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Wigner-Seitz model of charged lamellar colloidal dispersions

Emmanuel Trizac* and Jean-Pierre Hansen†

Laboratoire de Physique, URA 1325 du CNRS, Ecole Normale Supe´rieure de Lyon, 69364 Lyon Cedex 07, France
~Received 20 March 1997!

A concentrated suspension of lamellar colloidal particles~e.g., clay! is modeled by considering a single,
uniformly charged, finite platelet confined with co- and counterions to a Wigner-Seitz~WS! cell. The system
is treated within Poisson-Boltzmann theory, with appropriate boundary conditions on the surface of the WS
cell, supposed to account for the confinement effect of neighboring platelets. Expressions are obtained for the
free energy, osmotic, and disjoining pressures and the capacitance in terms of the local electrostatic potential
and the co- and counterion density profiles. Explicit solutions of thelinearizedPoisson-Boltzmann equation are
obtained for circular and square platelets placed at the center of a cylindrical or parallelepipedic cell. The
resulting free energy is found to go through a minimum as a function of the aspect ratio of the cell, for any
given volume~determined by the macroscopic concentration of platelets!, platelet surface charge, and salt
concentration. The optimum aspect ratio is found to be nearly independent of the two latter physical param-
eters. The osmotic and disjoining pressures are found to coincide at the free energy minimum, while the total
quadrupole moment of the electric double layer formed by the platelet and the surrounding co- and counterions
vanishes simultaneously. The osmotic equation of state is calculated for a variety of physical conditions. The
limit of vanishing platelet concentration is considered in some detail, and the force acting between two coaxial
platelets is calculated in that limit as a function of their separation.@S1063-651X~97!14508-1#

PACS number~s!: 82.70.Dd, 68.10.2m
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I. INTRODUCTION

Charge-stabilized colloidal suspensions have been the
ject of intense theoretical scrutiny, starting with the clas
work of Derjaguin and Landau and of Verwey and Overbe
~DLVO! @1#, on interacting electric double layers, whic
took its roots in the even earlier work of Gouy@2# and Chap-
man @3# on double layers near infinite, uniformly charge
planes. Following the latter pioneering contributions, a la
body of work has been devoted to the planar geome
which is relevant for electric double layers near macrosco
electrodes@4# or near membranes of biological interest@5#.
DLVO theory applies to spherical geometry in particula
and yields an effective interaction between the elec
double layers surrounding spherical colloidal particles, in
form of a screened Coulomb potential, the validity of whi
has been tested both theoretically@6,7# and experimentally
@8#. The cylindrical geometry, appropriate for~infinitely!
long, stiff polyelectrolyte chains, has been investigated al
similar lines, starting with the work of Fuoss and collabo
tors @9,10#. The common framework of much of this work
Poisson-Boltzmann~PB! theory, which is a mean-field ap
proximation within the density functional theory of inhom
geneous fluids@11#.

Poisson-Boltzmann theory applies equally well to the
scription of the inhomogeneous distributions of co- a
counterions around an isolated charged colloidal particle~or
polyion! suspended in an ionic solution, and to a conc
trated suspension of polyions, provided the ‘‘cage’’ of neig
boring polyions is modeled by a Wigner-Seitz~WS! cell of
appropriate geometry, to which each polyion is confin
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Given proper boundary conditions, the Wigner-Seitz mo
reduces the initial many-polyion suspension to the mu
simpler problem of a single polyion confined with its ass
ciated co- and counterions to a cell of volume equal to
volume per polyion of the dispersion. The shape of the W
cell should reflect the shape of the polyion: It will be a
infinite slab for a membrane@5#, an infinite coaxial cylinder
in the case of a linear polyelectrolyte@9#, or a concentric
sphere surrounding a spherical colloid@12#.

Except in the case of spheres, the aforementioned mo
and calculations deal with the case of polyions of infin
extension~e.g., an infinite plane in the case of membranes
an infinite line or cylinder in the case of polyelectroly
chains!. In this paper, we examine the case of rigid me
branes or platelets of finite size. Restriction will be made
infinitely thin, uniformly charged circular or square platele
These may be considered as a reasonable model for dis
sions of smectite clay particles, like the natural montmo
lonite clays@13# or the synthetic Laponite clays@14#. While
the former are irregularly shaped polygonal particles, the
ter are, to a good approximation, of a circular shape~disklike
particles!. The thickness of a real clay particle is of the ord
of 1 nm, which is much less than lateral dimensions~Lapo-
nite disks have a diameter of typically 25 nm!, so that the
picture of infinitely thin platelets is acceptable. The ma
difficulty in a statistical description of such platelets lies
the considerable anisotropy of the particles and of their
sociated electric double layers, compared to the mu
studied case of spherical colloids.

The main objective of this paper is to obtain expressio
for the density profiles of co- and counterions around a
cular or square platelet of finite size, confined to WS cells
cylindrical or parallelepipedic geometry. The calculations a
carried out within linearized Poisson-Boltzmann theory, a
the calculated profiles and potential distributions will be us
3137 © 1997 The American Physical Society
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3138 56EMMANUEL TRIZAC AND JEAN-PIERRE HANSEN
to evaluate key equilibrium properties of concentrated lam
lar suspensions, including the free energy, the stress ten
the capacitance, and the quadrupole moment of a platele
its associated electric double layer.

Preliminary accounts of parts of this work have appea
elsewhere@15–17#.

II. DENSITY FUNCTIONAL
AND POISSON-BOLTZMANN THEORY

It is instructive to repeat the derivation of the famili
Poisson-Boltzmann equation from the free energy functio
of the inhomogeneous fluid of co- and counterions contai
in a WS cell, and subjected to the electric field due to
uniform charge density on the finite platelet placed at
center of the WS cell. In the case of smectite clays,
surface charge densitys52Ze/Sp ~whereSp is the area of
the platelet and2Ze the total charge, in multiples of th
proton chargee.0) is negative, so that the counterions a
positive, while the co-ions are negative; both are assume
be monovalent. The local co- and counterion densities~or
density profiles! are denoted byr2(r ) andr1(r ), wherer is
a position vector pointing inside the WS cell. IfN1 and
N2 are the total numbers of co- and counterions inside
WS cell, thera(r ) satisfy the normalization condition

E
V

ra~r !d3r5Na, a51,2, ~1!

whereV is the volume of the WS cell, which is equal to th
average volume per platelet in the colloidal suspens
Overall charge neutrality requires that

N12N22Z50. ~2!

The free energy functionalF@r1,r2# may be split into the
usual ideal, Coulombic, and correlational contributions@11#:

F5Fid1FCoul1Fcorr, ~3!

with

Fid@$r
a%#5k

B
T (

a51,2
E

V
d3rra~r !@ ln~La

3ra~r !!21#,

FCoul@$r
a%#5

1

2EV
$qP~r !1e@r1~r !2r2~r !#%w~r !d3r .

In these equations,La is the de Broglie thermal wavelengt
of ions of speciesa; q

P
(r ) denotes the~surface! charge den-

sity of the platelet andw(r ) is the total electrostatic potentia
at r , which satisfies Poisson’s equation

¹2w~r !52
4p

«
q
P
~r !2

4pe

«
@r1~r !2r2~r !#. ~4!

In the above expression,« is the dielectric constant of th
solvent ~generally water! regarded as a continuous mediu
~‘‘primitive model’’ !. The correlation partFcorr is not known
explicitly, but may be expressed within the local density a
proximation @11,6#. Fcorr will be neglected throughout, a
approximation which is reasonable, as long as the local c
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-

n-

centrations of co- and counterions are not too high, a con
tion which may not be fulfilled for the counterions in th
immediate vicinity of a highly charged platelet. For a com
plete formulation of the electrostatic problem, the form~3! of
the free energy functional must be supplemented by spec
ing the boundary conditions satisfied by the resulting me
electrostatic potential, or its gradient, on the surfaceS of the
WS cell.

The equilibrium density profilesra(r ) are those which
minimize the free energy functional~3!, subject to the con-
straints~1!, i.e.,

dF@r1,r2#

dra~r !
5ma ,a51,2 , ~5!

wherema is the Lagrange multiplier associated with the co
straint~1!, i.e., the chemical potential of speciesa. The func-
tional derivative of the Coulombic termFcoul reads

dFcoul

dr6~r !
56ew~r !. ~6!

With Fcorr50, the functional derivatives are easily calc
lated and the optimum density profiles are found to be giv
by the Boltzmann distribution

r6~r !5r
0

6exp$7bew~r !%, ~7!

whereb51/(k
B
T) is the inverse temperature in energy uni

For a givenq
P
(r ), Eqs. ~4! and ~7! form a closed set,

which may be reexpressed as an inhomogeneous nonli
partial differential equation for the potentialw(r ), usually
referred to as the Poisson-Boltzmann~PB! equation:

¹2w~r !1
4pe

«
@r

0

1exp$2bew~r !%2r
0

2exp$1bew~r !%#

52
4p

«
q
P
~r !. ~8!

Neglect ofFcorr clearly points to the mean-field nature of P
theory. The prefactorsr

0

6 are equal to the fugacitie

exp(bm6)/L6
3 in the case of an open system, where the W

cell is in equilibrium with an infinite reservoir which fixe
the chemical potentialsm6 . For a suspension of fixed ioni
composition ~canonical ensemble!, the r

0

6 are determined
from the normalization conditions~1!. Equation~8! must be
solved, subject to appropriate boundary conditions on
surfaceS of the WS cell. If the surface is regarded as
boundary between WS cells associated with nearest-neig
platelets, it is natural to impose that thenormal component
of the electric fieldE52¹w vanish at each point onS. In
practice, the homogeneous version of the PB equation~8! is
solved for all positionsr outside the platelet (r¹Sp), and
the usual discontinuity of the normal component of the fie
upon crossing the uniformly charged surfaceSp is taken into
account.

The PB equation has been solved numerically for circu
platelets of finite thickness~i.e., coinlike cylinders!, carrying
a positive edge charge, in the limit of an infinitely dilu



ia

m

ob
le
e

ul

a

nn
a

o
le
lik
su

er-
re

ib-
l

ard

lting

tial

-
ce

n-

ent
ider-

l

56 3139WIGNER-SEITZ MODEL OF CHARGED LAMELLAR . . .
suspension (V→`) @18#. In this case, the boundaryS of the
WS cell is pushed out to infinity, the electrostatic potent
w(r ) can be chosen to vanish whenur u→`, and the prefac-
tors r

0

6 reduce to the macroscopic co- and counterion nu

ber concentrationsn2 andn1 (n15n2). An analytic solu-
tion of the PB equation~8!, for vanishing or finite platelet
concentrationn51/V, is available only in the limit of an
infinite platelet in a WS slab; this geometry reduces the pr
lem to the classic one-dimensional Gouy-Chapman prob
@2,3#. For finite platelets, analytic solutions can be obtain
only upon linearization of the PB equation~8!. For this pur-
pose, it is convenient to redefine the prefactorsr

0

6 such that

r6~r !5r
0

6exp$7be@w~r !2w* #%, ~9!

wherew* is a reference potential to be specified. The res
ing linearized PB equation reads

¹2w~r !2k
D

2@w~r !2g0#52
4p

«
q
P
~r !, ~10!

where the squared inverse Debye lengthk
D

251/l
D

2 and the

constantg0 are given by

k
D

254pl
B
~r

0

11r
0

2!, ~11a!

g05~r
0

12r
0

2!
4pe

«k
D

2
1w* 5

kT

e

r
0

12r
0

2

r
0

11r
0

2
1w* , ~11b!

and l
B
5be2/« is the Bjerrum length (l

B
.0.7 nm in water

at room temperature!. The normalization conditions~1! now
reduce to

n65
N6

V
5r

0

6@16be~w* 2 w̄ !#, ~12!

wherew̄ is the mean potential in the WS cell:

w̄5
1

VE
V

w~r !d3r . ~13!

A particularly simple choice is thus to linearize the loc
densities aroundw̄ , i.e., to takew* 5 w̄ @16#, in which case

r
0

65n6 and k
D

254pl
B
~n11n2!. ~14!

It is worthwhile to note that linearized Poisson-Boltzma
~LPB! theory may be derived from the free energy function
~3! ~with Fcorr50) via the variational principle~5!, provided
the integrand in the ‘‘ideal’’ contributionFid is expanded to
second order in powers of the local densitiesra(r ) from
their meanna @6#.

Before turning to the presentation of explicit solutions
LPB theory for specific geometries, we address the prob
of expressing and calculating key macroscopic quantities
the free energy, the stress tensor, and the osmotic pres
from the density profiles.
l

-
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III. FREE ENERGY AND PRESSURE TENSOR

The Helmholz free energyF of the electric double layer
around a colloidal particle inside a WS cell is the key th
modynamic quantity which must be evaluated with ca
@1,5,19#. Within mean-field PB theory, the free energyF
may, in principle, be calculated by substituting the equil
rium density profilesra(r ), determined via the variationa
principle ~5!, into the functional~3! ~with Fcorr50). This
expression of the free energy may be cast in the stand
form

F5U2TS, ~15!

where the internal energy and the entropy are given by@16#

U5
1

2EV
$qP~r !1e@r1~r !2r2~r !#%w~r !d3r

5
«

8pEV
@¹w~r !#2d3r2

«

8p R
S
w~r !¹w~r !•dS ~16!

and

TS52k
B
T (

a51,2
E

V
ra~r !@ ln„La

3ra~r !…21#d3r

52k
B
T (

a51,2
Naln~r

0

aLa
3 !1E

V
$e@r1~r !2r2~r !#

3w~r !1k
B
T@r1~r !1r2~r !#%d3r . ~17!

In Eqs.~16! and~17!, thera(r ) are the equilibrium profiles,
and use was made of Eqs.~4! and~7! in going from the first
to the second line in each of these equations. The resu
expression for the dimensionless free energybF reads, in
terms of the dimensionless electrostatic poten
F(r )5bew(r ),

bF5 (
a51,2

Naln~r
0

aLa
3 !2

1

8pl
B

R
S
F~r !¹F~r !•dS

1E
V
H @r2~r !2r1~r !#F~r !2@r1~r !1r2~r !#

1
1

8pl
B

@¹F~r !#2J d3r . ~18!

Expression~18!, valid within the nonlinear PB approxima
tion, involves integrations over the WS boundary surfa
~which do not contribute if the boundary condition of va
ishing normal electric field is adopted! and over the volume
of the WS cell, and is hence not very tractable. Equival
expressions for the free energy can be obtained by cons
ing generic charging processes@1,5,16,19#. For a fixed cell
geometry~volume and shape!, the variation in free energy
due to infinitesimal variations of the potentia
@F(r )→F(r )1dF(r )# and of the Bjerrum length
(l

B
→l

B
1dl

B
) is of the generic form@16#
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d~bF !5
1

8pl
B

R
S
@F¹~dF!2dF¹F#•dS1bU

dl
B

l
B

1E
Sp

FdS s

eDd2r1@ ln~r
0

1L1
3 !#dN1

1@ ln~r
0

2L2
3 !#dN2 , ~19!

where s52Ze/Sp is the surface charge of a platelet p
unit area. Expressions of the free energy can be derived f
Eq. ~19! by considering various real or virtual charging pr
cesses. In practice, we have calculatedF using a constan
Debye length charging process, from a situation where
platelet is neutral (Z850) to its final charge (Z85Z). For
uncharged platelets,N

0

15N
0

25N
0
5Vns1Z/2, wherens is

the salt concentration. At any stage of the proce
N65N

0
6Z8/2, and Eq.~19! shows that in an infinitesima

step, during which the boundary condition of vanishing n
mal electric field is enforced, the free energy changes by

bd~F !5E
Sp

FdS s

eDd2r1@ ln~r
0

1L1
3 !#dN1

1@ ln~r
0

2L2
3 !#dN2 . ~20!

Integration along this path yields

F~s!2F~s50!5E
0

sF E
Sp

ws8~r !d2r Gds8

1N
0
kTlnH ~N

0
!22Z2/4

~N
0
!2 J

1
Z

2
kTlnH N

0
1Z/2

N
0
2Z/2J . ~21!

The result~19!, valid for a given WS cell geometry, may b
generalized to the case of an infinitesimal changedV of the
geometry~shape and/or volume! of the cell. A calculation
given in the Appendix shows that for fixed numbers of c
and counterions (N1 and N2) in the cell, the resulting in-
finitesimal change in free energy reads

dF52k
B
T (

a51,2
E

dV
ra~r !d3r2

«

8pEdV
@¹w#2d3r ,

~22!

where it has been assumed that the electric field has no
mal component on the WS surface. Under these circu
stances, the previous expression fordF is compatible with
the usual definition of the pressure tensor in a charged
dium @20#,

PJ 5FP~r !1
«

8p
~E !2G IJ2

«

4p
E~r ! ^ E~r !, ~23!

whereE(r )52¹w(r ), and for noninteracting ions,
m

e

s,

-

-

or-
-

e-

P~r !5k
B
T (

a51,2
ra~r !. ~24!

The compatibility of Eqs.~22! and ~23! plus Eq. ~24! is
easily verified by considering a small local volume chan
dV due to the displacement by an amountdl of a small area
elementdS at the surface of the WS cell. The pressure te
sor ~23! satisfies the mechanical equilibrium condition

“• PI ~r !50, ~25!

which, upon substitution of Eq.~23! into Eq.~25!, and use of
Poisson’s equation~4!, is equivalent to the familiar force
balance equation

¹P~r !5e@r1~r !2r2~r !#E~r !. ~26!

There is no obvious definition of the macroscopic osmo
pressure of the co- and counterions within the present
model. An elementdS of the surface of the WS cell is sub
jected to the force:

dF5PJ •dS5S k
B
T (

a51,2
ra1

«

8p
E2D dS. ~27!

It is hence tempting to define the osmotic pressure as

P5k
B
T (

a51,2
raS1

«

8p
E2S, ~28!

where the averages are taken over the total surface boun
the WS cell. The same expression forP follows from the
volume derivative of the free energy, for a particular infin
tesimal dilation of the WS cell. The latter is chosen such t
for each surface elementdS of the WS cell, the infinitesimal
volume element isdV 5 dSdl , wheredl is a constant
displacement along the normal todS. Under these condi-
tions, we deduce from Eq.~22! that

dF52k
B
Tdl (

a51,2
R

S
ra~r !dS2

«

8p
dl R

S
~¹w!2dS,

~29!

so that

]F

]V
5 lim

dl →0

dF

Sdl
52k

B
TraS2

«

8p
@~¹w!2#S52P.

~30!

Similarly, one may express the disjoining pressurePd ~i.e.,
the pressure to be applied to maintain the parallel platelet
a stack at a distanceH which coincides with the height of the
WS cell! by considering the variation of the free energy~22!
upon increasingH by an infinitesimal amountdH; the cor-
responding increase in the volume of the WS cell
dV5SdH, whereS is the cross section of the cell parallel
the platelet~cf. the prismatic geometries considered in t
following sections!. By proceding as in the case of the o
motic pressure, one arrives at the required expression

Pd52
]~F/S!

]H
5k

B
TraS1

«

8p
@~¹w!2#S5Pzz

S, ~31!



-
t

56 3141WIGNER-SEITZ MODEL OF CHARGED LAMELLAR . . .
FIG. 1. The prismatic cells
considered in this paper.~a! shows
a circular platelet in a cylindrical
cell, whereas~b! represents the
parallelepipedic cell containing ei
ther a circular or a square platele
lying in the dashed regionS8.
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where the average is now taken over the cross sectionS, i.e.,
on the surface of the WS cell parallel to the platelet, and
normal to the platelet is chosen along thez axis.Pd is thus
related to the mean uniaxal stress along the normal to
platelets.

Another instructive quantity is the capacitanceC of the
electric double layer associated with a platelet. For fin
platelets, the definition ofC is ambiguous. We define th
capacitance in terms of the difference (Dw̄ )S82S5 w̄S82 w̄S

between the potential averaged over the cross sectionS8 of
the cell containing the platelet (z50), and the correspondin
average on the surfaceS midway between two platelets in
stack (z5H/2; cf. Fig. 1 for the case of cylindrical and pa
allelepipedic WS cells!. The capacitance is thus defined b

C~Dw̄ !S82S5s. ~32!

The reciprocal of the capacitance defines a lengthlc5C21

which characterizes the thickness of the electric double la
The total charge inside a WS cell is zero, and due to sp

reflection symmetry, the electric dipole moment associa
with the charge distribution inside the cell vanishes. The fi
a priori nonvanishing multipole moment of the charge d
tribution is the quadrupole momentQ5Qzz522Qxx
522Qyy :

Qzz
tot5

1

2EV
$qP~r !1e@r1~r !2r2~r !#%~2z22x22y2!d3r .

~33!

In the two following sections, the quantities defined in th
section will be calculated within cylindrical and parallelep
pedic geometries, for disk-shaped and square platelets.
e

e

e

r.
ce
d
t

-

IV. CYLINDRICAL GEOMETRY

We consider first the case of disk-shaped platelets, of
dius r 0. In Ref. @15# explicit solutions of LPB theory were
obtained in terms of infinite series of Legendre or Bes
functions, for spherical and cylindrical WS cells. We ree
amine the latter geometry in some detail here. The cylind
cal WS cell is of radiusR and of heightH52h ~cf. Fig. 1!,
so thatV52pR2h. The electrostatic potential within the W
cell is a functionw(r ,z) of the cylindrical coordinatesr and
z, which satisfies the boundary conditions

]w~r ,z!

]r U
r 5R

50, ~34a!

]w~r ,z!

]z U
z56h

50. ~34b!

Since these conditions, as well as the discontinuity of
electric field Ez(z506)52(]w/]z)z506 across the disk
(r ,r 0), involve only the derivatives of the potential, on
may assumew̄50 without loss of generality@cf. Eq. ~13!#.
Under these conditions, the solution of the linearized
equation~10! may be expanded in a Bessel-Dini series@15#:

w~r ,z!5 (
n51

`

An~z!J0S yn

r

RD , ~35!

whereyn is thenth root of J1(y)[2dJ0(y)/dy50, andJ0
and J1 are the Bessel functions of zeroth and first ord
(y150). The resulting differential equations for the coef
cientsAn(z) are easily solved, leading to the final result
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F~r ,z!5bew~r ,z!5beg01
1

k
D
bS r 0

R D 2 cosh@k
D
~h2uzu!#

sinh~k
D
h!

1
2

b

r 0

R (
n52

`
LnJ1~knr 0!

ynsinh~h/Ln!J0
2~yn!

3coshS h2uzu
Ln

D J0~knr !, ~36!

where b5e/(2pl Bs) is the Gouy length, Ln5R/
Ayn

21k
D

2R2, andkn5yn /R.

For any given macroscopic density of platelets,n, and
hence a given volumeV51/n of the WS cell, only the prod-
uct R2h is fixed. SinceR cannot be less than the disk radi
r 0, the aspect ratioh/r 0<(2pnr0

3)21. At the upper limit of
this range, i.e., forR5r 0, and with the chosen boundar
conditions, the electrostatic problem reduces to that of
infinite uniformly charged plane in a WS slab of wid
H52h. With R5r 0 the potential in Eq.~36! indeed reduces
to the first two terms, which are independent of the rad
coordinater , i.e.,

lim
R→r 0

F~r ,z!5F~z!5beg01
1

k
D
b

cosh@k
D
~h2uzu!#

sinh~k
D
h!

.

~37!

The above expression is precisely the solution of the o
dimensional LPB equation for an infinite uniformly charg
plane in a slab, and the familiar resultF(z)5exp(2k

D
z)/

(k
D
b) is recovered whenh→`.

The density profiles calculated from the potential~36! via
Eq. ~9! are sensitive to the aspect ratioh/r 0 for a given cell
volumeV. The ‘‘optimum’’ ratio is determined by minimiz-
ing the free energyF with respect to this ratio.F is calcu-
lated via the constant Debye length charging process, re
ing in Eq.~21!. The part of that expression which depends
the ratioh/r 0 for a given cell volume is

A5E
0

sF E
Sp

ws8~r ,z50!d2r Gds8

52pE
0

sF E
0

r 0
w0

s8~r !r dr Gds85psE
0

r 0
w0

s~r !r dr

~38!

wherew0(r )[w(r ,z50) is the electrostatic potential on th
disk and the last line holds within the LPB approximati
only, where the potential can always be expressed in
form ws(r )5s f (k

D
,r ). Substitution of Eq. ~36! ~with

z50) into Eq.~38! yields

b

Z
A5

1

2
beg02

1

2k
D
bH S r 0

R D 2 1

tanh~k
D
h!

14(
n52

` k
D
LnJ1

2~knr 0!

yn
2J0

2~yn!tanh~h/Ln!
J . ~39!

An example of the variation ofF with h/r 0 is shown in Fig.
n

l

e-

lt-
n

e

2~a!. In this example, as well as under all physical conditio
that were investigated,F goes through a minimum for a rati
h/r 0, such that the physical requirement thatR.r 0 is satis-
fied. Moreover, the location of the minimum turns out to
practically independent of the charge densitys carried by
the disk, and of the salt concentrationns ; in other words, the
ratio h/r 0 depends ‘‘only’’ on the WS cell volumeV or,
equivalently, on the macroscopic density of plateletsn. For
any densityn, the system selects an optimal ratioh/r 0. The
variation of this ratio withn in shown in Fig. 3. All figures
correspond to«CGS578 andT5300 K.

The potentialw(r ,z) and the resulting charge density pr
file are highly anisotropic functions, as expected from t
platelet geometry. This requires that a large number of te
~typically 50–400! be retained in the expansion~36! to en-
sure adequate convergence. A typical example of equipo
tial lines is shown in Fig. 4.

If ns8 is the salt concentration in a reservoir which is
osmotic equilibrium with the colloidal suspension, i.e., wi
the co- and counterions inside the WS cell, then the
concentrationns inside the latter is, within LPB theory, re
lated tons8 by @15#

FIG. 2. Variations of the free energyF, the osmotic pressure
P, and the disjoining pressurePd with the aspect ratio@upper
curves, part~a!#. For illustrative purposes, the free energy has be
shifted by an arbitrary constant along the vertical axis. Also sho
is the total normalized quadrupole@lower part,~b!#. The kinetic and
electrostatic parts of the free energy variation are defined in
appendix@cf Eqs.~A12a! and~A12b!#. In order to check the valid-
ity of Eq. ~A15!, we choosea215g0k

D

2Qzz
disk/2. The normalization

pressureP0 is defined with the macroscopic concentrations of c
and counterions inside the cell:P05k

B
T(r

0

11r
0

2). The data
shown correspond to a circular platelet in a cylindrical cell, w
ns51023M , n51025M , andZ5100.
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ns

ns8
5A11

Z2n2

4~ns8!2
2

Zn

2ns8
<1, ~40!

which is an expression of the familiar Donnan effect.
The values of the potential and its gradient on the surf

S of the WS cell may be used to compute the pressureP
and Pd , according to Eqs.~28! and ~31!. For a given WS
cell volume V, the variations ofP and Pd with the ratio
h/r 0 differ: Pd decreases monotonously ash/r 0 increases,
while P goes through a minimum forh/r 0 close to the ‘‘op-
timum’’ value minimizing the free energy~cf. Fig. 2!. At the
minimum of the free energy, the two pressures are see
coincide (P5Pd). Taking into account the conservation
the overall volumed(R2h)50, Eq. ~22! can indeed be re
written as

dF5S
R

2

dh

h
@P2Pd#, ~41!

FIG. 3. Variation of the optimal aspect ratio minimizing the fr
energy with clay concentration, forns851023M .

FIG. 4. Equipotential lines in the plane (k
D
r ,k

D
z), with arith-

metic spacing between the isopotentials (beDw50.5 between two
succesive curves!. Here,Z5100,n51025M , andns51023M . For
these parameters, the optimal aspect ratio ish/r 0.2.0. The reduced
radii of the disk and cylinder are, respectively,k

D
r 0.1.59 and

k
D
R.4.14. The summation in Eq.~36! was truncated after

nmax550.
e

to

so that the extremum conditiondF50 impliesP5Pd . The
variation of P5Pd with the platelet concentrationn and
with the salt concentration is shown in Figs. 5~a! and 5~b! for
two values of the platelet charge (Z5100 andZ5200). Af-
ter a shallow minimum, the pressureP is found to increase
with n ~for fixed ns8 in the reservoir!, whereas it drops rap
idly with increasingns8 , towards the value of the osmoti
pressure in the reservoir. These tendencies are reminisce
the experimental and numerical results of Dubois and
workers concerning lamellar phases of ‘‘infinite’’ charge
bilayers@22#.

The potential distribution may be used to evaluate
capacity C from Eq. ~32!. The characteristic double-laye
thickness is easily calculated to be

lc5l
DS r 0

R D 2

tanhS h

2l
D
D . ~42!

The variation oflc with platelet and salt concentrations
illustrated in Figs. 6~a! and 6~b!, for two values of the plate-

FIG. 5. ~a! Clay concentration dependence of the osmotic a
disjoining pressures, evaluated at the optimal aspect ratio minim
ing the free energy~whereP5Pd). The salt concentration in the
reservoir is held constant (ns851023M ) and defines the normaliza
tion pressureP reservoir52k

B
Tns8 . ~b! Variation of the osmotic and

disjoining pressures with the salt concentration in the reser
(ns8). For ns8→0, P/P res diverges like 1/ns8 , while P→const.
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let charge.lc reduces to the Debye lengthl
D

when r 0→R

and h→`, which corresponds to the limit of a single un
formly charged infinite plane.

Finally, as illustrated in Fig. 2, the quadrupole moment
the charge distribution inside the WS cell vanishes at
‘‘optimum’’ ratio h/r 0, which minimizes the free energy
This coincidence is systematic and may be related to an
act result of Gruberet al. @21#, provided the WS mode
yields an accurate description of a regular, periodic stack
of the platelets@17#. A partial explanation follows from the
calculation given at the end of the Appendix. When the Bo
zmann’s weights~7! are linearized, the kinetic part of th
free energy variation@cf. Eq. ~A12a!# as a function of the
aspect ratio is proportional to the total quadrupole@cf. Eq.
~A15!#. Figure 2~b! shows this correspondance but al
shows that the electrostatic part of the free energy variat
defined from Eq.~A12b!, vanishes for the same aspect ra
as the kinetic one.

V. PARALLELEPIPEDIC GEOMETRY

Instead of a cylindrical WS cell, we now consider
space-filling parallelepipedic cell of dimensionsL3L3H in

FIG. 6. ~a! The characteristic double-layer thickness@see Eq.
~42!# as a function of clay concentration, for the optimal aspect ra
minimizing F. The salt concentration in the reservoir
ns851023M . ~b! Variation of the reduced double-layer thickne
with salt concentration forn5531025M .
f
e

x-

g

-

n,

the x, y, andz directions, respectively~cf. Fig. 1!. The po-
tential is naturally expanded in plane waves, compatible w
the periodic boundary conditions, which are equivalent to
condition of vanishing normal component of the electric fie
on the surfaceS bounding the prismatic WS cell:

w~r !5(
k

w̃~k!exp$ ik•r %, ~43!

with

k52pS nx

L
,
ny

L
,
nz

H D , ~nx ,ny ,nz!PZ3. ~44!

In terms of Fourier components, Eq.~10! becomes

~k21k
D

2 !@ w̃~k!2g0dk,0#5
4p

«
q̃
P
~k!, ~45!

where

q̃
P
~k!5

1

VE
V

q
P
~r !exp$ ik•r %d3r . ~46!

Consider first the case of a circular platelet~or disk! of
radiusr 0, as in Sec. IV;q̃

P
(k) is easily calculated to be

q̃
P
~k!5

2pr 0

ki
J1~kir 0!, ~47!

with

ki5
2p

L
Anx

21ny
2.

The Fourier components of the electrostatic potential
then determined by substituting Eq.~47! into Eq. ~45!, and
inverse Fourier transformation leads to the desired resul

F~r !5bew~r !5beg0

1
2p

b

r 0

L2 (
~nx ,ny!PZ2

J1~kir 0!

ki
cos~kxx1kyy!

3
1

~k
D

21ki
2!1/2

cosh@~k
D

21ki
2!1/2~h2z!#

sinh@h~k
D

21ki
2!1/2#

. ~48!

The resulting free energy, as calculated from the cons
Debye length charging process~21! and ~38!, is

b

Z
A5

1

2
beg02

4p

L2Hb
(

~nx ,ny ,nz!PZ3

J1
2~kir 0!

ki
2~k21k

D

2 !
. ~49!

o
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Similarly, the quadrupolar moment may be calculated fr
Eq. ~48! to be

Qzz
tot

Q disk
52

16

r 0
3H (

nz51

`
~21!nz

kz
21k

D

2
r 02 (

nx50

`
J1~kxr 0!

kx
21k

D

2
~21!nx

2

kx
J .

~50!

The key finding is that, for given platelet and salt conce
trations, the changes in free energy and quadrupole mom
induced by the change of topology of the WS cell, are pr
tically negligible, in spite of the completely different analyt
cal expressions@cf. Eqs.~38! and~49!#, as illustrated in Fig.
7. A similar conclusion holds for the osmotic pressure c
culated from Eq.~28! or the capacity evaluated from Eq
~32!.

We finally consider the case of a square platelet of s
l 0, within the above prismatic WS cell. In this case, the s
face charge per unit area iss52Ze/ l 0

2, while the Fourier
transform of the platelet charge density is now

q̃
P
~k!5

s

V

4

kxky
sinS kxl 0

2 D sinS kyl 0

2 D . ~51!

FIG. 7. Free energy and total normalized quadrupole vsh/r 0 for
disks in cylindrical and parallelepipedic WS cell (r 05125 Å!; same
quantity as a function ofH/ l 052h/ l 0, for a square platelet of iden
tical area and surface charge in a parallelepipedic cell (l 05221 Å!.
The vertical lines emphasize the correlation between the minim
of the free energy and the vanishing of the total quadrupole. H
ns851023M , n5231025M , andZ5100.
-
nt,
-

l-

e
-

The potential is once more expanded in plane waves with
result

F~r !5bew~r !5beg0

1
4

bL2 (
~nx ,ny!PZ2

sin~kxl 0/2!sin~kyl 0/2!

3
1

kxky
cos~kxx1kyy!

1

~k
D

21ki
2!1/2

3
cosh@~k

D

21ki
2!1/2~h2z!#

sinh@h~k
D

21ki
2!1/2#

. ~52!

As in the case of a disk in a cylindrical WS cell, one c
check from Eq.~52! that the potential goes over to that of
uniformly charged infinite plane whenl 0→L @expression
~37!#.

The corresponding free energy is now

b

Z
A5

1

2
beg0

2
16

l 0
2L2Hb

(
~nx ,ny ,nz!PZ3

sin2~kxl 0/2!sin2~kyl 0/2!

kx
2ky

2~k21k
D

2 !
,

~53!

while the quadrupole moment reads

Qzz
tot

Qplatelet
52

48

l 0
3 H (

nz51

`

~21!nz
l 0

kz
21k

D

2

22 (
nx51

`

~21!nx
sin~kxl 0/2!

kx~kx
21k

D

2 !J . ~54!

Explicit calculations based on these formulas lead again
results which are quite close to those obtained for circu
platelets under similar physical conditions, as shown, e.g
Fig. 7. In particular, the ‘‘optimum’’ aspect ratio is chara
terized by the equality of the osmotic and disjoining pre
sures@an expression similar to Eq.~41! holds#, as illustrated
in Fig. 8. However, the minima of the free energy and of t
osmotic pressure do not coincide any more.

VI. INFINITE DILUTION LIMIT

The limit of very low platelet concentrationn, for a fixed
salt concentrationns ~or equivalentlyns8), may be derived
from the expressions obtained in Secs. IV and V for pr
matic geometries, by letting the volumeV of the WS cell go
to infinity. In this limit g050, and the series~36! and~48! go
over to the following integral representation of the reduc
potential:

m
e,
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F~r ,z!5
r 0

b E0

`

dk J0~kr !J1~kr0!
e2Ak

D

21k2uzu

Ak
D

21k2
. ~55!

Along the z axis passing through the center of the di
(r 50), Eq. ~55! reduces to

F~r 50,z!5
1

k
D
b

@e2k
D

uzu2e2k
D
Ar 0

2
1z2

#, ~56!

which goes over to the familiar exponential solution of li
earized Gouy-Chapman theory in the limitr 0→` ~infinite
plane!. The reduced potential at the center of the disk ta
the value

F~0!5
ew~r 50,z50!

k
B
T

5
1

k
D
b

$12exp~2k
D
r 0!%. ~57!

This expression will be used in the concluding section
evaluate the range of validity of LPB theory.

The quadrupole moment around circular or square pl
lets vanishes identically in the zero concentration lim
(n→0) as a consequence of the theorem by Gruberet al.
@21#.

Finally consider the problem of determining the force a
ing between two circular platelets~disks! P1 andP2, in the
limit of vanishing concentration (n→0), and for a given salt
concentration~in the limit n→0, ns→ns8). Let (r1 ,n1) and
(r2 ,n2) be the center positions and normals of the two dis
and letw(r ) be the total electrostatic potential due to the tw
disks and their electric double layers;w(r ) vanishes as
ur u→`. In the LPB approximation,w(r ) satisfies Eq.~10!,
with g050, and two source terms

~¹22k
D

2 !w~r !52
4p

«
@q
P1

~r !1q
P2

~r !#. ~58!

FIG. 8. Free energy, osmotic, and disjoining pressures as f
tions of the aspect ratioH/ l 0, for a square platelet in a parallelep
pedic cell. For illustrative purposes, the free energy has been sh
by an arbitrary constant along the vertical axis. The data corresp
to n51024M , ns851023M , Z5100, andl 05250 Å.
s

o

e-
t

-
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Since the discontinuity of the electric field upon crossing o
of the platelets@characterized by the surface charge dens
q
Pa

(r )# is independent of the presence of the other plate

the solutionw(r ) of Eq. ~58! is just the superposition of the
solutions for each platelet separately:

w~r !5w1~r !1w2~r !. ~59!

This simple property is a consequence of the linearizati
and does not hold within nonlinear PB theory. The soluti
of Eq. ~58!, and the resulting co- and counterion dens
profiles may now be used to calculate the pressure te
~23! for given positions and orientations of the platelets. T
force Fi acting on plateleti ~51 or 2! follows then from
integration ofPJ over the two facesSp

1 andSp
2 of the plate-

let:

Fi52E
Sp,i

1 ;Sp,i
2

PJ •dSi . ~60!

Since the normalni5dSi /udSi u has opposite orientations o
the facesSp,i

1 andSp,i
2 , the kinetic contributionsra(r )k

B
T to

the pressure tensor~23!, which are continuous across th
platelet, do not contribute to the force~60!. The normal com-
ponent of the electric fieldE52¹w, however, suffers a dis
continuity across the uniformly charged platelet, and he
contributes to the surface integral in Eq.~60!.

The total electric fieldE in the immediate vicinity of the
plateletPi may be decomposed into a discontinuous an
continuous part:

E5Ei
~d!1Ei

~c!56
2p

«
sni1Ei

~c! , ~61!

where the1 and2 signs go with the upper (Sp,i
1 ) and lower

(Sp,i
2 ) faces, respectively. Subsituting Eq.~61! into ~60!

leads to the desired result:

Fi5sE
Sp,i

Ei
~c!d2S~ i 51,2!, ~62!

where the integration is now over the surface of the plate
For symmetry reasons, the only nonvanishing contribution
Ei

(c) to the surface integral in Eq.~62! is the electric field due
to the other platelet and its associated electric double la
In the case of two coaxial parallel disks, the for
F152F2 is along the common axis~chosen to be thez axis!
and the result~55! may be used to compute the gradient
w alongOz. The resulting force is easily cast in the form

Fz~d!5~pr 0
2!

4ps2

« E
0

`

J1
2~x!

1

x
expH 2

d

r 0
Ax21k

D

2r 0
2J dx,

~63!

whered is the distance between the two disks. For any fin
salt concentration~i.e., nonvanishingk

D
), the decay ofFz

with d is essentially exponential as illustrated in Fig. 9.
the limit of vanishing salt concentration (k

D
→0), Fz decays

like a power law. Ford@r 0, we find in that limit

c-
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Fz~d! ;
d@r 0 1

«S pr 0
2s

d D 2F12
3r 0

2

2d2G . ~64!

Note that the force~63! is repulsive at all distances.

VII. CONCLUSION

While most of the existing theoretical literature on su
pensions of charged lamellar particles or membranes d
with the simpler one-dimensional problem of infinite charg
planes, we have examined in this paper the case of stac
finite-size, circular, or square platelets corresponding, for
stance, to swollen clays. The intractable many-platelet pr
lem is reduced to the much simpler problem of a single pla
let within an electrically neutral Wigner-Seitz cell o
appropriate volume and topology. The co- and counter
density profiles have been obtained from analytic soluti
of linearized Poisson-Boltzmann equation with appropri
boundary conditions on the surface of cylindrical and pa
lelepipedic cells. The relevant characteristics of the elec
double layer and the resulting thermodynamic proper
have been calculated over a wide range of physical co
tions. The most notable results may be summarized as
lows.

~a! For a given cell volumeV, the system selects an op
timal size ratio corresponding to the minimum free ener
The selected size ratio is practically independent of the pl
let charge densitys, and of the salt concentration, but vari
with the macroscopic platelet concentrationn.

~b! The osmotic presureP and depletion pressurePd due
to the co- and counterions have qualitatively different var
tions with the aspect ratio for fixeds, clay, and salt concen
tration, but coincide at the optimum aspect ratio which mi
mizes the free energy. We have a simple explanation for
coincidence but not for the observation that the osmotic p
sure exhibits a minimum at the same aspect ratio as the
energy, at least in the case of circular platelets.

~c! The total quadrupole moment of the charge distrib
tion in the WS cell vanishes at the optimal aspect ratio; t
observation may be related to an exact property of neu

FIG. 9. Variation of the forceFz with the distanced between
the centers of coaxial disks (F054p2r 0

2s2/«). The four curves
correspond to different salt concentrations.
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charge distributions in thermodynamic equilibrium@21# ~in
the present case, the theorem applies because of expon
screening!. A partial explanation of this correlation has bee
given at the end of Sec. IV.

The limitations of the present LPB theory must be und
lined. Returning to the expression~57! of the reduced elec-
trostatic potential at the center of anisolatedcharged disk, it
is clear that linearization of the Boltzmann factors in the P
equation~8! is justified only provideduF(0)u!1, i.e., when
ubu.l

D
~which corresponds to the limit of low surfac

charges or high salt concentration! or r 0,l
D

and r 0,ubu.
This latter condition is rather academic for Laponite cl
disks ~it yields Z,10). Figure 10 summarizes the limits o
validity of the linearized theory for an isolated platele
Strictly speaking, the above criteria apply in the infinite d
lution limit n→0, and we may expect that they become ne
essary but not sufficient conditions for finite concentratio
n @5#, so that the shaded area in Fig. 10 should decre
Neglecting the clay contribution to the Debye length, t
criterion l

D
,ubu yields Z,2.33102n/2r 0

2, for a 102n molar

monovalent salt concentration, withr 0 expressed in nanom
eters. In practice, we carried out calculations f
r 0512.5nm~a typical size of Laponite particles!; this means
that Z must be chosen less than about 4003102n/2. In fact,
many of our calculations were carried out forZ5100, in
which case, strictly speaking, the salt concentration wo
have to be 1021 mol or higher for LPB theory to be appli
cable. The case of lower salt concentration and more real
values ofZ ~e.g.,Z.103 for Laponite! may be solved either
by numerical solutions of the full~nonlinear PB! equation or
by retaining the linearized solutions presented here in c
junction with an appropriate charge renormalization pro
dure inspired by the treatment presented in Refs.@12# in
spherical geometry. The corresponding effective charge d
sity on the platelet might well be nonuniform. Work alon
these lines is in progress.

FIG. 10. Limits of validity for the linearized approximation o
PB theory, for a disk of radiusr 0 in the infinite dilution limit. The
dashed line corresponds to the case of an infinite plane~in which
caser 0 is an arbitrary normalization length!. l

D
denotes the Debye

length andb is the Gouy length.
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APPENDIX

Consider the case of a charged plateletP confined in a
WS cell with its neutralizing counterions and salt. A loc
changedV in volume of the cell~with or without conserva-
tion of the overall volume! changes the potential and th
microion densities, but not the charge density of the plate
The boundary conditions of vanishing normal electric fie
on the surfaceS of the cell are enforced during this chang
It will be shown that when the total number of ions,Na, in
the cell are held constant, the free energyF changes accord
ing to Eq. ~22!. From Eq.~16!, the change in the interna
energy can be written

dU5
1

2EV
~qdw1wdq!d3r1

1

2EdV
qwd3r , ~A1!

where q(r )5q
P
(r )1e@r1(r )2r2(r )# is the total charge

density. It follows from Poisson’s equation~4! and integra-
tions by parts that

E
V

qdwd3r5E
V

wdqd3r1
«

4p R
S
w¹~dw!•dS. ~A2!

For any vector fieldA(r ), the elementary variation of th
flux over the surfaceS can be written

dS R
S
A•dSD 5 R

S
dA•dS1E

dV
¹•Ad3r . ~A3!

With A5w¹w, the above relation can be used to differen
ate the identity

R
S
w¹~w!•dS50. ~A4!

One finds

«

4p R
S
w¹~dw!•dS5E

dV
qw d3r2

«

4pEdV
~¹w!2d3r ,

~A5!

so thatdU can be cast in the form

dU5E
V

wdq d3r1E
dV

qw d3r2
«

8pEdV
~¹w!2d3r .

~A6!

From Eq.~17! and relation~7!, the change in entropy read
l

t.

.

-

dS5k
B (

a51,2
E

dV
ra~r !d3r1E

dV
wq d3r1E

V
wdq d3r

2k
B (

a51,2
ln~r

0

aLa
3 !F E

V
drad3r1E

dV
rad3r G ,

~A7!

where it was remembered that

dq
P
~r !50 and E

dV
q
P
~r !w~r !d3r50.

SincedN15dN250, the expression for the entropy simpl
fies to

dS5k
B (

a51,2
E

dV
ra~r !d3r1E

dV
wq d3r1E

V
wdq d3r .

~A8!

Upon substitution of Eqs. ~A6! and ~A8! into
dF5dU2TdS, we obtain Eq.~22!,

dF52k
B
T (

a51,2
E

dV
ra~r !d3r2

«

8pEdV
@¹w#2d3r

52E
dV

P~r !d3r , ~A9!

where the following local osmotic pressure was introduce

P~r !5k
B
T (

a51,2
ra~r !1

«

8p
~¹w!2. ~A10!

Near the surfaceS, the relation betweenP(r ) and the pres-
sure tensor~23! is

P~r !5n
S
•PJ •n

S
, ~A11!

so that the osmotic pressureP may be defined as the averag
of P(r ) over the surfaceS @cf. Eq. ~28!#.

The variationdF can be partitioned into kinetic and elec
trostatic contributions

dFkin52k
B
T (

a51,2
E

dV
ra~r !d3r , ~A12a!

dFel52
«

8pEdV
@¹w#2d3r . ~A12b!

Within linearized PB theory, we shall finally prove tha
when the shape of the cell is modified at constant total v
ume, the resulting variation of the free energy is proportio
to the total quadrupole moment of the charge distribut
inside the cell.
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With the chosen boundary conditions, the total quad
pole defined from Eq.~33! is

Qzz
tot5

«

2 R
S
w~r !¹~2z22x22y2!•dS. ~A13!

Within linearized PB theory,

dFkin5be~r
0

12r
0

2!E
dV

w~r !d3r . ~A14!
a-

.

ci

-

m

-Consider the case of a cylindrical WS cell. Taking into a
count the conservation of the overall volume, it is straig
forward to show that

H
dFkin

dH U
T,V,Na

5
1

2
g0k

D

2Qzz
tot . ~A15!

A similar result holds for a parallelepipedic cell.
in-
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