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Abstract

We consider the velocity distribution for a granular gas of inelastic hard spheres described
by the Boltzmann equation. We investigate both the free of forcing case and a system heated
by a stochastic force. We propose a new method to compute the  rst correction to Gaussian
behavior in a Sonine polynomial expansion quanti ed by the fourth cumulant a2. Our expressions
are compared to previous results and to those obtained through the numerical solution of the
Boltzmann equation. It is numerically shown that our method yields very accurate results for
small velocities of the rescaled distribution. We  nally discuss the ambiguities inherent to a
linear approximation method in a2.
c© 2003 Elsevier B.V. All rights reserved.
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Most theories of rapid granular ?ows consider a granular gas as an assembly of in-
elastic hard spheres and assume uncorrelated binary collisions described by the Boltz-
mann equation, with a possible Enskog correction to account for excluded volume
eAects [1–12]. The deviations from the Maxwellian velocity distribution may be ac-
counted for by an expansion in Sonine polynomials, and it is often suDcient to retain
only the leading term in this expansion, quanti ed by a2, the fourth cumulant of the ve-
locity distribution [2,5,8,13,14]. The purpose of this paper is twofold:  rst, we present
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a novel route to compute a2, directly inspired from a method that has been recently
proposed to compute with accuracy the decay exponents and non-Maxwellian features
of gas subjected to ballistic annihilation dynamics [15,16] (where particles undergoing
free ?ight motion disappear upon contact [17,18]). In essence, this method considers
the limit of vanishing velocities of the Boltzmann equation, and deduces a2 from mo-
ments of the velocity distribution that are a priori of lower order than those involved
in the standard derivation [4,8]. We may consequently expect a better precision from
this alternative approach, that is analytically simpler to work out. We also know that
the velocity distribution is non-Gaussian at high energies [4,8], so that extracting the
relevant kinetic information from the behavior at vanishing velocities seems a promis-
ing route. The second goal of this article is to discuss the ambiguities—common to
both approaches—encountered performing computations up to linear order in a2, ne-
glecting not only higher-order Sonine contributions but also terms in ak2, k= 2; 3. Such
an ambiguity has  rst been mentioned by Montanero and Santos [8].

Within the framework of the Boltzmann equation, the one-particle velocity distribu-
tion function f(v; t) for a homogeneous system free of forcing obeys the relation

9tf(v1; t) = I(f;f) ; (1)

where the collision integral reads

I(f;f) = �d−1
∫
Rd

dv2

∫
d�̂ 	(�̂ · v̂12)(�̂ · v12)

×
[

1

2 f(v∗∗1 ; t)f(v∗∗2 ; t) − f(v1; t)f(v2; t)

]
: (2)

In Eq. (2), � is the diameter of the particles, 	 the Heaviside distribution, v12 = v1 − v2

the relative velocity of two particles, v̂12=v12=v12, v12=|v12|, and �̂ a unit vector joining
the centers of the grains. The space dimension is d. The precollisional velocities v∗∗i
and the postcollisional ones vi are related by

v∗∗1 = v1 − 1 + 

2


(v12 · �̂)�̂ ; (3a)

v∗∗2 = v2 +
1 + 


2

(v12 · �̂)�̂ (3b)

with 
∈ [0; 1] the restitution coeDcient. If energy is supplied to the system, an addi-
tional forcing term is present in Eq. (1) [8], but the general arguments and method
presented below remain valid. To be more speci c, we shall also consider the situa-
tion where the system is driven into a non-equilibrium steady state by a random force
acting on the particles [4,6,8]. With this energy feeding mechanism, coined “stochastic
thermostat”, the Fokker–Planck term �2

0∇2
vf should be added to the right-hand side

(r.h.s.) of Eq. (1) [4], where �0 is related to the amplitude of the random force acting
on the grains.

We are searching for an isotropic scaling solution f̃(c) of Eq. (2). The requirement
of a time-independent behavior with respect to the typical velocity v0(t) =

√
2〈v2〉=d
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imposes that [2,4,8]

f(v; t) =
n

vd0(t)
f̃(c) ; (4)

where the rescaled velocity is given by c= v=v0(t) and the angular brackets 〈·〉 denote
the average over f(v; t). The presence of the density n on the r.h.s. of Eq. (4) ensures
that

∫
dcf̃(c) = 1 and

∫
dcc2f̃(c) = d=2. This scaling function describing the homo-

geneous cooling state satis es the time-independent equation [2,4,8]

�2

d

(
d+ c1

d
dc1

)
f̃(c1) = Ĩ(f̃;f̃) ; (5)

where

�p = −
∫
Rd
dc1 c

p
1 Ĩ(f̃;f̃) ; (6)

and

Ĩ(f̃;f̃) =
∫
Rd
dc2

∫
d�̂ 	(�̂ · ĉ12)(�̂ · c12)

×
[

1

2 f(c∗∗1 )f(c∗∗2 ) − f(c1)f(c2)

]
: (7)

It is useful to consider the hierarchy of moment equations obtained by integrating Eq.
(5) over c1 with weight cp1 [4]

�p =
�2

d
p〈cp〉 : (8)

The solution of Eq. (5) is non-Gaussian in several respects. The high energy tail is
overpopulated compared to the Maxwellian [4], a generic although not systematic fea-
ture for granular gases (a particular heating mechanism leading to an under-population
at large velocities has been studied in Ref. [8]). Deviation from Gaussian behavior
may also be observed at thermal scale or near the velocity origin. To study the latter
correction, it is convenient to resort to a Sonine expansion for the distribution function
f̃(c) [19]

f̃(c) = M(c)

[
1 +

∑
i¿1

aiSi(c2)

]
; (9)

where M(c) = �−d=2 exp(−c2) is the Maxwellian, and Si(c2) the Sonine polynomials
(that may be found in Ref. [19]; the  rst few are recalled in Ref. [4]). Due to the
constraint 〈c2〉 = d=2 the  rst correction a1 vanishes [4], and for our purposes it is
suDcient to know S2(x)=x2=2− (d+2)x=2+d(d+2)=8. From Eq. (9) and making use
of the orthogonality of the Sonine polynomials with respect to a Gaussian measure,
one may relate the coeDcient a2 to the kurtosis of the velocity distribution

〈c4〉 =
d(d+ 2)

4
(a2 + 1) ; (10)
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so that, upon taking p= 4 in Eq. (8), we get

�4 = (d+ 2)(1 + a2)�2 : (11)

In the following analysis, we will only retain the  rst correction in the expansion
(9): f̃ = M(1 + a2S2). Computing �2 and �4 to linear order in a2 with this func-
tional ansatz [and further linearizing Eq. (10)], one deduces a2 [4,8]. This approach
is non-perturbative in the restitution coeDcient. However, since the high energy tail
of M(1 + a2S2) is very distinct from that of the exact solution of Eq. (5), computing
a2 from relation (8) with p¿ 4 is expected to give a poor estimate, all the worse as
p increases. With this in mind, it appears that the limit of vanishing velocity of the
rescaled Boltzmann equation (5) contains an interesting piece of information:

�2f̃(0) = lim
c1→0

Ĩ(f̃;f̃) : (12)

The main steps to compute this limit are given in Appendix A. Up to a geometrical
prefactor, the loss term of limĨ on the r.h.s. reads f̃(0)〈c1〉 and is thus of lower order
than the quantities appearing in (11). Working at linear order in a2, one may therefore
expect to achieve a better accuracy when computing the various terms (except may
be the gain term) appearing in (12) than in (11). In the context of ballistic annihi-
lation, a related remark lead to analytical predictions for the decay exponents of the
dynamics and non-Gaussian features of the velocity statistics, in excellent agreement
with the numerical simulations [15,16]. In the present situation, the gain term of Ĩ in
(12) cannot be written as a collisional moment, so that the situation is less clear and
deserves some investigation. We propose to compare the value of a2 following this
route to the standard one of Refs. [4,8,14]. Evaluating (12) at  rst order in a2, we
obtain

a2 =
4(
2 + 1)2(
2 − 1)[

√
2(
2 + 1) − 2]

A(
; d)
; (13)

where

A(
; d) = 5 + d(2 − d) + 8
(
2 + 1)(d− 1) − 
2(23 − 6d+ d2)

+ 
4(3 + 6d+ d2) + 
6(−1 + 2d+ d2)

−
√

2(
2 + 1)3(
2 − 1)(3 + 4d+ 2d2)=4 : (14)

In Fig. 1, we compare this result with the analytical expression of van Noije and Ernst
[4]. We also display the fourth cumulant a2 obtained by Monte Carlo simulations from
the numerical solution of the non-linear Boltzmann equation (1) (the so-called DSMC
technique [20,21]). Our expression appears more accurate at small inelasticity, but less
satisfying close to elastic behavior. The smallest root of a2 = 0 obtained with Eq. (13)
is 
∗ =(

√
2−1)1=2 
 0:643 : : : . This root diAers from the value 
∗∗ =1=

√
2 
 0:707 : : :

obtained upon solving (11) (both 
∗ and 
∗∗ do not depend on space dimension d).
The inset shows that the exact root is located in the interval ]
∗; 
∗∗[, and seems closer
to 
∗∗.
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Fig. 1. Comparison of the correction a2(
) for the free cooling in two dimensions obtained in Ref. [4], with
Eq. (13). The crosses correspond to the “exact” result, obtained by solving the Boltzmann equation with the
DSMC method, for 106 particles and approximately 500 collisions for each particle. The inset is a zoom in
the region of the smallest root of the fourth cumulant.
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Fig. 2. Plot of f̃(ci)=M(ci) for 
 = 0:8. The curve labelled “Eq. (13)” and “Noije/Ernst” correspond to
1 + a2S2 where a2 is given, respectively, by Eq. (13) and by the Sonine correction obtained by Noije and
Ernst following the traditional route [4]. “DSMC” refers to the full distribution obtained from the solution
of the Boltzmann equation (using 106 particles and averaging over 300 independent samples).

In order to understand the discrepancy close to the elastic limit shown in Fig. 1, it
is useful to study the  rst Sonine correction f̃(ci)=M(ci) = 1 + a2S2(c2

i ). The result for

 = 0:8 where our method seems to be the less accurate is shown in Fig. 2, and in
Fig. 3 for 
= 0:5.
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Fig. 3. Same as Fig. 2 for 
 = 0:5.

In spite of the imprecision of our analytical expression for a2 seen in Fig. 1, Fig. 2
shows that the limit method is very accurate for small velocities, but turns to quickly
become more imprecise for bigger velocities. This suggests that computing the fourth
cumulant from the limit of vanishing velocities gives more weight to this region which
leads to a better behavior of the Sonine expansion for small velocities. On the other
hand, the traditional route yields a global interpolation for all velocities. The good
precision of our result for small velocities and the lower accuracy for higher velocities is
con rmed in Fig. 3. Exploiting the above qualitative interpretation of the limit method,
we expect to archieve a good accuracy using Eq. (13) in order to  nd the  rst moment
[16]:

〈|c|〉 =
√
�

2

(
1 − a2

8

)
: (15)

Indeed, we suppose that the function a2 obtained from the limit method gives a precise
description of the rescaled velocity distribution for small velocities. Thus, our a2 is
likely to describe more accurately a low-order velocity moment than a high-order one.
This is con rmed by Fig. 4.

As emphasized by Montanero and Santos [8], a certain degree of ambiguity is present
when evaluating an identity such as (11) or (12) to  rst order in a2. According to
the way we rearrange the terms �4, �2, and (d + 2)(1 + a2) in say Eq. (11) and
subsequently apply a Taylor-series expansion in a2, we obtain diAerent predictions
for a2(
). For instance van Noije and Ernst did expand relation (11) [4], whereas
Montanero and Santos also considered other possibilities such as �4=�2 =(d+2)(1+a2)
(this leads to a result which turns out to be fairly close to the one in Ref. [4]) and
also �4=(1 + a2) = (d + 2)�2. For small 
 in the latter case, the resulting a2 turns
out to be 20% lower than the previous ones, and very close to the exact (within
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Fig. 4. First rescaled velocity moment 〈|c|〉 as a function of the restitution coeDcient. DSMC is done for
105 particles and approximately 500 collisions for each particle.
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Fig. 5. The eight possible fourth cumulant a2 obtained from Eq. (11), corresponding to the two-dimensional
homogeneous free cooling. We de ne �= (d+ 2)(1 + a2), then rewrite the equation �4 = ��2 according to
the eight possible diAerent combinations mentioned in the legend, before doing the linear Taylor expansion
around a2 =0. The  rst curve is the plot of the function a2 obtained by van Noije and Ernst [4], whereas the
second one—obtained by Montanero and Santos [8] —is very close to the exact results shown by crosses.

Boltzmann’s equation framework) numerical results, for all the values of the restitution
coeDcient [8]. We push further this remark and show in Fig. 5 the eight simplest
diAerent possible functions a2(
) obtained upon rearranging the terms of Eq. (11) and
expanding the result to  rst order in a2. A similar ambiguity is present making use
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Fig. 6. Same as Fig. 5, making use of Eq. (12) instead of (11) to compute the  rst Sonine correction. In
the legend, I denotes lim Ĩ and f0 =f̃(0).

of Eq. (12). The corresponding eight diAerent possibilities are plotted in Fig. 6. It
appears that the envelope of the curves following from this method is less spread than
within the “traditional” route, by a factor of approximately 2. We thus achieve a better
accuracy at small 
.

The dispersion of the curves in Figs. 5 and 6 illustrates the non-validity of the lin-
earization approximation at small 
. However—and concentrating on Fig. 5—it appears
that all curves do not have the same status. Brilliantov and PUoschel have indeed solved
analytically the full non-linear problem [i.e. working again with the distribution func-
tion f̃ = M(1 + a2S2) but keeping non-linear terms in a2], and obtained results that
are very close to those of Noije/Ernst, except for 
¡ 0:2 where they found slightly
larger fourth cumulants [9]. Their result is therefore farther away from the exact one
obtained by DSMC (see e.g. Fig. 1 where it appears than the Noije/Ernst expression
already overestimates the exact curve). The diAerence between the DSMC results and
those of Brilliantov/PUoschel therefore illustrates the relevance of Sonine terms ai with
i¿ 3 in expansion (9). However, some of the curves shown in Fig. 2 lie close to the
exact one, which means that it is possible to correct the de ciencies of truncating f̃
at second Sonine order by an ad hoc linearizing scheme. The agreement obtained is
nevertheless incidental, and the corresponding analytical expression should be consid-
ered as a semi-empirical interpolation supported by numerical simulations. One should
thus emphasize that the right way to compute a2 is to use its de nition involving
the fourth rescaled velocity cumulant of Eq. (10) because this relation is not sensi-
tive to higher-order Sonine terms, nor to non-linearities, even if this route does not
give the most accurate description in the small velocity domain (as seen from Figs. 2
and 3).
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Fig. 7. The counterpart of Fig. 6 for the two-dimensional stochastic thermostat. The inset shows the four
possibilities associated with the method of Refs. [4,8]. The symbols show the results of DSMC simulations.

For completeness, we now brie?y consider the stochastic thermostat situation [4,6,8,
13], where the counterpart of Eq. (5) reads

− �2

2d
∇2
c1
f̃(c1) = Ĩ(f̃;f̃) : (16)

Considering again the limit c1 → 0 and retaining only the  rst correction in expansion
(9), we get

�2

2�d=2

[
2 + a2

(d+ 2)(d+ 4)
4

]
= lim
c1→0

Ĩ(f̃;f̃) : (17)

Given that the r.h.s. is already known from the free cooling calculation, it is straight-
forward to extend the previous results to the present case. As before, there are eight
possible ways to extract a2 from Eq. (17) working at linear order. The resulting ex-
pressions are displayed in Fig. 7. On the other hand, the moment method described in
Refs. [4,8] makes use of the identity �2(d + 2) = �4, that is a direct consequence of
Eq. (16). There are thus four possible rearrangements leading to the diAerent cumu-
lants shown in the inset of Fig. 7. For comparison, we have also implemented Monte
Carlo simulations in the present heated situation (see the crosses in Fig. 7). It is dif-
 cult to compare the dispersion of the curves with both methods (eight possibilities
versus four), since our approach makes use of Eq. (17) which is of higher order in
a2 than �2(d + 2) = �4, the starting point used in Refs. [4,8]. Our method appears
here less accurate than for the free cooling, with again an underestimation of a2 at
large 
.

In order to get free from the ambiguities inherent to a linear computation in a2, we
have also solved the full non-linear problem. The computation becomes cumbersome,
and since Brilliantov and PUoschel [9] have already initiated this route in 3D for the
homogeneous free cooling (thereby providing the calculation of �2 and �4), we will



F. Coppex et al. / Physica A 329 (2003) 114–126 123

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0 0.2 0.4 0.6 0.8 1

a 2
 (α

)

a 2
 (α

)
α

Eq. (12)
Eq. (11)

DSMC

-0.02

0

0.02

0.04

0.06

0.08

0 0.2 0.4 0.6 0.8 1
α

Fig. 8. Fourth cumulant in three dimensions for a force free system in the regime of homogeneous cooling.
The curves correspond to the non-linear solutions of Eqs. (11) and (12) (see text for details). The crosses
correspond to the Monte Carlo results. The inset shows the same curves for the stochastic thermostat.

turn our attention to the 3D situation. First and for the sake of comparison, we have
repeated the non-linear derivation of Ref. [9] for the stochastic thermostat. Second, we
have computed the right-hand sides of Eqs. (12) and (17) without any linearization,
from the form f̃=M(1 +a2S2). The left-hand sides only require the knowledge of �2.
For both free and forced situations, we subsequently obtain a polynomial equation of
degree 3 for a2 from which we extract the physical root, the two others corresponding
to unstable scaling solutions [9]. The results are displayed in Fig. 8. In particular, our
approach again suAers from an underestimation of a2 for 
¿ 0:5, already observed
within the linear computation, and that is thus ascribable to Sonine terms of order 3
or higher. In this respect, it is surprising that these terms do not aAect similarly the
moment method of Ref. [9] in the same range of inelasticities (Fig. 8).

To sum up, using a new approach we obtain the  rst non-Gaussian correction a2

to the scaled velocity distribution. In view of the above results, we conclude that
our approach constitutes an improvement over the previous procedures in the small
velocity regime, and our analysis turns to be technically simpler to perform. We have
also discussed the ambiguities that arise (1) when restricting ourselves to second Sonine
order, and (2) when a further linearization of the various relevant relations is performed.
It appears that an ad hoc linearization scheme (point 2) may circumvent the limitations
inherent to point 1. In any case, the computation of a non-Gaussian correction suAers
from uncontrolled approximations that systematically need to be confronted against
numerical simulations.

We acknowledge useful discussions with A. Santos and A. Barrat. This work was
partially supported by the Swiss National Science Foundation and the French “Centre
National de la Recherche Scienti que.”
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Appendix A. Calculation of the limit c1 → 0 of the collision term

We de ne the loss term Ĩ l and gain term Ĩ g by

Ĩ l = − lim
c1→0

∫
Rd
dc2

∫
d�̂	(�̂ · ĉ12)(�̂ · c12)f̃(c1)f̃(c2) ; (A.1a)

Ĩ g = lim
c1→0

1

2

∫
Rd
dc2

∫
d�̂	(�̂ · ĉ12)(�̂ · c12)f̃(c∗∗1 )f̃(c∗∗2 ) ; (A.1b)

so that limc1→0 Ĩ(f̃;f̃) = Ĩ l + Ĩ g.
Taking the limit c1 → 0 of the loss term yields the exact result

Ĩ l = −�1f̃(0)〈c2〉 ; (A.2)

where

�1 =
∫
Rd
d�̂	(�̂ · ĉ2)(�̂ · ĉ2) =

�(d−1)=2

�[(d+ 1)=2]
(A.3)

with � the gamma function. Within the framework of the Sonine expansion (9), ne-
glecting the coeDcients ai, i¿ 3, and making use of [16]

〈c2〉 =
(

1 − a2

8

) �[(d+ 1)=2]
�(d=2)

; (A.4)

Eq. (A.2) becomes

Ĩ l = −SdM(0)
2
√
�

[
1 + a2

d(d+ 2)
8

](
1 − a2

8

)
; (A.5)

where Sd = 2�d=2=�(d=2) is the surface of the d-dimensional sphere.
De ning �= (1 + 
)=(2
)¿ 1, the precollisional rescaled velocities c∗∗i and postcol-

lisional ones ci are related by

c∗∗1 = c1 − �(c12 · �̂)�̂ ; (A.6a)

c∗∗2 = c2 + �(c12 · �̂)�̂ : (A.6b)

The gain term (A.1b) thus becomes

Ĩ g =
1

2

∫
Rd
dc2

∫
d�̂	(�̂ · ĉ2)(�̂ · c2)f̃[�(c2 · �̂)�̂]f̃[c2 − �(c2 · �̂)�̂] ; (A.7)

where the function f̃ is isotropic. Performing the integration over c2 before that over �̂,
we choose the x Cartesian coordinate as corresponding to the �̂ direction. The velocity
c2 is thus written c2 = cxx̂ + c⊥, with cx = (c2 · �̂)∈R and c⊥ = c2 − cxx̂∈Rd−1.
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Eq. (A.7) becomes

Ĩ g =
1

2

∫
d�̂

∫
Rd
dc2	(cx)cxf̃(�cx�̂)f̃(c2 − �cx�̂) (A.8)

=
Sd

2

∫ ∞

0
dcxcx

∫
Rd−1

dc⊥f̃(�cx)f̃(
√
c2
⊥ + c2

x(1 − �)2) : (A.9)

Eq. (A.9) is an exact relation within Boltzmann’s framework. Making use of the Sonine
expansion (9) where we retain only the  rst correction a2, Eq. (A.9) becomes

Ĩ g =
Sd

2�d

∫ ∞

0
dcxcxe−[�2+(1−�2)]c2

x

∫
Rd−1

dc⊥e−c
2
⊥

×[1 + a2S2(�2c2
x)]{1 + a2S2[c2

⊥ + c2
x(1 − �)2]} : (A.10)

With the de nition of the second Sonine polynomial S2(x) = x2=2− (d+ 2)x=2 +d(d+
2)=8, one sees that Eq. (A.10) may be expressed as a sum of products of the integrals

J⊥(n) =
∫
Rd−1

dc⊥e−c
2
⊥cn⊥ ; (A.11a)

Jx(n) =
∫ ∞

0
dcx e−[�2+(1−�2)]c2

x cnx ; (A.11b)

that may be computed using the general relation (a¿ 0)∫
Rd
dx|x|ne−ax2

=
�d=2

a(d+n)=2

�[(d+ n)=2]
�(d=2)

: (A.12)

Tedious but technically simple calculations thus lead to

Ĩ g =
SdM(0)

2
√
�

[
2

1 + 
2 + a2D1(
; d) + a2
2D2(
; d)

]
; (A.13)

where the  nal expressions D1(
; d) and D2(
; d) are too cumbersome to be given here.
Finally, the limit c1 → 0 of Eq. (7) is given by the sums of Eqs. (A.5) and (A.13).
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