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(Received 4 July 2005; published 24 January 2006)
0031-9007=
Making use of results pertaining to Painlevé III type equations, we revisit the celebrated Onsager-
Manning-Oosawa condensation phenomenon for charged stiff linear polymers, in the mean-field approxi-
mation with salt. We obtain analytically the associated critical line charge density and show that it is
severely affected by finite salt effects, whereas previous results focused on the no salt limit. In addition, we
obtain explicit expressions for the condensate thickness and the electric potential. The case of asymmetric
electrolytes is also briefly addressed.
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Whereas scaling approaches have proven useful to
describe neutral polymers, our understanding of polyelec-
trolytes solutions is quite rudimentary, due to the long
range character of Coulombic interactions [1,2]. Stiff
linear polyelectrolytes that are free of the coupling be-
tween chain conformation and small ions degrees of free-
dom consequently provide ideal systems for a com-
prehensive comparison between theory and experiments.
There indeed exists a large variety of such rodlike poly-
ions, ranging from synthetic polymers [e.g., those based on
poly(p-phenylene) backbones [3] ] to biological molecules
(DNA, actin filaments, microtubules, some viruses, etc.).
On distances smaller than their (large) persistence length,
these objects behave as charged cylinders with an associ-
ated logarithmic electrostatic potential that may be strong
enough to bind oppositely charged microions (counter-
ions). This was first realized by Onsager and analyzed by
Manning [4] and Oosawa [5]: in the limit of vanishing
polymer radius, the corresponding phenomenon of coun-
terion condensation is triggered when the so-called Mann-
ing parameter � � ‘B=‘ is larger than unity [1,2]. Here,
‘�1 is the backbone line charge in units of the elementary
charge e and ‘B � e2=��kT� denotes the Bjerrum length
with � the dielectric constant of the solvent and kT the
thermal energy.

Counterion condensation, which affects a gamut of static
and dynamical properties, is central to our view of highly
charged polymers and an active field of research [6–11].
Interestingly, the influential arguments of Onsager,
Manning, and Oosawa found confirmation and a firm basis
in numerical and analytical studies of the mean-field non-
linear Poisson-Boltzmann (PB) equation where the den-
sities of microions with valency z are related to the local
mean electrostatic potential ’ by nz / exp��ze’=kT�.
The basic features are already present in the exact solution
of PB theory for a charged cylinder in a concentric cylin-
drical Wigner-Seitz cell without salt [12], which can be
cast as a restricted version of a partial differential equation
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first studied and solved by Liouville in 1853 [13], as
pointed out in [14]. For an isolated cylinder (i.e., in the
limit of a diverging Wigner-Seitz cell radius) with a small
charge � < 1, no counterions are bound to the cylinder and
the potential distribution reduces to the bare logarithmic
form. On the other hand, for � > 1, a finite fraction of ions
are ‘‘bound’’ to the surface [15].

The physically relevant situation where salt is present
(i.e., with both co- and counterions, which may come from
the dissociation of an added electrolyte and/or from the
solvent itself ) has resisted analytical understanding much
longer. Ramanathan showed that for � > 1 and distances
much larger than the polyion radius a the ionic atmosphere
was the same as that due to a cylinder with charge parame-
ter � � 1 [16]. This result holds asymptotically for �a! 0
[16,17], where ��1 is the Debye length [1,2]. This con-
densation effect is the counterpart of the aforementioned
one and was placed within the mathematical framework of
isomonodromy theory in Ref. [18] and Painlevé III equa-
tions in Refs. [18–20]. This drew an exact correspondence
with Ising model correlators but more importantly allowed
one (a) to compute the exact far-field behavior [18], (b) to
show rigorously the critical nature of the value � � 1 when
�a! 0 [6,18], and (c) to obtain some analytical results for
the potential distribution and ionic densities [8]. The com-
mon framework to the previous approaches is PB theory, to
which we will restrict ourselves in the subsequent analysis.
Most of existing results hold for �a! 0 only, and it
appears that this (singular) limit is approached logarithmi-
cally slowly. From a practical point of view, finite �a
corrections can therefore never be discarded.

The purpose of the present work is to analyze the fate of
the counterion condensation phenomenon at finite salt
concentration (�a � 0). We shall show that for �a < 1
the transition is smoothed but remains, and that the asso-
ciated critical charge parameter is salt dependent and
smaller than the usual Manning threshold �c � 1. The
condensate structure will be resolved without the need to
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invoke any matching procedure, and analytically tractable
results will be obtained for the electric potential below and
above the critical value �c. Extensive use will be made of
results pertaining to the theory of Painlevé III equations
[20], which mathematical difficulty has—to the best of our
knowledge—prevented to find a way towards the physi-
cists’ community [21]. The case of asymmetric 1:2 and 2:1
electrolytes—that are physically not equivalent [22]—
will also be briefly addressed. Most of our results hold
for �a < 1 and by comparison with numerical results can
be shown to be very accurate in this parameter range.

We consider Poisson’s equation in cylindrical coordi-
nates for the dimensionless electric potential (�):

d2�

dr2
�

1

r
d�
dr
� �

�2

z� � z�
�e�z�� � e�z���; (1)

for the situations �z�; z�� � �1;�1�, �1;�2�, or �2;�1�,
other asymmetries unfortunately resisting the analysis. We
demand that rd�=dr � �2� for r � a where the dimen-
sionless bare charge of the polyion, �, is assumed positive
without loss of generality. The second boundary condition
(�! 0 when r! 1) ensures that, at large distances, �
obeys the linearized equation r2� � �2� and therefore
takes the form

��r� �
r!1

2�eff

�aK1��a�
K0��r�; (2)

where K0 and K1 denote the modified Bessel functions of
the second kind, of order 0 and 1, respectively. The pre-
factor defining the a priori unknown effective charge �eff

reduces by definition to the bare charge � for low values of
� (linear regime) but nonlinear effects significantly affect
�eff . In particular, a consequence of counterion condensa-
tion is that for �a! 0 the former quantity no longer
depends on � provided � > 1 [6,16,18]. We first focus on
1:1 electrolytes for which the electric potential �11 cru-
cially depends on a parameter � [18,20] that in the present
context is related to the effective charge through

�eff � 2�aK1��a�� (3)

so that at large distances �� 4�K0��r�. For � < 1=�
(which corresponds to � < �c, where �c is a critical charge
to be defined below), Theorem 3 of Ref. [20] implies the
short distance behavior

e��11=2 � ��r��B
�

1�
��r�2�2�

16B2�1� ��2

�
�O��r�2; (4)

where

B � 2�3� ���1� ��=2�

���1� ��=2�
; (5)

� being the Euler function. On the other hand, for � >
1=�, there is a qualitative change of behavior for �11:

e��11=2�
�r
4�
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�

2� log
�
�r
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�
�2����

�
�O��r�4; (6)
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where � denotes the argument of ��i�� [20]. For our
purposes, a very accurate approximation—considered in
the remainder—is given by the small � Taylor expansion
���� ’ ��=2� 	�, with 	 ’ 0:5772 . . . the Euler con-
stant. Both quantities � (defined only for � < 1=�) and �
(defined only for � > 1=�) are positive and related to the
bare charge by the boundary condition r�0�r� � �2� at
r � a: expressions (4) and (6) yield

� � ��
�2� 2����a�2�2�

16�1� ��2B2 � ��a�2�2� ; (7)

��� 1� tan�2� log��a=8� � 2�	� � 2�; (8)

where it is understood that� is the smallest positive root of
(8). As such, � and � characterize the short distance
features, and the difficulty amounts to connecting these
parameters with the far-field quantity �. It may be shown
that [18,20]

� �
1

�
sin
�
��
2

�
for � < ��1 �or � < �c�; (9)

� �
1

�
cosh���� for � > ��1 �or � > �c�: (10)

The leading order term in�11 is therefore�2� log��r� for
� < ��1, which corresponds to the bare potential of a
cylinder with line charge �. For � > ��1 the dominant
small r behavior reads �2 log��r�, up to an r-independent
term varying with charge and salt content [23].

The change of behavior displayed by Eqs. (4) and (6) is
the fingerprint of counterion condensation. The exponent�
fulfills 0 	 � 	 1, and for the critical value � � 1=�, we
have � � 1 while � vanishes. The corresponding critical
value of � either follows from (4) taking the limit �! 1�

or enforcing �! 0� in Eq. (6). These two routes yield
exactly the same critical charge:

�c � 1�
1

log��a� � 	� log8
: (11)

In the limit �a! 0, the celebrated Manning threshold
�c � 1 is recovered but the correction embedded in (11)
is significant: at �a � 10�3, �c is shifted to 0.881, and at
�a � 0:1, we get �c ’ 0:737. Expression (11) has been
derived omitting corrections of order ��r�2 in (4) and of
order ��r�4 in (6). One may show, however, that the next
correction to (11) is of order ��a�4�log�a�2, and is there-
fore irrelevant from a practical point of view whenever
�a < 1 [24]. Figure 1 may be considered as illustrating a
‘‘law of corresponding states’’ and shows the values of bare
charge and salt concentration (or equivalently polyion
radius) leading to the same electrostatic potential: if � or
� is fixed, the connection formulas (9) and (10) indeed
ensure that � is also fixed, so that moving along the contour
lines of Fig. 1 leaves the full function ���r� unaffected.
The complementary information of the � dependence of �
and � at fixed salt concentration is shown in Fig. 2. It
appears that, except in the vicinity of �c, � is very close to
2-2
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FIG. 1. Contour lines for � and � (and hence for �) in the
charge-salt plane, as deduced from Eqs. (7) and (8). The thick
dashed curve shows the locus of critical charges �c and separates
the iso-� curves for � < �c (from left to right, the curves
correspond to � � 0:2, 0.4, 0.6, and 0.8) from the iso-� curves
shown—on the right-hand side—for � > �c (from bottom to
top, � � 0:08,0.1, 0.13, and 0.2).
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� (with systematically �> �). Close to the transition
threshold, one has �� 1 and � scaling as j�� �cj1=2.
For highly charged polyions, the argument of the tangent
function in (8) has to be close to��, from which we obtain

� ’
��=2

log��a� � 	� log8� ��� 1��1 : (12)

The inset of Fig. 2 assesses the quality of this approxima-
tion, which improves when � increases but fails quite
severely when � < 1�O�1= log�a�.

We have tested the accuracy of expressions (4), (7), and
(9) below the critical charge, and Eqs. (6), (8), and (10) for
� > �c against numerical solutions of the full nonlinear PB
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FIG. 2. � versus bare charge. In the main graph and in the
inset, three values of �a have been chosen. From left to right,
�a � 10�2, 10�3, and 10�6. For �a! 0, �! � (see the dashed
first bisectrix) while �! 0. The associated critical charges are
indicated by the arrows (also in the inset). The inset shows �
versus �, and the dashed curves correspond to approxima-
tion (12). The vertical line indicates � � 1.
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Eq. (1). These formulas turn out exceptionally accurate for
small r, while the far field is conversely equally well given
by (2) where �eff is determined by (3). More interestingly,
for �r < 1=2, �11 deduced from (4) is extremely accurate
for all possible charges and �a < 0:1 (curves not shown).
Similarly, the far-field expression (2) provides very good
accuracy as soon as �r > 1=2. It therefore appears that�11

is analytically known at all distances; in the crossover
region �r ’ 0:5, where no limiting expression is supposed
to be reliable, the worst relative accuracy is observed but is
nevertheless always below 2%. We emphasize here that
�eff significantly differs from the critical charge �c. In
other words, even treating correctly the condensation phe-
nomenon, nonlinear effects are still present and affect the
diffuse cloud of remaining ‘‘uncondensed’’ ions that can-
not be treated within linearized PB or Debye-Hückel the-
ory. This important aspect has been overlooked so far (see,
e.g., [4]) and is present even in the simplest limit �a! 0,
where �eff ! 2=� irrespective of � (provided � > �c),
whereas �c � 1. The resulting repulsive force of interac-
tion between two highly charged rods is therefore over-
estimated by a factor F � ��=2�2 ’ 2:5 in the traditional
Manning-Oosawa picture. An experimental check of this
prediction has to fulfill the requirement of very low salt,
since at, say, �a � 10�2, F ’ 1:4; see Eq. (3).

The previous results allow one to discuss in a rigorous
manner several aspects of polyelectrolyte physics inves-
tigated in the literature. Of particular interest is the so-
called Manning radius RM [9,10], introduced to quantify
the condensate thickness when � > �c. In the Wigner-Seitz
cell approach, the integrated line charge q�r� � �r�0�r�=2
has an inflexion point when plotted as a function of logr at
the distance RM where q�RM� � 1 [9,25]. It is remarkable
that the q�r� following from (6) shows the very same
feature, which is ascribable to a similar functional form,
although at finite salt concentration q�a� 
 � � 1 no lon-
ger provides the critical value of the charge. The corre-
sponding Manning radius reads

�RM � 8 exp���=�4�� � 	�: (13)

When � > 1�O�1= log�a�, one may use the approxima-
tion (12) and therefore

�RM ’ 2
���������
2�a
p

exp
�
�
	
2
�

1

2��� 1�

�
: (14)

The latter formula is the central result of a recent work [10]
where it was obtained by a clever but approximate match-
ing procedure. It appears to be incorrect when � deviates
from the large � expansion (12) (see the inset of Fig. 2
where it is seen that the difference between the dashed and
continuous curves may be large). On the other hand,
Eq. (13) is always found to be very accurate compared to
the numerical solutions of PB equation [24]. We note that
choosing a different definition for the condensate thickness
R� [e.g., demanding that q�R�� � �c instead of unity] leads
for large bare charges to the scaling relation R� / a
�
�1
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with now 
 � �arctan��=� ’ 0:402, smaller than the
value 
 � 1=2 appearing in (14). The convenient inflec-
tion point criterion alluded to earlier would, however, be
lost following such a route.

We now turn to the case of asymmetric 1:2 and 2:1
electrolytes [22]. Recent results obtained for a class of
solutions to the cylindrical Toda equations [26] allow one
to extend the above analysis to such situations. So far, the
1:2 case only has been studied, again only in the limit
�a! 0 [8]. The details will be provided elsewhere [24];
we concentrate here on the critical charges

�1:2
c �

1

2
�

1

2 log��a� � 2C1:2 ; (15)

�2:1
c � 1�

1

log��a� � C2:1 ; (16)

with

C 1:2 � 	� �log2�=3� 3�log3�=2 ’ �1:301; (17)

C 2:1 � 	� log2� 3�log3�=2 ’ �1:763: (18)

The associated Manning radii, defined from q�RM� � 1
(2:1 case) or q�RM� � 1=2 (1:2 case)—which again en-
sures the existence of an inflection point criterion—read

�R1:2
M ’ 2�1=333=4

���������
2�a
p

exp
�
�
	
2
�

1

2�2�� 1�

�
; (19)

�R2:1
M ’ 33=4

���������
2�a
p

exp
�
�
	
2
�

1

2��� 1�

�
: (20)

These expressions have the same status as (14), i.e., hold at
high enough �. It appears that the Manning 2:1 radius is
inflated a factor 33=4=2 ’ 1:14 compared to its 1:1 counter-
part, irrespective of salt content and charge (but beyond the
condensation threshold). This quantifies the intuitive pic-
ture of a swollen double layer due to the presence of
divalent coions (expelled further away than monovalent
ones), and conversely of a shrunk cloud (by a factor
2�4=333=4 ’ 0:90 when � is large enough) in the 1:2 case
due to the more efficient screening.

To conclude, exploiting an important body of mathe-
matical work in the field of stiff polyelectrolytes allows
one to systematically address finite salt effects that are
crucial even under experimentally low salt conditions.
The present work sheds new light on the condensate struc-
ture and further connects short scale features with the long
range behavior of the electric potential. Among the con-
sequences of experimental relevance following from our
analysis, we mention the large k behavior of the counter-
ion/rod S� and coion/rod S� partial structure factors, ex-
pected to scale as k�2�2� for � < �c, with S� /

k!1
1= logk at

� � �c. Such effects are missed following the classical
Manning-Oosawa arguments, which generally result in an
underestimation of screening.
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