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We present an analytical approach for similarly and highly charged planar interfaces in the presence of

counterions. The procedure is physically transparent and based on an exact low temperature expansion

around the ground state formed by the two-dimensional Wigner crystal of counterions. The one plate

problem is worked out, together with the two plates situation. Unlike previous approaches, the expansion

is free of divergences, and is shown to be in excellent agreement with available data of Monte Carlo

simulations under strong Coulombic couplings. In the two plates case, the present results shed light on the

like-charge attraction regime.
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The behavior of charged particles in the vicinity of

charged interfaces is a central yet elusive problem in the

equilibrium statistical mechanics of Coulomb fluids, in-

cluding colloidal science. A landmark in the field was the

realization in the 1980s that similarly charged surfaces may

attract each other under strong enough Coulombic cou-

plings, which can be realized in practice increasing the

valency of the counterions involved [1]. Notorious illustra-

tions of this like-charge attraction are the formation of DNA

condensates [2] or aggregates of colloidal particles [3].

The weak-coupling limit is described by the Poisson-

Boltzmann mean-field approach [4] and by its systematic

improvements via the loop expansion [5–7]. A remarkable

achievement of the past decade has been accomplished in

the opposite strong-coupling (SC) limit, pioneered by

Rouzina and Bloomfield [8], substantiated by Shklovskii,

Levin, and collaborators [9], and formalized by Netz and

collaborators [10–12]. An essential ingredient is that the

layer of counterions close to a charged wall becomes two

dimensional, and in the field-theoretical method put for-

ward in [10,11], the leading behavior stems from a single-

particle theory, which produces more compact profiles than

within mean-field theory [13]. Next correction orders cor-

respond to a virial or fugacity expansion in inverse powers

of the coupling constant !, to be defined below. The

method requires a renormalization of infrared divergences

via the electroneutrality condition. A comparison with

Monte Carlo (MC) simulations [10] indicates the adequacy

of the virial SC approach to capture the leading large !
order, but its failure for the first correction.

The establishment of an (approximative) interpolation

between the Poisson-Boltzmann and SC regimes, based on

the idea of a ‘‘correlation hole,’’ was the subject of a series

of works [14–17]. A relevant observation in [17], corrobo-

rated by a comparison with the MC simulations, was that

the first correction in the SC expansion is proportional to

1=
ffiffiffiffiffi

!
p

, and not to 1=! as suggested in [10,11].

The aim of this Letter is to revisit highly charged inter-

faces and establish an exact expansion which, in light of

the previous discussion, has yet to be formulated. The

leading term of counterion density profiles coincides with

the single-particle picture of the original virial SC works.

Our expansion is free of infrared divergences and entails a

correction in 1=
ffiffiffiffiffi

!
p

to the leading behavior, thus formally

corresponding to the lowest order expansion in terms of the

temperature. Our analytical results are shown to be in

excellent agreement with available MC data without ad-

justable parameters. Our procedure is versatile. It yields

new exact results in the like-charge attraction regime and

is, as such, relevant for practical applications such as the

stability of cement pastes [18].

Here, we study a classical system of (equally charged)

counterions in the vicinity of one or two planar walls

bearing a uniform surface-charge density, "e (e is the

elementary charge and"> 0), the system as a whole being

electroneutral. The system, at thermal equilibrium at the

inverse temperature % ¼ 1=ðkBTÞ, is immersed in a solu-

tion of dielectric constant ) containing q-valent counter-
ions, each thus having charge !qe. For simplicity, no

image forces are present. Let us describe briefly the origi-

nal approach of [10,11] for the case of a single wall

localized in the z ¼ 0 plane. The counterions are confined

to the half-space z & 0. The relevant length scales in

Gaussian units are the Bjerrum length ‘B ¼ %e2=), i.e.,
the distance at which two unit charges interact with thermal

energy kBT, and the Gouy-Chapman length - ¼
1=ð2.q‘B"Þ, i.e., the distance from the charged wall at

which an isolated counterion has potential energy equal to

thermal energy. All lengths r will be expressed in units of

-, ~r ¼ r=-. The counterion density profile 0ðzÞ, which
only depends on the distance from the wall z, will be

considered in the rescaled form ~0ð~zÞ ¼ 0ð-~zÞ=ð2.‘B"2Þ,
so that the electroneutrality condition q

R1
0 dz0ðzÞ ¼ "

simply reads
R1
0 d~z ~0ð~zÞ ¼ 1. The coupling parameter

quantifying the strength of electrostatic correlations is

! ¼ 2.q3‘2B"; it will play the role of our expansion

parameter. According to the virial SC approach [10,11],

the counterion density profile can be formally expanded as
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~0ð~zÞ ¼ ~00ð~zÞ þ
1

2
~01ð~zÞ þOð!!2Þ; (1)

where

~0 0ð~zÞ ¼ e!~z; ~01ð~zÞ ¼ e!~zð~z2=2! ~zÞ; (2)

with 2 ¼ !. The leading term ~00ð~zÞ comes from the

single-particle picture of counterions in the linear

surface-charge potential. TheMC simulations [10] indicate

that the first correction ~01ð~zÞ has the expected functional

form for !> 10; however, the value of the prefactor is

incorrect. The simulations indeed reveal that 2 ! !, see

the inset of Fig. 1, where the prefactor 2 extracted from

MC simulations following Eq. (1) is much smaller than!.

Our approach is based on the fact that in the asymptotic

limit ! ! 1 the counterions collapse on the charged

surface, creating a 2D hexagonal (equilateral triangular)

Wigner crystal [9] where every ion has 6 nearest neighbors

forming a hexagon. Let us denote by Ri ¼ ðXi; YiÞ
the position vectors of the vertices on this hexagonal

lattice. Since there are just two triangles per particle, the

lattice spacing a of the globally electroneutral structure is

given by q=" ¼
ffiffiffi

3
p

a2=2. Note that the large ! limit

coincides with the regime in which the distance a between

the nearest-neighbor counterions is much larger than the

distance - between the counterions and the charged sur-

face [8], ~a * a=- /
ffiffiffiffiffi

!
p

, 1. When! ! 1, each vertex

Ri is occupied by a counterion i (i ¼ 1; . . . ; N; N ! 1).

The ground-state energy of the counterion system together

with the homogeneous background charge is E0. For !
large but not infinite, the fluctuations of ions around their

lattice positions begin to play a role [19].

Let us first shift one of the particles, say i ¼ 1, from its

lattice position R1 by a small vector ;R1 ¼ ðx; y; zÞ
(;R1 * j;R1j . a) and look for the corresponding

change in the total energy ;E ¼ E! E0 & 0. The first

contribution to ;E comes from the interaction of the

shifted counterion with the potential induced by the homo-

geneous surface-charge density: ;Eð1Þ ¼ 2.qe2"z=). The
second contribution to ;E comes from the interaction of

the particle with all other particles on the 2D hexagonal

lattice. This contribution can be expanded as an infinite

series in x, y, and z; for our purposes, it is sufficient to

consider this expansion up to harmonic terms, which, in the

z direction, read

);Eð2Þ
z ¼

X

i!1

$ ðqeÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
i þ z2

q ! ðqeÞ2
Ri

&

/!ðqeÞ2
2a3

Sz2: (3)

Here, the dimensionless quantity S ¼ P

i!1ðRi=aÞ!3 can

be expressed from the general theory of lattice sums [20]

S ¼
X1

m;n¼!1
ðm;nÞ!ð0;0Þ

1

ðm2 þmnþ n2Þ3=2

¼ 2
ffiffiffi

3
p C

(
3

2

)$

C

(
3

2
;
1

3

)

! C

(
3

2
;
2

3

)&

; (4)

where Cðz; qÞ ¼ P1
n¼0 1=ðqþ nÞz is the generalized

Riemann zeta function and CðzÞ * Cðz; 1Þ. Explicitly, S ¼
11:034 . . . . A shift of the particle simultaneously along all

directions does not induce ‘‘mixed’’ harmonic terms of

type xz or yz. The harmonic term in the (x; y) plane can

be computed, and in dimensionless form, we have

! %;E/!~zþ 33=4

ð4.Þ3=2
S
ffiffiffiffiffi

!
p

$
~z2

2
! 1

4
ð~x2 þ ~y2Þ

&

: (5)

This formula reveals a relationship between the order of

the expansion of!%;E in the dimensionless lengths ~x, ~y, ~z
and the expansion in 1=

ffiffiffiffiffi

!
p

. The linear term !~z, which is

the only one which does not vanish in the limit ! ! 1, is

the leading term. It corresponds to the single-particle pic-

ture, in close analogy with the previous virial SC approach.

The harmonic terms turn out to be of order%ðqeÞ2-2=a3 /
1=

ffiffiffiffiffi

!
p

, and likewise, terms of the pth order in the variables

~x, ~y, ~z are of order %ðqeÞ2-p=apþ1 / 1=!ðp!1Þ=2. This
scheme constitutes a systematic basis for our large !
expansion.

The generalization of the above formalism to all parti-

cles is straightforward. We shift every particle i ¼
1; 2; . . . ; N from its lattice position Ri by a small vector

;Ri ¼ ðxi; yi; ziÞ. In what follows, however, we shall be

interested in the counterion density profile which only

depends on the ~z coordinate. Thus, when expanding in

statistical averages the Gibbs weight expð!%;EÞ in

powers of 1=
ffiffiffiffiffi

!
p

, we can restrict ourselves to the

z-harmonic part. The corresponding change in the total

energy ;E is given by a counterpart of (5),

! %;E/!
X

i

~zi þ
33=4

16.3=2

1
ffiffiffiffiffi

!
p

X

i<j

ð~zi ! ~zjÞ2
ðjRi !Rjj=aÞ3

: (6)

The next simplification comes from the fact that particles

are identical, exposed to the same potential induced by the
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Monte Carlo
present work

Netz-Moreira

FIG. 1. Comparison between the analytical first correction to

the profile ~00 (solid curve) and the Monte Carlo results of

Ref. [10] at ! ¼ 103, for a single charged wall. The inset

compares our prediction for the rescaling factor 2 [solid curve

given by Eq. (9)] to its Monte Carlo value reported in [10] and to

the original virial SC prediction 2 ¼ ! (dashed line).
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surface charge, so that a summation over particle coordi-

nates can be represented by just one auxiliary coordinate.

For the density particle profile, defined by 0ðrÞ ¼
hPN

i¼1 ;ðr! riÞi ¼ Nh;ðr! r1Þi, we get explicitly

~0ð~zÞ ¼ Ce!~z
Z 1

0
d~z0e!~z0

$

1þ 33=4S

16.3=2

ð~z! ~z0Þ2
ffiffiffiffiffi

!
p

&

þO

(
1

!

)

; (7)

where C is determined by the normalization condition
R
~0 ¼ 1. Simple algebra gives

~0ð~zÞ ¼ e!~z þ 33=4

ð4.Þ3=2
S
ffiffiffiffiffi

!
p e!~z

(
~z2

2
! ~z

)

þOð!!1Þ: (8)

Comparing this result with Eqs. (1) and (2) obtained in the

virial SC approach [10,11], we see that the leading terms

coincide, while the first corrections have the same func-

tional dependence in space but different prefactors. The

result (8) can be reexpressed in terms of the 2 factor,

introduced in the relation (1), as follows:

2 ¼ ð4.Þ3=2
33=4

1

S

ffiffiffiffiffi

!
p

¼ 1:771 . . .
ffiffiffiffiffi

!
p

: (9)

This formula, in excellent agreement with MC data, differs

substantially from the previous virial SC estimate 2 ¼ !;

see Fig. 1.

The method can be readily applied to the case of two

parallel walls, each having the same charge density "e,
located at distance d from one another. The electric field

between the walls is equal to 0 now. At T ¼ 0, the classical

system is defined by the dimensionless separation H ¼
d

ffiffiffiffiffiffiffiffiffi

"=q
p

¼ ~d=
ffiffiffiffiffiffiffiffiffiffiffi

2.!
p

. A complication comes from the fact

that counterions form, on the opposite surfaces, a bilayer

Wigner crystal, the structure of which depends on H
[21–23]. We implement our expansion as the limit of large

! at fixed ~d, which means that H / ~d=
ffiffiffiffiffi

!
p

! 0. In this

limit, the relevant ground-state structure is that of the

single hexagonal lattice [so-called structure I, see Fig. 2

(left), where open and filled symbols are for ions on

opposite surfaces]. Because of global neutrality, the lattice

spacing b of the single (bilayer) hexagonal structure is

given by q=ð2"Þ ¼
ffiffiffi

3
p

b2=2.
The two walls are located at positions z ¼ 0 and z ¼ d.

The position vector Ri of the particle localized on the

shared hexagonal Wigner lattice will be denoted as R
ð0Þ
i

if it belongs to the wall at z ¼ 0 (say, filled symbols of

the left-hand panel of Fig. 2) and asR
ðdÞ
i if it belongs to the

wall at z ¼ d (open symbols in Fig. 2). Let us shift the

particle i ¼ 1 localized on the z ¼ 0wall by a small vector

;Rð0Þ
1 ¼ ðx; y; zÞ and look for the energy change ;E from

the ground state. Since the potential induced by the surface

charge on the walls is constant between the walls, the

corresponding ;Eð1Þ ¼ 0. The harmonic term in the z
direction reads

);Eð2Þ
z ¼ðqeÞ2

2b3

$

!
X

i!1

z2

ðRð0Þ
i =bÞ3

þ
X

i

d2!ðd!zÞ2
ðRðdÞ

i =bÞ3
&

: (10)

Using the exact values of the partial hexagonal sums [20]
P

i!1½b=Rð0Þ
i 43 ¼ 5S=12,

P

i½b=RðdÞ
i 43 ¼ 7S=12, ;Eð2Þ

z

turns out to be positive, as it should. The harmonic term

in the (x; y) plane can again be computed but proves

immaterial for the sake of our purposes. When all particles

are shifted from their lattice positions fRig to fðxi; yi; ziÞg,
the total energy change is given, as far as the z-dependent
contribution is concerned, by

! %;E/ 33=4

ð4.Þ3=2
ffiffiffi

2
p
ffiffiffiffiffi

!
p 1

2

X

i<j

ð~zi ! ~zjÞ2
ðjRi !Rjj=bÞ3

: (11)

Expanding expð!%;EÞ in 1=
ffiffiffiffiffi

!
p

and enforcing electro-

neutrality, the density profile ~0ð~zÞ is obtained in the form

~0ð~zÞ ¼ 2
~d
þ 1

2

2
~d

$(

~z!
~d

2

)
2
!

~d2

12

&

þOð!!1Þ; (12)

where

2 ¼ ð4.Þ3=2
33=4

1

S

ffiffiffiffiffi

!
p
ffiffiffi

2
p ¼ 1:252 . . .

ffiffiffiffiffi

!
p

: (13)

This 2 differs from the single-plate one (9) by the factor

1=
ffiffiffi

2
p

due to the different hexagonal lattice spacings a and

b. The functional form of (12) coincides with that of

Moreira and Netz [10,11]. For (not yet asymptotic) ! ¼
100, the previous virial SC result 2 ¼ ! is far away from

the MC estimate 2 ’ 11:2 [10], while our formula (13)

gives 2 ’ 12:5.
Applying the contact-value theorem to the density pro-

file (12), the pressure P between the plates is given by

~P ¼ %P

2.‘B"
2
¼ !1þ 2

~d
þ

~d

32
þO

(~d2

!

)

: (14)

1 10 100 1000 10000

Ξ

1

10

d~

Repulsion

Repulsion

Attraction

Maximum attra
ction

b

FIG. 2. Left: Structure I of counterions on two parallel charged

plates (see text). Right: Phase diagram following from the

equation of state (14): the solid curve shows the points where

P ¼ 0. The dash-dotted line is for the corresponding virial SC

prediction [11]. The filled squares are those MC results from

Ref. [10] with !> 20, while the straight dashed line is for the

points ~dmax where @ ~P=@~d ¼ 0.
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An analogous result was obtained within the approximate

approach of Ref. [17], with the underestimated ratio

2=
ffiffiffiffiffi

!
p

¼ 3
ffiffiffi

3
p

=2 ’ 0:866. Equation (14) provides insight

into the like-charge attraction phenomenon. The attractive

(P< 0) and repulsive (P> 0) regimes are shown in Fig. 2

(right-hand panel). Although our results hold for ~d . !1=2

and for large !, the shape of the phase boundaries where

P ¼ 0 (solid curve) shows striking similarity with its

counterpart obtained numerically; the agreement with

Monte Carlo data is good, and better than with the original

virial SC prediction. While the upper branch of the attrac-

tion or repulsion boundary is such that ~d=
ffiffiffiffiffi

!
p

is of order

unity and hence lies at the limit of validity of our

expansion, we predict the maximum attraction to be ob-

tained for ~dmax ¼
ffiffiffiffiffiffi

62
p

/ !1=4, as follows from enforcing

@ ~P=@~d ¼ 0. Since ~dmax=
ffiffiffiffiffi

!
p

/ !!1=4 ! 0, we can con-

sider the latter prediction, shown by the dashed line in

Fig. 2, as asymptotically exact; we note that it is fully

corroborated by the scaling laws reported in [15].

In conclusion, the present asymptotic result in the large

! regime shows that, while the leading order results (for

one or two plates) can be obtained by a single counterion

theory, the next terms actually reflect the complete ground-

state structure (N counterion property). This explains the

success of a virial-like expansion as in [11] to capture

leading order effects, but its failure for higher order cor-

rections. We have shown how such shortcomings can be

circumvented within a physically transparent procedure

and obtained analytical results in remarkable agreement

with Monte Carlo data. Our exact results involve inverse

powers of the expansion parameter !; in the two plates

problem, our results apply under the double requirement

that ! is large and that ~d <
ffiffiffiffiffi

!
p

.

Our approach bears similarities with that of Ref. [19],

where, however, counterions have been assumed to stick to

the plates. This assumption is certainly relevant at large ~d,
but discards from the outset the excitations that are relevant

in the complementary range ~d <
ffiffiffiffiffi

!
p

, where the counter-

ions unbind from the plates; see above.

An important remark in order here is that the dominant

results follow from a ‘‘single counterion’’ picture because,

for a single planar interface, the dominant electric field

stems from the plate only, while the counterion contribu-

tion is subdominant. The situation changes for a curved

(say, spherical) interface since then other counterions con-

tribute to the dominant field felt by a given ion, no matter

how close to the interface this ion can be. Consequently,

the dominant ion profile around a charged sphere will not

be that obtained within the original approach of [10,11].

In practice, for a highly charged interface in water at

room T, one has "‘2B ’ 1, so that ! may exceed 100 for

trivalent or tetravalent counterions [12]. We also note that

some highly charged systems, such as hydrated calciosili-

cates, responsible for the hardening of hydrated cement

pastes, exhibit !> 75 already with divalent ions such as

the commonly found Ca2þ [18]. Although asymptotic

(i.e., valid at large !), our predictions turn out to be

reliable for such couplings. A generalization of the ap-

proach to dielectric inhomogeneities, systems with salt or

asymmetric [24], offers interesting problems for more de-

tailed studies in the future.
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[22] R. Messina and H. Löwen, Phys. Rev. Lett. 91, 146101

(2003); E. C. Oǧuz, R. Messina, and H. Löwen, Europhys.
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