverse
temperature times the Boltzmann constant k¶ . Once out of the
well, the particle slides toward the exit within an average slide
time τslide∝ 1/∆U as follows from gradient descent. In the limit
of high barriers, the overall mean exit time τ reads as the sum of
τKramers and τslide (19); it can therefore be made arbitrarily small
by simultaneously increasing the steepness and height of the ini-
tial well (Fig. 1B). Crucially, a sufficiently high and steep barrier
yields a mean exit time shorter than the corresponding free dif-
fusion time τfree =L2/(2D), where D is the diffusion coefficient
(24). Moreover, there is no lower bound (other than zero) for the
exit time: Further “squeezing” will further decrease τ (Fig. 1B).
The exit time approaches zero for appropriately chosen diverging

§ In nonneutral (tilted) landscapes where net work is performed, interesting effects have
been reported. For instance, diffusion coefficients in tilted periodic potentials can vastly
exceed their free diffusion value, which leads to a “giant acceleration” of diffusion
(20–22).

¶Assuming the bottom of the well together with the top of the barrier to be parabolic,
with respective curvatures mω2 and −mω2

top where m is the particle mass, Kramers’

escape time reads (23) τKramers ∝ω−1ω−1
top exp[∆U/(kT)], ∆U> 0.

curvature and barrier height. Fig. 1C presents the experimental
setup used in this work to test the predictions.

Barrier Profile Optimization
In the following, all relevant quantities, the mean exit time, the
potential, and the abscissa are conveniently rescaled: τ̃ =Dτ/L2,
Ũ =βU , x̃ = x/L, where D = 1/(βmγ) defines the temperature
T that drives the Brownian process, m the particle mass, and
γ the friction coefficient. Tildes denote dimensionless variables,
but are dropped hereafter, unless otherwise stated. The mean
exit time is given by (23, 25)

τ =

∫ 1

0

dx e−U (x)

∫ 1

x

dy eU (y), [1]

which is invariant under the transformation U (x ) to −U (1− x )
(SI Appendix). A joint use of this invariance and Cauchy–Schwarz
inequality shows that the optimal potential is necessarily antisym-
metric with respect to x = 1/2 (such that U (x ) =−U (1− x )),
provided that the constraints on the potential are compatible
with antisymmetry transformation (see SI Appendix for details).
The 2 distinct constraints we discuss in the following, (constraint
A) bounds on U and (constraint B) regular space discretization,
are both compatible with antisymmetry.

Constraint A—Symmetrically Bound Potential. Imposing bounds on
the potential offers the most straightforward regularization to
discuss optimality. For the sake of simplicity, we restrict our-
selves to constant bounds Umin 6U (x )6Umax and refer to this
constraint as A.

By minimizing τ in Eq. 1 with respect to U , we show in SI
Appendix that the optimal potential A obeys

eU (y)

∫ y

0

dx e−U (x) = e−U (y)

∫ 1

y

dx eU (x). [2]

It follows that it has the generic shape sketched in Fig. 2A, which
consists of 2 plateaus on the upper and lower bounds, connected
by a decreasing linear part. The positions x∗ and y∗ of the inter-
section between the 2 plateaus and the linear part can also be
calculated, as well as the associated optimal mean exit time

τAopt = x∗= 1− y∗=
1

2 +Umax−Umin
. [3]

For symmetric bounds Umin =−Umax, the optimal potential
is antisymmetric, as expected. For general bounds, the opti-
mal mean exit time depends only on the potential difference
∆U =Umax−Umin and is always smaller than the free diffu-
sion time τfree = 1/2. Moreover, when the potential difference
is much larger than one, we obtain

τAopt∆U ' 1. [4]

This expression is reminiscent of Heisenberg’s time–energy
uncertainty principle, even though the problem is, of course,
purely classical. The larger the amplitude of the potential is,
the shorter the mean exit time. Eq. 4 also implies that the scal-
ing of the mean exit time reduces, at leading order, to the slide
time-scaling 1/∆U# . This result is in accord with the fact that
the plateaus disappear at large ∆U . This phenomenology also
applies in higher-dimensional systems, as shown in SI Appendix.

#Going back to dimensioned quantity, this corresponds to a speed τ/L∝U/(mγL),
where temperature drops out. This is nothing but the sliding time in the constant
force field U/L, with a mobility 1/(mγ). The initial escape from x = 0 to the plateau
at x = 0+ (and likewise the jump from x = L− to x = L) occurs in a vanishing time,
within the present overdamped formulation.
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Fig. 2. (A) Optimal potential profile A with bounds Umin and Umax. (B) Opti-
mal potential B for a 40-support potential. The potential is not bounded
anymore. (B’) N-shaped approximation of the discretized case, with only
one variable parameter U1 (optimal potential B’). (C) Mean exit time as a
function of the potential barrier, for the optimal potentials A, B, and B’. The
color code is consistent in A–C. The dashed line represents the asymptotics
1/∆U, valid for optimal potentials A and B’. Because of its overshoots, the
optimal potential B has different asymptotics. The red stars correspond to
the experimental data (Fig. 3).

Despite its convenience, constraint A possesses one draw-
back: the nonphysical discontinuity of the corresponding optimal
potential A‖ .

Constraint B—Piecewise-Linear Potential. We therefore turn to
constraint B, for which the potential is a piecewise linear func-
tion, defined by n nodes (xi ,Ui) where we require the xi to
be regularly spaced in [0, 1]. We refer to such a profile as
an n-support function. As before, the potential is chosen to
be energy neutral; that is, U0 =Un+1 = 0. Contrarily to con-
straint A, constraint B does not impose any restriction on the
value of Ui (U is a priori not bounded). As shown in Intro-
ductory Example, large potential barriers can be efficient only
when the width of the associated well vanishes. Here, the well
width is bounded from below by 1/n , the spatial discretiza-
tion step, so that bounding the potential becomes unnecessary.
To compute the associated optimal potential profile B, we
carry out simulated annealing. Fig. 2B provides an example
of optimal potential B for a 40-support one. It is antisym-
metric as expected and reminiscent of an “N shape” with an
overshoot and an undershoot on both sides of the intermedi-
ary slide. The overshoot prevents the particle from recrossing
the barrier and falling back into the initial well. Its amplitude is
determined by a trade-off between a quick escape from the ini-
tial well, a low recrossing probability, and a short slide time. A
simple approximation of this optimal potential profile is given by
the N-shaped function (denoted B’), only parameterized by the
potential barrier height U1, as shown in Fig. 2B’. A minimiza-
tion of Eq. 1 for this potential profile yields a lnn scaling of the
parameter U1, and the corresponding mean exit time

τB
′

n =
1

2 lnn
+ o

(
1

lnn

)
. [5]

‖U(0) = U(1) = 0 by construction, while U(0+) = Umax and U(1−) = Umin .

Although optimal potential B’ cannot exhibit an overshoot, it
captures the correct scaling of the mean exit time which is, as for
constraint A, given by the sliding time. In particular, to leading
order in n , the mean exit time and the total potential differ-
ence ∆U = 2U1 still verify τB

′
n ∆U ' 1. The overshoot structure

of optimal potential B can be satisfactorily described by a 2-
parameter potential ansatz. Once optimized, it turns out that
this overshoot structure modifies the subleading order of Eq. 5,
yielding only a slightly smaller mean exit time than with optimal
potential B’. It is interesting here to note that a profile, reminis-
cent of our N shape, was also reported in a discrete model of
molecular transport through nanopores (26).

To compare the efficiency of the differently constrained poten-
tials, we use the total potential amplitude ∆U = maxx |U (x )|
as an index. This leads to Fig. 2C. According to this criterion,
the optimal potential A (Fig. 2A) is of course the most efficient,
but displays discontinuities. By contrast, the optimal potential B
(Fig. 2B) is continuous but only poorly efficient, since it requires
a large amplitude due to the over- and undershoots, which nev-
ertheless do not significantly reduce the mean exit time. A good
compromise is given by the N-shaped reasonably efficient opti-
mal potential B’ (Fig. 2B’), which we realized experimentally as
we describe below.

Experimental Design and Results
To test whether experimental potentials can be tailored to
deliver the predicted speed-ups, we leveraged the ability of a
holographic optical tweezer (HOT) to create almost arbitrary
intensity and phase patterns in the focal plane of a microscope
(27, 28). In addition, we used a microfluidic device to confine
movements of colloidal particles, to a quasi–one-dimensional
line, eliminating entropic forces and variations in hydrodynamic
friction (29, 30). The motion of colloidal particles is well within
the overdamped regime, such that our theory applies. All experi-
ments were carried out by an automated “drag-and-drop” rou-
tine based on a real-time recognition system, which is able to
locate colloidal particles and displace them using individually
addressable dynamic holographic traps (31).

As a first step, we measured first-passage times τ0 of a colloid
released in the center of a channel, shown in Fig. 3A, without the
influence of laser forces (Fig. 3B). As the data in Fig. 3C show,
these times adhere closely to theory and scale quadratically with
distance. From this dataset, we infer a diffusion coefficient of
D = 0.23µm2/s.

The holographic parameters necessary to form the right bal-
ance of intensity-gradient and phase-gradient forces (32) were
found by trial and error. Specifically, the N-shaped potential was
created by a combination of a single point trap providing the
initial potential well and 3 line traps with phase gradients and
lengths as specified in SI Appendix.

The resulting potential landscape U (x ) was obtained
by integrating forces f (x ), which we inferred along the
channel from binned displacement statistics ρx (∆x )

∝ exp
[
− (∆x−∆tf (x)/(mγ))2

4D∆t

]
. The friction coefficient γ was

calculated from the measured diffusion coefficient using
mγ= kBT/(D) (see SI Appendix, Eq. S1). Our passive potential
inference works reliably for shallow potential wells ∆U < 5 kBT ;
inference of deeper minima would require intervention (33).
As Fig. 3D shows, the potential largely adheres to the desired
N shape, except for a few wiggles, which are due to optical
aberrations and interference (SI Appendix).

The obtained mean first-passage time is plotted in Fig. 3E,
as well as the free-diffusion fit. The profile speed-up introduced
by the intermediary slide part of this potential is clearly visible.
It results in a mean exit time of 336± 19 s, compared to the
684 s for free diffusion; hence we obtain a speed-up factor of
2. This experimental measurement is displayed in Fig. 2C with

Chupeau et al. PNAS | January 21, 2020 | vol. 117 | no. 3 | 1385
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Fig. 3. (A) Picture of microfluidic channel used, containing a single particle. The region of interest used subsequently is shown with the frame. (B) Forces
along the channel inferred for the zero-potential case. The error envelope is on the order of the marker size. We here plot the force rather than the
potential to highlight the accuracy of our force estimator. (C) First-passage time measured symmetrically from the center of an interval in the absence of
optical forces. (Scale bar, 5 µm.) (D) N-shaped potential created by the HOT, corresponding to the rightmost star in Fig. 2C (the other experiment is described
in SI Appendix). Inset shows the asymmetric barrier used to approximate the initial reflecting boundary. (E) Measured first-passage times at position x
for the same potential compared with the free-diffusion fit. (F) Measured first-passage time at position x, normalized by the corresponding free diffusion
time x2/(2D).

a star. The experimental landscape has a lower efficiency than
the targeted optimized N-shaped potential. This is caused by
aberrations and interference between different holographic ele-
ments, but despite these imperfections, a significant speed-up is
achieved.

The Underdamped Regime
Finally, energy profile optimization raises a conceptual prob-
lem. Provided that the constraint is loose enough (large ∆U
or large n , for example), the optimal mean exit time becomes
sufficiently low and may leave the range of validity of the over-
damped regime (23). Therefore, we need to extend the discus-
sion to the underdamped situation, where the state of the particle
is characterized by both its position and its velocity (SI Appendix).
Then, inertia matters, and the particle’s velocity cannot instanta-
neously adjust to the force applied. This delay causes a nontrivial
response to forcing. To proceed, we introduce some additional
rescalings ṽ = v

√
m/(kT ) and γ̃= γL

√
m/kT , where tildes will

again be implicit in the following. Although not consistent with
the rescalings on position and velocity, we keep the same rescal-
ing for time as in the overdamped case, for better comparison
with this limit. Extracting the mean exit time from the statisti-
cal description of the underdamped problem is more involved
than in the overdamped case, and no general analytical expres-
sion is known. Even the free diffusion case requires cumbersome

calculations (34, 35). However, a development in terms of har-
monic oscillator eigenfunctions can be carried out (36). Keeping
the first 2 orders, we find (SI Appendix)

τ '
∫ 1

0

dx

∫ 1

x

dz eU (z)−U (x) +
1

γ

√
π

2

∫ 1

0

dx e−U (x)

+
1

γ2

[
−U ′(1)

2

∫ 1

0

dx e−U (x)

+

∫ 1

0

dx

∫ 1

x

dz U ′2(z )eU (z)−U (x)

]
, [6]

here for an initially thermalized particle starting on the reflect-
ing boundary. As expected, the zero-order term corresponds to
the overdamped expression Eq. 1. Then, the first-order term in
1/γ penalizes negative parts of the potential and favors positive
ones, resulting in an antisymmetry breaking of the optimal poten-
tial for finite friction. As for the second-order term, its first part
favors negative increasing profiles near x = 1, whereas its sec-
ond part, that is mainly significant around the maximum of the
profile, favors height reduction of the first barrier as well as its
bending.

To test this theoretical prediction and work out arbitrary
damping, we implement a simulated annealing optimization cou-
pled to a finite-element method (SI Appendix). To facilitate

1386 | www.pnas.org/cgi/doi/10.1073/pnas.1910677116 Chupeau et al.
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Fig. 4. (A) Optimal 10-support potential profiles for various frictions, compared to the overdamped limit. (B) Evolution of the optimal mean exit time with
friction, for 5-, 10-, and 20-support potentials, obtained by finite-element annealing (SI Appendix). Dashed lines correspond to optimization carried out
with Eq. 6.

comparison with the overdamped limit, we restrict the opti-
mization to n-support functions. Fig. 4A shows how a decrease
in friction impinges on the optimal potential profile. It con-
firms the expectation based on Eq. 6, such as the breakdown of
antisymmetry, reduction of the amplitude of the optimal pro-
file, and bending of the profile around its maximum with the
disappearance of the overshoot. We compare the resulting opti-
mized mean exit time with the free case in Fig. 4B. Interestingly,
the profile speed-up does extend beyond the overdamped limit.
However, its efficiency decreases when friction decreases. In very
underdamped situations, despite the momentum gained in the
intermediary slide part, the cost for well escape becomes pro-
hibitive. Our results indicate that in the case of vanishing friction,
the optimal shape will converge to a constant potential. The
profile speed-up is therefore most relevant in the moderately
damped to overdamped regimes.

Conclusion
We have studied profile speed-up of a Brownian particle by
an energy-neutral potential barrier. We optimized this process
under 2 complementary constraints, which either bound the
potential directly or require regular spatial discretization. From
the optimal potentials obtained, we constructed an efficient

experiment-friendly profile that we implemented using a combi-
nation of optical and microfluidics techniques. We were thereby
able to accelerate the exit dynamics of a colloid in a narrow chan-
nel by a factor of 2. Moreover, the profile speed-up is not specific
to overdamped systems and is observed, although with lower
magnitude, at arbitrary damping. Altogether, the profile-induced
speed-up then appears to be robust and relevant in a large range
of friction values. Finally, although the emphasis was here in the
one-dimensional setting, our results extend to higher dimensions,
as discussed in SI Appendix. While a comprehensive analytical
treatment of this problem beyond the overdamped limit remains
a considerable theoretical challenge, our results anyway require
a rethink of the seemingly settled problem of reaction rates and
Brownian transport.

Materials are available on request.
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