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Starting with setting the framework in section I and being interested in mean-first passage times, we bring to the
fore the key feature of potential antisymmetry. We then present in Section II the experimental setup and techniques.
We show in section III that for overdamped dynamics, the optimal potential is necessarily antisymmetric, as soon as
the constraint on the potential is compatible with such a property. Second, we optimize in section IV the potential
within constraint A (bounded potential). We then show in section V that the escape time boost is not specific to the
one dimensional setting on which our attention is mainly focussed, but also holds in higher dimensions. We finally
present the general underdamped framework, with analytical asymptotic results (section VI) and the Finite Element
Method technique used for numerical resolution (section VII).

I. THE GENERAL FRAMEWORK AND A KEY PROPERTY OF THE MEAN FIRST PASSAGE TIME

The whole analysis is performed at the level of the Langevin equation [1, 2] for the motion of a Brownian object in
the force field stemming from an external static potential U(x). We mostly focus on the one dimensional formulation
(see Section V otherwise), for which the position x of a ‘particle’ with mass m obeys

mẍ = −γmẋ − U ′(x) + mγ
√
Dη(t) (S1)

where γ denotes the friction coefficient, U(x) the potential in which the particle evolves, D = kBT/(mγ) the diffusion
coefficient, and kBT is thermal energy. The random term η(t) is a standard delta-correlated noise: 〈η(t)η(t′)〉 =
2δ(t− t′). Time and space derivatives are denoted by a point and a dash respectively. In the overdamped limit, met
with large friction coefficients, the inertial term becomes negligible, and the equation of motion simplifies into:

ẋ = − 1

mγ
U ′(x) +

√
Dη(t), (S2)

where 1/(mγ) is the mobility. Statistical properties of the x-evolution are enclosed in the probability density function
(pdf) P (x, t) to find the particle at the point x at time t, starting from a given initial state. The pdf obeys the
Smoluchowski equation

∂tP =
1

mγ
∂x(PU ′) +D∂2xP. (S3)

In the more general underdamped framework associated to Eq. (S1), the pdf K(x, v, t) (such that P =
∫
Kdv) obeys

the so-called Kramers equation [2], given in Eq. (S35) below.
For a given static external potential U(x), a classic argument [2, 3] yields the mean first-passage time τ [U(x)]

provided by Eq. (1) in the main text. Before embarking in the analysis, it is worth discussing the ensuing interesting
antisymmetry property of the mean first passage time, that plays a fundamental role in our treatment [4]:

τ [U(x)] = τ [−U(1− x)]. (S4)

This is a mere consequence of Eq. (1); it implies that the two profiles shown in Fig. S1 lead to the same mean first
passage time at x = 1. While this may be surprising at first, it appears that it is completely equivalent to first get
out of the well and then slide to the exit (Fig. S1(a)) or first slide down and then climb a steep slope (Fig. S1(b)).
Indeed, if the slide part is identical between (a) and (b), the well part is different. In (a), the particle is blocked
leftwards by a reflecting wall, acting like an infinitely high potential, whereas in (b), the well is less confining, because
of its left part, which is the slide. Following Kramers-like phenomenology subsumed in Fig. 1 in the main text, the
particle should (and does) escape quicker from the most confining well of (a). However, once escaped from the well,
the particle can fall back down into it in (a) (recrossings) whereas it cannot in (b) as the top of the well is absorbing.
It turns out that the two effects (well escape and recrossing) exactly compensate and lead to the identity (S4).
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FIG. S1: Illustration of the generic identity (S4). These two potentials yield the same mean exit time, stemming from a
remarkable compensation between the difference of escape time from the two wells and the recrossing occurrence. The particle
starts from x = 0 at the reflecting wall and is absorbed at x = 1.

II. EXPERIMENTS

We used an Ytterbium fiber laser (YLM-5-1064-LP, IPG Photonics) at 2.5 W power with a wavelength of 1064 nm.
To shape the beam, we used a liquid crystal SLM (LCOS X10468, Hamamatsu) with a refresh rate of 60 Hz. Further
details about the setup can be found in previous publications [5]. The colloidal particles had a nominal diameter of
350 nm, consisted of polystyrene and are commercially available from Polysciences Inc. The colloids were dispersed
in a measurement buffer (3 mM KCl, 0.5xTris at pH 8) and sonicated prior to the experiment. The microfluidic mask
was cast in Polydimethylsiloxane (PDMS) and featured channels with dimensions of 25× 1× 1µm. Both ends of the
channel are connected by macroscopic channels to swiftly equilibrate pressure differences.

As stated in the main text, the experimental N-shaped potential represented on Fig. 3(d), corresponding to the
rightmost star of Fig. 2(d), was created by a combination of a single point trap providing the initial potential well
and three line traps with phase-gradients and lengths given by the following table.

Type I xc L p

Line 0.2 −0.91µm 2µm 1

Point 0.09 0µm N.A. N.A.

Line 1.1 8.05µm 16µm 0.1

Line 0.6 17.45µm 3µm −1

FIG. S2: Parameters of the Red tweezers program [6] used to create the N-shaped barrier

I denotes the relative intensities, xc represents the centre of the respective trap, L stands for the length of the line
trap, while p ∈ [−1, 1] is a relative measure for the phase-gradient of a line trap.

This combination of parameters is the one with which we obtained the lowest experimental rescaled mean exit
time. We also report another experimental potential that yields a slightly higher mean exit time, but presents a
better efficiency (that is to say a better balance acceleration - potential amplitude). This second potential profile,
represented in Fig. S3, corresponds to the leftmost star on Fig. 2(d) in the main text. It is less N-shaped than
the experimental profile of Fig. 2(d), but displays less interference oscillations, preventing the colloid to lose time in
intermediary potential wells before exiting.

III. ANTISYMMETRY OF THE OPTIMAL POTENTIAL

In the overdamped regime, the mean exit time is given by Eq. (1) in the main text and is the same for a general
potential U(x) and for −U(1− x), see section I. Using this property, we can write

τ2[U(x)] = τ [U(x)] τ [−U(1− x)] =

∫ 1

0

dx e−U(x)

∫ 1

x

dy eU(y) ×
∫ 1

0

dx′ eU(1−x′)
∫ 1

x′
dy′ e−U(1−y′). (S5)
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FIG. S3: (a) Experimental potential profile corresponding to the leftmost star on Fig. 2(d) of the main text. The interval of
interest is between x = 0 and the vertical dashed line. (b) Measured first-passage times for the potential profile (a) normalized
by the zero-potential fit 〈τ0〉. The continuous curve is the theoretical calculation of τ [U ] following from Eq. (1) in the main
text, where U is the measured potential shown in panel a). Both (a) and (b) share their x axis.

We use the Cauchy-Schwarz inequality for the following scalar product

〈f |g〉 =

∫ 1

0

f(x)g(x) dx (S6)

and the associated norm ||f || =
√
〈f |f〉. This yields

τ2[U(x)] >

∫ 1

0

dx e−
U(x)−U(1−x)

2

√∫ 1

x

dyeU(y)

∫ 1

x

dy′e−U(1−y′)

2

. (S7)

We invoke again the Cauchy-Schwarz inequality for the integral scalar product on [x, 1] to obtain

τ2[U(x)] >

(∫ 1

0

dx e−
U(x)−U(1−x)

2

∫ 1

x

dy e
U(y)−U(1−y)

2

)2

= τ2
[
U(x)− U(1− x)

2

]
. (S8)

This function [U(x)− U(1− x)]/2 = Ua(x) is the original potential U(x), anti-symmetrized with respect to x = 1/2.
It means that

τ2[U(x)] > τ2[Ua(x)], (S9)

namely that the mean exit time associated with a potential U is always larger than the mean exit time associated
with its anti-symmetrized version Ua. So, provided that the ensemble of potentials allowed by the regularization
constraint is stable under this antisymmetry operation (i.e. if U is in this ensemble, so is Ua), the optimal potential
is necessarily antisymmetric itself.

IV. OPTIMIZATION WITHIN CONSTRAINT A

With constraint A, the potential is such that for all x ∈ [0, 1], Umin 6 U(x) 6 Umax. The optimal profile A that
we are looking for can be split into three regions (see Fig. S4): region 1© where it is equal to the upper bound Umax,
region 2© where it is equal to the lower bound Umin and region 3© where it is not constrained (Umin < U(y) < Umax).
A priori, these three regions can be non-connected. In order to determine the optimal profile A, we use variational
calculus, and compute

δτ =

∫ 1

0

dx

∫ 1

0

dyΘ(y − x)eU(y)−U(x)(δU(y)− δU(x)) (S10)
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where Θ is the Heaviside step function. Outside of the constrained regions 1© and 2©, this variation δτ is zero at the
optimum, yielding

eU(y)

∫ y

0

dx e−U(x) = e−U(y)

∫ 1

y

dx eU(x). (S11)

We differentiate once this equation with respect to y to get∫ y

0

dx e−U(x) = −e
−U(y)

U ′(y)
(S12)

and once more

d

dy

(
1

U ′(y)

)
= 0. (S13)

Equation (S13) indicates that the optimal potential A is linear in region 3©, with a negative slope as follows from
Eq. (S12). It can be shown that optimal potential A displays the sequence region 1©, region 3© and region 2©. Regions
1©, 2© and 3© are therefore connected and the optimal potential has the generic shape represented in Fig. S4. As for
the abscissas x∗ and y∗ of the intersection between these three regions, they can be extracted straightforwardly from
Eq. (S11) and (S12).
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FIG. S4: Sketch of optimal potential A, with illustration of regions 1©, 2© and 3©.

V. BEYOND ONE SPATIAL DIMENSION

Our problem is readily generalized to an arbitrary space dimension d. We focus on the mean time that an over-
damped walker needs to escape from a (hyper)sphere, starting from its center. We consider a potential with rotational
symmetry U(r), and P (r, t) the associated probability density function of the particle. The latter obeys a Fokker-
Planck equation

∂tP =
1

γ rd−1
∂r
(
rd−1P∂rU

)
+

D

rd−1
∂r
(
rd−1∂rP

)
. (S14)

A derivation using standard techniques leads to the general expression in dimension d

τ =

∫ 1

0

dr rd−1e−U(r)

∫ 1

r

dr′

r′d−1
eU(r′) (S15)

where the mean exit time is rescaled by R2/D with R the radius of the sphere. This expression can be recast into a
one-dimensional-like expression

τ =

∫ 1

0

dr e−V (r)

∫ 1

r

dr′eV (r′) (S16)
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with the effective potential V (r) defined as

V (r) = U(r)− (d− 1) ln r. (S17)

The logarithmic contribution above invalidates the antisymmetry property discussed in section I for one-dimensional
potentials. Here, the mean exit time associated with the potential −U(1 − r) is not the same as its counterpart for
U(r).

Minimizing τ in (S16) we obtain the following equation

eU(r)

∫ r

0

dr′
(
r′

r

)d−1
e−U(r′) = e−U(r)

∫ 1

r

dr′
( r
r′

)d−1
eU(r′) (S18)

and its derivative with respect to r ∫ r

0

dr′r′d−1e−U(r′) =
rd−1e−U(r)

d−1
r − U ′(r)

. (S19)

As previously, taking the derivative with respect to r of equation (S19) leads to the following form for the unconstrained
part of the optimal potential

U(r) = (d− 1) ln r −Ar +B, (S20)

with A > 0. The logarithmic component can be viewed as an entropic force that tends to bias the displacement
towards the regions of higher accessible configuration space, namely the regions of large radii.

We can investigate more thoroughly the shape of the optimal potential in the particular case of dimension 2. The
following analysis could be easily transposed to dimensions 3 and higher. The constants A and B can be determined
by continuity of the optimal potential at the transition point between the upper bound and the intermediary portion
(in x∗) on the one hand, and the intermediary portion and the lower bound (in y∗) on the other hand. The generic
profile is

U(r) =


Umax if r ∈ [0, x∗]

Umax + ln r − lnx∗ − Umax − lnx∗ − Umin + ln y∗

y∗ − x∗
(r − x∗) if r ∈]x∗, y∗[

Umin if r ∈ [y∗, 1].

(S21)

Following the same lines as for the one-dimensional case, i.e. injecting this potential profile into equations (S18)
and (S19), we obtain

x∗ = −2y∗ ln y∗ (S22)

x∗

2
=

y∗ − x∗

Umax − lnx∗ − Umin + ln y∗
. (S23)

Combining these two equations and setting again ∆U = Umax − Umin, we get

2 + ∆U + ln

 1

2 ln
(

1
y∗

)
 =

1

ln
(

1
y∗

) . (S24)

If we define

Y ∗ =
1

ln
(

1
y∗

) , (S25)

we get the simple yet implicit relation

2 + ∆U − ln 2 + lnY ∗ = Y ∗. (S26)

This equation has two solutions, one for Y ∗ < 1 and one for Y ∗ > 1, corresponding respectively to y∗ < e−1 and
y∗ > e−1. Moreover, by definition, x∗ < y∗, which implies y∗ > e−0.5 because of equation (S22). The only relevant
solution is then Y ∗ > 1.
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In order to solve the implicit equation (S26), we study its asymptotics when ∆ � 1. In this case, Y ∗ is also large
compared to 1 and then lnY ∗ � Y ∗. We deduce from equation (S26) the leading term of Y ∗ and the first corrections

Y ∗ = ∆U + ln ∆U + 2− ln 2 + o(1), (S27)

therefore

y∗ = e−
1

Y ∗ ' e−
1

∆U+ln ∆U+2−ln 2 (S28)

x∗ =
2e−

1
∆U+ln ∆U+2−ln 2

∆U + ln ∆U + 2− ln 2
. (S29)

At large ∆U , this reduces to

y∗ = 1− 1

∆U + ln ∆U + 2− ln 2
(S30)

x∗ =
2

∆U + ln ∆U + 2− ln 2
. (S31)

Note that the relation y∗ = 1 − x∗ that was verified in one dimension does not hold in two dimensions, even
asymptotically. The accuracy of the developments (S28) and (S30) is tested on figure S5(a) as a function of ∆U .
The shape of the optimal potential in two dimensions is represented on figure S5(b). The asymmetry introduced by
the entropic force, that pushes the particle away from the center, has two manifestations: the non-linearity of the
intermediary portion and the size of the plateau on Umin that is shorter than the size of the plateau on Umax, see Fig.
S5.
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FIG. S5: (a) Comparison between the exact value of y∗, obtained by solving numerically Eq. (S26) (blue circles), and the ap-
proached expressions (S28) (black line) and (S30) (red dashed line). (b) Example of optimal potential profile in two dimensions,
with the bounds Umax = −Umin = 2.

The mean exit time corresponding to this optimal potential can be expressed using the generic shape given in
Eq. (S21) as well as Eqs. (S22) and (S23)

τ =
x∗y∗

4
+

1− y∗2

4
. (S32)

The asymptotics of this expression for potential difference ∆U � 1 can be extracted using Eqs. (S30) and (S31)

τ =
1

∆U
+ o

(
1

∆U

)
, (S33)

which means that the Heisenberg-like relation τ∆U ∼ 1 still holds at large ∆U in dimensions larger than 1.

VI. UNDERDAMPED TREATMENT: ANALYTICS

Within the underdamped treatment (Eq. (S1)), a natural rescaling for the velocity is ṽ = v
√
m/(kT ). Whereas

there was only one timescale in the overdamped problem (the diffusion time td = L2/D), there is now a second
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(ballistic) one tb = L
√
m/(kT ), related to the velocity scale. We accordingly define two dimensionless times,

t̃ =
t

td
, ˜̃t =

t

tb
= γ̃t̃. (S34)

Rescaling with tb is natural for calculations, as it is consistent with the rescalings of space and velocity already chosen.

We use the resulting ˜̃t in the following calculations. However, rescaling with td is adapted for comparison with the
overdamped case. In particular, within this second rescaling, the limit of the mean exit time at large γ is a constant
(τ̃ → 1/2), making the large damping asymptotics easier to visualize. We adopted this second rescaling in the main
text. As previously, we only work with rescaled variables and then drop tildes, except for the time, where we keep
the tilde (or double tilde) to avoid confusion.

The underdamped probability density function K
(
x, v,˜̃t), obeys the Kramers equation

∂˜̃tK + v∂xK − ∂xU∂vK = γ∂v (vK + ∂vK) . (S35)

The starting point x = 0 and the initial velocity v, distributed as the equilibrium Gaussian N (v)

N (v) =
1√
2π
e−

v2

2 , (S36)

are implicit in the following. Solving this equation for the mean exit time is much more complicated in the under-
damped regime and no analytical general result is known. However, the mean exit time can be related to the particle
density function. In order to show that, we first introduce the Green function

G(x, v) =

∫ +∞

0

d̃t̃ K
(
x, v,˜̃t) . (S37)

Integrating Kramers equation (S35) over time, we get

v∂xG− ∂xU∂vG− γ∂v(vG+ ∂vG) = δ(x)N (v). (S38)

Then, if we call F
(˜̃t) the exit time density, the mean exit time is simply

˜̃τ =

∫ +∞

0

d̃t̃ ˜̃t F (˜̃t) . (S39)

This first passage time density is related to the survival probability S
(̃
t̃
)

through

F
(˜̃t) = −dS

d̃t̃
, (S40)

and the survival probability can be deduced from the pdf

S
(˜̃t) =

∫ 1

0

dx

∫ +∞

−∞
dv K

(
x, v,˜̃t) . (S41)

Using the definition of Green function and integrating by parts, we arrive at

˜̃τ =

∫ 1

0

dx

∫ +∞

−∞
dv G(x, v). (S42)

Following Ref. [7], we can decompose the velocity dependence of the Green function on the basis of rescaled
harmonic oscillator eigenfunctions ψn(v) as follows

G(x, v) = ψ0(v)
∑
n

cn(x)ψn(v). (S43)

The eigenfunctions ψn(v) are related to the usual harmonic oscillator wavefunctions ψHn (v) by

ψn(v) = 2−1/4ψHn (2−1/2v). (S44)
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For example, for n = 0, we have ψH0 (v) = π−1/4 exp
(
−v

2

2

)
and

ψ0(v) = (2π)−1/4 exp

(
−v

2

4

)
. (S45)

This function is related to the equilibrium velocity distribution N (v) through ψ2
0(v) = N (v). The mean escape time

can be written in terms of c0(x) as

˜̃τ =

∫
dx dv G(x, v) =

∫
dx c0(x) (S46)

due to orthogonality relations between the ψn.
The advantage of this representation is that the coupling between neighboring modes cn(x) is proportional to γ−1

which allows, for periodic boundary conditions, to write an exact asymptotic expansion in the limit of strong damping
γ. For our case, these equations read:{

∂xc1 = δ(x)

nγcn +
√
n(∂x + ∂xU)cn−1 +

√
n+ 1 ∂xcn+1 = 0 for n ≥ 1.

(S47)

In [7] these equations are then solved by continued fraction expansion which converges quickly even for small γ.
Unfortunately this approach cannot be used here due to the boundary conditions. While the reflecting boundary
conditions can still be written simply in the oscillator eigenfunction basis cn(0) = 0 for odd n, the absorbing boundary
conditions introduce a coupling between all the modes n. To see this, we rewrite the absorbing boundary condition
G(1, v) = 0 for v < 0 in the ψn basis

c2n,0(1) =
∑
m

Snmc2m+1,0(1) (S48)

where the coefficients Snm are given by:

Snm = 2

∫ ∞
0

ψ2n(v)ψ2m+1(v)dv. (S49)

The (infinite) matrix Ŝ = (Snm) is orthogonal ŜŜt = Î.
Using properties of Hermite functions [8], we found the asymptotic behavior of the first coefficients S0m, S1m

S0m ∼
(−1)m+1

√
2π3/4m5/4

(S50)

S1m ∼
(−1)m

√
3

2π3/4m5/4
. (S51)

They decay quite slowly with m, thus in principle all the cn modes are coupled and the property that cn is of order γ−n

breaks down. However, we found that keeping only the first modes still provides an accurate numerical approximation
(even if it is no longer an exact asymptotic development). Retaining the lowest modes, we truncate the hierarchy
(S47) to 

∂xc1 = δ(x)

γc1 + ∂xc0 + ∂xUc0 +
√

2∂xc2 = 0

2γc2 +
√

2∂xc1 + ∂xU
√

2c1 = 0

(S52)

and the boundary conditions to:{
c1(0) = 0

c1(1) = S00c0(1) + S10c2(1) =
√

2
π c0(1) + 1√

π
c2(1).

(S53)

Solving this set of linear equations, and using U(0) = U(1) = 0, we obtain

c0(x) = γe−U(x)

∫ 1

x

dyeU(y) +

√
π

2

(
1 +

U ′(1)√
2πγ

)
e−U(x) − γ−1e−U(x)

∫ 1

x

dyU ′′(y)eU(y). (S54)

Coming back to the rescaling with td used in the main text and in the figures, we get

τ̃ =

∫ 1

0

dx

∫ 1

x

dyeU(y)−U(x) +

√
π

2

(
1

γ
+

U ′(1)√
2πγ2

)∫ 1

0

dxe−U(x) − 1

γ2

∫ 1

0

dx

∫ 1

x

dy U ′′(y)eU(y)−U(x). (S55)
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VII. UNDERDAMPED TREATMENT: NUMERICS

The large-γ asymptotics derived above only provides a partial picture of the underdamped regime. To explore a
larger range of frictions, we resort to numerics to evaluate the mean exit time associated to a general potential profile.
In particular, we use finite element techniques to compute the Green function, defined in Eq. (S37), and that obeys

v∂xG− ∂xU∂vG− γ∂v(vG+ ∂vG) = δ(x)N (v). (S56)

To take the reflecting boundary conditions at x = 0 into account, we symmetrize the domain explored by the Brownian
particles and add an absorbing wall at x = −1. The boundary conditions for G can then be written as G(δΩ) = 0
where δΩ is the domain shown on Fig S6. The G(x, v → ±∞) = 0 condition is replaced by a hard wall cut-off at
G(x, v = ±V∞) = 0. The peculiar shape of this domain is due to the fact that Kramers equation contains a derivative
of order two in v but only first order derivatives in x [9].

v

x

FIG. S6: Illustration of the domain δΩ, constituted of the two portions of thick black line, on which the Green function is 0.
The shape of the domain follows from Eq. (S56), which contains a second-order derivative in v but only first-order derivatives
in x. Therefore two boundary conditions are needed in v, whereas only one is needed in x. In v, we simply use a cut-off ±V∞.
In x, the absorbing point at x = 1 prevents the particle to have a negative velocity at this point (as it would come from beyond
this absorbing point), as well as the absorbing point at x = −1 prevents the particle from having positive velocity there.

To find G using a finite element method, we adopt the weak formulation given below where φ(x, v) is a trial function,
and integration spreads over the entire domain in Fig. S6∫

{φ (v∂xG − ∂xU ∂vG) + γv G∂vφ + γ ∂vφ∂vG} dv = δ(x)

∫
φNdv, (S57)

as follows from Eq. (S56). We implemented this weak form using the FreeFem++ simulation package [10]. To test
the numerical accuracy of the solutions obtained, we checked the conservation of current. For the exact solution, the
current J(x) =

∫
vG(x, v)dv is independent of x for all x on the same side of the source point. For our simulation

parameters, the current was typically conserved with an accuracy ∼ 5%, with a maximal error of 15% for the lowest
γ with which the convergence is the most difficult to achieve.

Once the mean exit time estimated through this finite element procedure for a given n-support potential profile, we
use a simulated annealing algorithm, whose principle is the following. We pick at random one of the n vertices of the
potential and change its U component by a random quantity in a predetermined range. This change is then accepted
or rejected with a Metropolis procedure: if the new mean exit time, computed with finite elements, is smaller than
the previous one, then the change is accepted. If it is higher, it is accepted with a probability

Pacc (τnew, τold, j) = exp

(
−τnew − τold

Tj

)
(S58)

where Tj acts as a (computational) temperature, and is decreased as 1/j2 as the iteration step j increases. The
algorithm is then stopped after a predetermined sufficiently high number of unsuccessful iterations (during which the
mean exit time does not decrease).
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