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Simulations of the two dimensional versions of a ballistic coalescence (or aggregation) model show

significant deviations from the predictions of a mean-field scaling analysis.

The growth exponents

vary with density, due to multiple coalescence events. Kinetic theory combined with a self-similarity
assumption leads to a hyperscaling relation between the exponents associated with the mass and the

kinetic energy.

PACS numbers: 05.20.Dd, 05.70.Ln, 82.70.Gg

Coalescence is a ubiquitous irreversible process control-
ling many nonequilibrium phenomena, such as nucleation
and growth, droplet deposition, colloidal or micellar ag-
gregation, polymerization, merging of vortices in turbu-
lent flows, or the formation of planets by the aggregation
of interstellar dust. Broadly speaking, particles coalesce
upon collision; their motion between collisions is Brown-
ian if they are mesoscopic, while it is essentially ballistic
for macroscopic particles. Diffusion-limited aggregation
(DLA) [1] is a widely studied schematic model for the for-
mer class of processes, whereas a very simple model for
ballistic agglomeration (or aggregation) has more recently
been put forward by Carnevale, Pomeau, and Young [2],
who make a mean-field analysis of the asymptotic scaling
governing particle growth.

In this model, spheres move freely in d-dimensional
space; collisions are completely inelastic in the sense
that two colliding spheres of initial masses and diameters
(m;, o), (m;, o;) merge (“coalesce”) into a single sphere
of mass m;; = m; + m; and diameter

o = (of + o)/ (1)

The total momentum and the conjugate center-of-mass
position are conserved during a collision, but the total
kinetic energy decreases. After a time 7, an initially
monodisperse system of Ny spheres (my, o) will evolve
into a polydisperse system characterized by a distribution
of masses f(m,t), a mean mass {m) (¢), and a mean kinetic
energy per particle (gg) (¢); the total number of particles
will have decreased to N(1) = Nomgy/{(m)(t). The model
considered here differs in many aspects from random
coalescence phenomena [3].

A simple scaling argument, making the implicit
mean-field assumption that the momenta of all particles
eventually merging into a single sphere are statistically
uncorrelated, leads to the prediction that the mean mass
increases asymptotically according to a power law and
that (g ) (¢) is constant in all dimensions, i.e., that the de-
crease of the total kinetic energy K(z) (due to the inelastic
character of particle collisions) is exactly compensated
for by the decrease in the number of particles [2]:
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(m) (1) = 1, (2a)

K(t) o« 179, (2b)
The mean-field exponents are given by &)= 6y =
2d/(d + 2). These predictions were confirmed by
simulations carried out on 1D systems. Under weaker
assumptions than those made in Ref. [2], Piasecki [4]
showed that in the scaling regime the distribution of
masses is a universal exponential distribution.

In this Letter, we examine the 2D version of the
model. It is immediately clear that the spatial extension
o of the particles, which may be scaled out in 1D,
becomes a relevant variable in d = 2. In particular, while
coalescence is a purely binary process in 1D, multiple
coalescence involving the simultaneous agglomeration of
more than two particles into a single disk or sphere
becomes possible in higher dimensions, particularly at
higher densities. A convenient variable is the reduced
density n* =Y, a?/S, where the sum runs over all
particles in the domain of area S. In view of Eq. (1)
it is clear that n* is a conserved variable of the system
(the packing fraction is constant). Only in the low-
density limit n* < 1 may one expect multiple coalescence
events to play a negligible role, allowing a meaningful
comparison with the behavior in 1D, and the predictions
of mean-field scaling.

Molecular dynamics—like simulations [5] were carried
out on samples containing initially Ny = 5000, 30000,
or 10° identical disks (mo,00) in a square cell of area
S = L? with periodic boundary conditions. As in the
case of elastic spheres [6], the code treats binary en-
counters between disks sequentially and updates the ta-
ble of collision times between all pairs of particles after
each coalescence event. No rotations of disks about their
centers are involved. An initial square lattice configura-
tion was first allowed to melt and equilibrate by letting
the system evolve according to elastic collision dynam-
ics. The corresponding Boltzmann mean collision time
70 = (mood/mkpTo)'/?/2n served as a natural time scale.
Starting from the resulting fluidlike configuration, the sys-
tem subsequently evolved under the fully inelastic dynam-
ics, involving coalescence each time two disks come into
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contact; multiple coalescence occurs whenever the larger
disk resulting from a pair collision overlaps one or several
neighboring disks. The instantaneous temperature 7" was
determined from the instantaneous kinetic energy accord-
ing to

kgT (1) = (ex) (1) = K(1)/N(1), 3
where the instantaneous number of remaining particles
also determines the mean mass (m)(t) = Nomo/N(t). Si-
multaneously, the mass and kinetic energy distribution
functions f(m,?) and f(eg,t) were monitored at regular
time intervals. During the irreversible evolution, the col-
lision mean-free path [ o« [/n{o) = (o)/n* increases as
(m)'/? which is expected to scale as r¢/> (where the expo-
nent ¢ is not necessarily equal to the mean-field predic-
tion). The system’s evolution was monitored until / = L
since any subsequent evolution would be affected by finite
size effects. Runs were carried out for reduced densities
1073 < n* < 0.8 (note that close packing on a square lat-
tice corresponds to n* = 1).

In view of the earlier remark on multiple coalescence
events, we present the results for the lowest density (n* =
1073) first, where the percentage of events involving
coalescence of more than two particles was found to
be less than 0.5%. Log-log plots of the mean mass
(m) and of the total kinetic energy K versus time are
shown in Fig. 1. After an initial transient regime, a
power law regime is clearly seen to extend over about
two decades in time; as expected, this regime terminates
roughly when [ = L, and only about 1/n* particles are left
(here 103 from an initial 10°). The exponents are found
to be £ = 0.8 for (m) and & = 1.12 for K. They differ
significantly from the mean-field analysis, which predicts
6o =1 and &, =1 for 2D. In particular, the kinetic
energy per particle (ex)(¢) is not constant but scales like
t7932, These values are reasonably insensitive (deviations
of 5% at most) to system size and initial conditions (we
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FIG. 1. Plots of log({m)/mg) and log(K/Ky) vs log(z/ 7o),

where 7 is the Boltzmann mean collision time at t = 0. The
dashed line represents the slope of log({m)/mg) vs log(z/ 7o)
according to the mean-field result, with exponent &y. Initial
conditions: fluidlike configuration of Ny = 99 856 hard disks,
with n* = 1073,

have also used a square lattice initial condition with an
exponential distribution of kinetic energies). We conclude
that the assumptions underlying the mean-field scaling
argument are valid in 1D [2], but do not apply in 2D (and
most probably for any higher dimensionality).

The logarithm of the mass distribution f(m, ) is plotted
in Fig. 2 versus m at four stages of the irreversible
evolution. The distribution is clearly exponential at each
stage, thus confirming the prediction of Ref. [4], which
may be shown in fact to be independent of dimensionality.
Thus at all times f(m,t) = F(t)exp[—m/M(t)]. The
conservation of mass implies {(m) = M in the limit where
f(m,t) can be considered as continuous. This is indeed
confirmed by the simulations. Nevertheless, the effects
of discretization are nonnegligible at the early stages and
account for the difference observed between (m) and M
defined from the slope in Fig. 2.

The normalized distribution function of kinetic ener-
gies, f(ek,1), also turns out to be exponential at all times
to a high degree of accuracy. This is illustrated in Fig. 3,
where the values of (eg) () f(ek, t) measured at 5 succes-
sive times are plotted versus eg/(ek)(z). The data are
seen to collapse on a single master curve which is prac-
tically indistinguishable from an exponential, confirming
that f(ex,t) = f(ex/(ex))/(ek), with f(x) = exp(—x).
We conclude that at every stage of the evolution the sys-
tem is characterized by a Boltzmann distribution of ener-
gies and hence appears to be constantly in a state of local
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FIG. 2. Successive snapshots for a given initial condition of
logf(m,t) vs m at four different times, when there are N(z)
particles left. Initial conditions: Nog = 99 856 and n* = 1073.
Here f(m, t) is the number of particles of mass m (in multiples
of mp) present in the system at time f. The results shown
are highly representative of the behavior observed for all initial
conditions which were sampled.

4115



VOLUME 74, NUMBER 21

PHYSICAL REVIEW LETTERS

22 MAY 1995

<eg> (t) f(ext)

FIG. 3. Plots of (ex)f(ek,t) vs ex/{ek) for Ny = 99856
and n* = 1073 [ f(ek,t) is the density probability of finding
a particle with kinetic energy €x]. The symbols correspond to
N(t) = 87000 (triangles), 67000 (squares), 47 000 (crosses),
27000 (hexagons), and 17000 (circles) particles left. The full
curve represents f(x) = exp(—x).

thermodynamic equilibrium. Moreover, if the initial ve-
locity distribution function is chosen to be uniform rather

|
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than exponential, the Boltzmann distribution is rapidly re-
covered in the course of the irreversible evolution.

Next, the effect of increasing the density n* was
investigated. As n* increases, multiple coalescence events
become more frequent. The number of particles out
of the initial set which, by the end of the run, have
participated in such events rises from 0.5% at n* = 1073
to 70% at n* = 0.8, so that multiple coalescence becomes
predominant at the higher densities. Examination of the
time dependence of (m) and K clearly exhibits a scaling
regime at each density, but the exponents ¢ and 6 are
found to depend on n*. As shown by the results listed
in Table I, ¢ increases gradually up to values close to 1
while & decreases to practically 1. These values are close
to the mean-field predictions (£y = 8p = 1), and it may
be speculated that the rise in multiple coalescence events
leads to a more efficient randomization of the momenta
of the particles about to collide, thus validating the key
assumption in the mean-field analysis.

A scaling law relating the dynamical exponents ¢ and
& may be derived from the first equation of the BBGKY
(Bogoliubov-Born-Green-Kirkwood-Yvon) hierarchy re-
lating the one and two particle distribution functions
FO(@m,v,1) and f@(my,vi,ma, Vs, 012,1), Where o, =
(o1 + 03)/2 is the distance between the centers of the
two colliding particles of diameters o and o,. Taking
into account coalescence events, the relation between f()
and f@ reads, for a spatially homogeneous and isotropic
fluid in d dimensions,

= S,(d)fdml dm, dvy dv, vy — vzlafz_1

+
X I:S(m - my — m2)5<v - w) — &(my — m)é(vi — v)
m

— 8(my — m)é(vy — v)i|f(2)(m1,v1,m2,v2,0'12,t).

This evolution equation is exact only in the low-density
limit where all events can be considered to be binary
(n* < 1). The dimensionless prefactor S,(d) is the total
cross section of a particle of unit diameter (S, = 1, 2,
and 7 in one, two, and three dimensions, respectively).
Making an assumption of self-similarity, we introduce two
fundamental exponents ¢ and 7y to renormalize masses
and velocities by ¢ and t” in the asymptotic regime;
distances scale accordingly like 7¢/¢. The self-similarity
assumption for £ then translates into

I qpyfm v
(1 = — 7= L
fH0m,v, 1) tmf (tf’ ),

tY

(€))

where ) is a time-independent scaling function and
ay = 2& + dvy is due to conservation of the total mass.
Similarly, the self-similarity assumption for £ implies
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TABLE 1. Evolution of the exponents & and & with the initial
reduced density n* [&y, is evaluated from the hyperscaling
relation (9) and the measured 6]. The weight of multiple
coalescence is also shown: The percentage is the ratio (number
of particles disappearing in multiple coalescence events)/Ny.

n* 8 & & Multiple coalescence
0.001 1.12 0.8 0.88 0.029%
0.01 1.12 0.86 0.88 0.23%
0.05 1.10 0.90 0.90 1.23%
0.5 1.03 0.95 0.97 26%
0.8 1.0 1.0 1.0 66%
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Since, in the limit |r; — ry| — o, f® factorizes according
to

f(z)(ml,vl,l‘l,mz,vz,lb,t)

— fO>my, v, ) fOma, va, 1), (1)

it follows that a; = 2a; = 4¢ + 2dy. Requiring that
the scaling assumptions (5) and (6) are compatible with
Eq. (4) immediately leads to the following hyperscaling
relation:

&=dly +1). ®)

Since according to Eq. (5) the total kinetic energy K(7)
scales like #27, the exponent § in Eq. (2b) is given by § =
—21v, so that the scaling relation (8) may be reexpressed
as

5~ bold) = = [£o(d) — £]. ©)

This relation is trivially satisfied by the mean-field expo-
nents in all dimensions. It is satisfied within statistical
errors by the values of ¢ and 6 deduced from our 2D sim-
ulations in the low-density limit as shown in Table I. For
higher densities, the mean-field prediction turns out to be
reasonably well obeyed; hence the numerical exponents
agree better with the scaling relation. Finally, one might
expect to deduce a further expression between ¢ and y
from the conservation of total momentum. But since the
scaling assumptions (5) and (6) only hold in the center-of-
mass frame, this does not yield any new relation.

The results presented in this Letter show that the ballis-
tic coalescence model has a nontrivial dynamical behav-
ior in 2D, characterized by power laws in the asymptotic
regime, with density-dependent exponents which differ
significantly from mean-field predictions, particularly at
low densities. Extensions of the simulations to higher di-
mensions will be very demanding on computer resources
due to the need to consider large systems. Qualitative
differences are expected if the mass-diameter relation
o = m'4, which in the language of polymers corresponds

to collapsed chains (provided o is regarded as the radius
of gyration), is generalized to allow for “swelling.” In
such a model o « m”, where v could be taken equal to its
Flory value v = 3/(d + 2),i.e.,v = i— in 2D. An imme-
diate generalization of the mean-field argument of Ref. [2]
then predicts a faster increase of the mean mass character-
ized by the exponent £ = 2(d + 2)(12 — 3d), equal to
% (rather than 1) in 2D. Similarly, the reduced density n*
(or packing fraction), which is conserved when o « m!/4,
increases with time as 4@~ 1/(12=34) for Flory chains. This
clearly leads to an increase of multiple coalescence events
in the course of time. One might then expect that, in
any dimension 4 > 1, after a certain time, the remaining
particles will coalesce into a single particle in a final “cat-
astrophic” event. Preliminary simulations carried out on
2D systems indeed confirm this scenario which we are
presently exploring in more detail. We also plan to inves-
tigate the situation where the motion of particles between
collisions leading to coalescence is Brownian rather than
ballistic, since the former is more appropriate for the mod-
eling of polymerization.
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