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Abstract

The universal �nite-size correction to the free energy of a Coulomb system is checked in the

special case of a two-dimensional one-component plasma on a sphere. The correction is related

to the known second moment of the short-range part of the direct correlation function for a

planar system. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Two-dimensional Coulomb systems are models which have attracted some attention.

On a two-dimensional manifold, a Coulomb system is a system made of particles

interacting through the corresponding Coulomb potential plus perhaps some short-range

interaction. In a plane, the Coulomb interaction energy of two particles of charges q and

q′, separated by a distance r, is de�ned as −qq′ ln (r=L), where L is some (irrelevant)

length.

Some time ago, it has been shown that the free energy of such systems has a

universal �nite-size correction [1] very similar (except for its sign) to the one which

occurs in a system with short-range forces at a critical point [2]: for a �nite Coulomb

system of characteristic size R, the free energy F has the large-R behaviour

�F = AR2 + BR+
�

6
ln R+ · · · ; (1)
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where � is the inverse temperature. A and B are non-universal constants describing

the bulk and boundary contributions, respectively. (�=6) ln R is the universal correction,

depending only on the Euler number � which describes the topology of the manifold on

which the system lives. However, the general derivation [1] of (1) had some heuristic

features. The purpose of the present paper is to check (1) in the special case of a

one-component plasma on the surface of a sphere, by a di�erent method.

The one-component plasma is a system made of one species of point-particles of

charge q in a uniform neutralizing background. On a sphere of radius R, the interac-

tion between two particles can be chosen [3,4] as −q2 ln[(2R=L)sin( =2)], where  is

the angular distance (seen from the sphere centre) between the two particles. There

are also particle–background and background–background interactions. A dimensionless

coupling constant is � = �q2.

A sphere has no boundaries and its Euler number is �=2. Furthermore, for a given

particle density, R2 is proportional to the number of particles N . Thus, expansion (1)

becomes

�F = CN + 1
6
lnN + · · · ; (2)

where C is a constant. The model is exactly solvable [3] when � = 2 and it can be

checked [1] that (2) is obeyed in that case. Also, exact calculations [5] for �nite values

of N at � = 4 and � = 6 are well �tted by (2).

The present derivation of (2) relies on a recent result [6] about the direct correlation

function c(r) of the plane one-component plasma. By a diagrammatic analysis, it has

been shown in Ref. [6] that the second moment of the short-range part cSR(r) has the

simple value

n2
∫

cSR(r) r
2 d2r=

1

12�
: (3)

A remarkable feature of (3) is its universality, in the sense that it is independent of the

coupling constant �. It will now be shown how (3) leads to (2). More speci�cally, we

show how (3) implies the �nite-size correction to the chemical potential � = @F=@N :

�� = ��∞ +
1

6N
+ · · · : (4)

This derivation bears some similarity with another one about the two-component plasma

[7,8].

2. Density functional theory approach

We consider the OCP of average density ns on the sphere of radius R (with a

corresponding number of particles N=4�R2ns). Introducing the stereographic projection

of the sphere onto the plane P tangent to its south pole (see Fig. 1), we map the

homogeneous OCP on the sphere onto a modi�ed inhomogeneous plasma on the plane,
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Fig. 1. Stereographic projection from the North pole onto the plane P. A point M on the sphere is projected

onto P, with Cartesian coordinates r (r = 0 at the South pole S).

with local particle density

n(r) = ns

(

1 +
r2

4R2

)−2

: (5)

In terms of planar coordinates r1 and r2, the interaction potential between the two

particles on the sphere with angular distance  12 can be written as the sum of the

planar two-dimensional Coulomb potential vp(r; r
′) = −q2 ln[|r − r′|=L] and one-body

terms since:

− ln

[

2R

L
sin

(

 12

2

)]

=−ln

[

|r1 − r2|

L

]

+
1

2
ln

(

1 +
r21
4R2

)

+
1

2
ln

(

1 +
r22
4R2

)

: (6)

The two one-body terms appearing on the right-hand side of Eq. (6), as well as the

metric, create a central potential and we can consider the projected planar system as

a OCP interacting through the standard pair potential vp, in an external one-body cen-

tral potential V N
R (r). The latter acts as a con�ning mechanism ensuring the proper

density given by Eq. (5), and its detailed form need not be precised. Without back-

ground, the free energy F
′ for the set of particles with pair potential vp can be

formally expanded in a Mayer diagrammatic representation [6], with a leading term

( 1
2
)
∫

n(r)vp(r; r
′)n(r′) d2r d2r′ for the excess (over ideal) part of F′. The presence of

a neutralizing background cancels this mean-�eld electrostatic term and the intrinsic

free energy functional of the inhomogeneous OCP becomes

F[n(r)] =F
′[n(r)]−

1

2

∫

n(r) vp(r; r
′) n(r′) d2r d2r′ : (7)
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The local chemical potential reads

�(r) =
�F[n]

�n(r)
=

�F′[n]

�n(r)
−

∫

vp(r; r
′) n(r′) d2r′ (8)

and the second functional derivative of F yields:

�
��(r)

�n(r′)
=

�2�F′[n]

�n(r)�n(r′)
− �vp(r; r

′) (9)

=−c(r; r′) +
�(r− r′)

n(r)
− �vp(r; r

′) (10)

=−cSR(r; r
′) +

�(r− r′)

n(r)
; (11)

where the variations of the excess contribution to F
′ give rise to the usual direct

correlation function [9], having a short-range part given by

cSR(r; r
′) = c(r; r′) + �vp(r; r

′) : (12)

Note that the chemical potential of the OCP on the sphere coincides with �(0) for the

optimum density pro�le (5).

Eq. (11) emphasizes the short-range dependence of the chemical potential on a

density perturbation. Consequently, �(0) is the same in a �nite N -particle OCP in the

central potential V N
R (r) and in the limit N → ∞ with an external potential V∞

R (r)

ensuring the same density variation around the origin as expression (5), namely:

n(r) = ns

(

1−
r2

2R2

)

+ · · · : (13)

For the purpose of the present analysis, it is su�cient to truncate (5) after second

order in r, as it becomes clear below. The knowledge of the �nite-size correction to

the chemical potential for the OCP on the sphere then amounts to computing the shift

��(0) induced by switching V∞

R (r) starting from the in�nite homogeneous planar OCP

with density ns (corresponding to the stereographic projection of the “spherical” plasma

in the thermodynamic limit R→∞). The density variation caused by the addition of

V∞

R (r) reads �n(r)≃ − nsr
2=(2R2) and induces the shift

� ��(0) =

∫
[

−cSR(r) +
�(r)

n(r)

]

�n(r) d2r (14)

=
ns

2R2

∫

cSR(r) r
2 d2r ; (15)

where the direct correlation function to be considered is that of the homogeneous

reference planar OCP. From sum rule (3), we �nally obtain

� ��(0) =
1

24�nsR2
=

1

6N
; (16)

and Eq. (4) is recovered.
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