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Abstract

We consider the characterization of the nonequilibrium stationary state of a randomly driven granular gas in terms of an

entropy-production-based variational formulation. Enforcing spatial homogeneity, we first consider the temporal stability

of the stationary state reached after a transient. In connection, two heuristic albeit physically motivated candidates for the

nonequilibrium entropy production are put forward. It turns out that none of them displays an extremum for the

stationary velocity distribution selected by the dynamics. Finally, the relevance of the relative Kullbach entropy is

discussed.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Apart from being the subject of intense experimental activity, granular gases are also a particularly fertile
testing ground for new theoretical ideas and problems, especially within the field of nonequilibrium statistical
physics. One such a problem is the role of entropy production as a Lyapunov functional for nonequilibrium
steady states. This problem has its roots in the fifties, in the works of the Brussels group around Prigogine [1]
on the minimum entropy production theorem. The limitations of this theorem, that relies essentially on the
linear response formalism (i.e., has a domain of validity that is restricted to close-to-equilibrium situations),
were rather clear already at that time, and a first extension to far-from-equilibrium situations was
proposed under the form of the phenomenological ‘‘general evolution criterion’’ of Glansdorff and Prigogine
(see Ref. [2] and references therein).
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Since then, there was steady effort, and a huge body of literature, in the search for a variational principle for
steady states that are arbitrarily far from equilibrium. Several candidates for a ‘‘nonequilibrium entropy
production’’ with extremal properties at stationarity were proposed in different contexts, and at various levels
of coarse-graining of the description—from the microscopic to the phenomenological ones. Some success was
encountered for Markovian systems described by a master equation for the probability distribution function
(pdf) of the microstates—starting with the pioneering work of Jiu-li et al. [3], and intensively studied
afterwards (see, e.g., Refs. [4,5] to cite only a few). Also, a connection between the phase space contraction rate
in dissipative, externally driven systems and an entropy production rate was established in some cases, see e.g.,
[6] for a critical discussion. An extension of Jaynes’ maximum entropy inference principle (MaxEnt) to
nonequilibrium situations was proposed [7], and illustrated recently on several examples [8]. The resulting
picture is, however, rather confusing and sometimes even contradictory (e.g., some of the above-mentioned
papers speak of a ‘‘maximum’’ entropy production rate at stationarity, while others refer to a ‘‘minimum’’).

One of the main difficulties of nonequilibrium statistical mechanics is the scarcity of solvable models, on the
basis of which one could, eventually, get some clarification on these controversial points. The purpose of the
present work is to consider such a solvable model, namely a granular gas modeled as an assembly of inelastic
hard-spheres with constant restitution coefficient, in which energy is injected by means of random forces acting
independently upon the particles. The balance between dissipation and the random kicks allows the system to
reach a nonequilibrium steady state (NESS). In a Boltzmann equation description, one can compute (in some
perturbative expansion) the single-particle pdf. This model is widely used and very successful in explaining
many features of granular systems (see, e.g., Refs. [9–11]). One of the question is thus whether this model is
also appropriate in describing thermodynamical properties of granular systems—in particular, the entropy
production rate and its eventual relationship with the relaxation to NESS. We propose two heuristic—albeit
physically motivated—candidates for the nonequilibrium entropy production rate, as functionals of the pdf,
and we discuss their extremal properties in NESS. Such a granular gas has a strong ‘‘built-in’’ irreversible
element at the very level of the grain dynamics, which is represented by the inelasticity of the collisions.
However, one may ask whether in the limit of a very weak inelasticity (i.e., for steady states that are arbitrarily
‘‘close to equilibrium’’) one could recover a kind of ‘‘minimum entropy production theorem’’ in a stochastic
formulation—an equivalent of that described in Ref. [3]. We will also address this point here.

In the next section we are introducing the model, and in Section 3 we study the nonequilibrium steady state
and its linear stability. Section 4 is devoted to the discussion of the nonequilibrium entropy production issue,
and the behavior of the relative Kullback entropy. We conclude in Section 5 with a brief discussion of the
limitations of this model as far as describing the thermodynamics.
2. The model

We consider a granular gas of inelastic hard spheres in dimension dX2, uniformly heated by a stochastic
thermostat, as described in detail in Refs. [9,10]. The particles undergo binary inelastic collisions, modeled
through a constant restitution coefficient a 2 ½0; 1� that is meant to characterize the degree of inelasticity; the
limit a ¼ 1 corresponds to perfect elastic collisions, while a ¼ 0 corresponds to the perfect inelastic ones. Each
particle i (of mass m) is subjected to an external Gaussian white noise force niðtÞ; these forces are uncorrelated
for different particles, and homogeneous in space,

hxi;aðtÞxj;bðt
0Þi ¼ m2x20dijdabdðt� t0Þ; a;b ¼ 1; . . . ; d. (1)

We describe the system at the level of the kinetic theory, and for simplicity, without affecting the overall
conclusions, we shall concentrate on the spatially homogeneous case. For the single particle distribution
function f ðr; v1; tÞ ¼ f ðv1; tÞ, the Boltzmann equation reads then:

qtf ðv1; tÞ ¼ wI ½f ; f � þ
x20
2

q2

qv21
f ðv1; tÞ. (2)

The extra term ðx20=2Þðq
2=qv21Þf ðv1; tÞ accounts for the change in the distribution function caused by the random

‘‘kicks’’ the external thermostat is applying on the grains. It corresponds to an injection of energy at constant
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rate dx20=2 per unit mass. w is the pair correlation function at contact and

I ½f ; f � ¼ sd�1

Z
Rd

dv2

Z
dbryðbr � v12Þðbr � v12Þ 1

a2
b�1 � 1

� �
f ðv1; tÞf ðv2; tÞ (3)

represents the inelastic two-particle collision operator. Here, s is the diameter of the hard spheres; br is a unit
vector joining the centers of the particles at contact; v12 ¼ v1 � v2; yð. . .Þ is the Heaviside step-function; and
b�1 is an operator that restitutes the pre-collisional velocities, i.e.,

b�1v1 ¼ v��1 ¼ v1 �
1þ a
2a
ðv12 � brÞbr, (4a)

b�1v2 ¼ v��2 ¼ v2 þ
1þ a
2a
ðv12 � brÞbr. (4b)

Note that the post-collisional velocities are

bv1 ¼ v�1 ¼ v1 �
1þ a
2
ðv12 � brÞbr, (5a)

bv2 ¼ v�2 ¼ v2 þ
1þ a
2
ðv12 � brÞbr. (5b)

3. Scaling solution and stationary state

3.1. Scaling solution of Boltzmann’s equation

It turns out to be convenient to introduce the pdf ef of rescaled velocities c ¼ v=vT :

f ðv; tÞ ¼
n

vT ðtÞ
d
ef ðc; tÞ, (6)

where n is the number particle density and

vT ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTðtÞ

m

r
(7)

is the thermal velocity associated to the kinetic temperature of the particles,

d

2
kBTðtÞ ¼

1

n

Z
Rd

dv
m

2
v2f ðv; tÞ (8)

(kB is Boltzmann’s constant).
For inelastic collisions, ef ðc; tÞ is different from a Gaussian

fðcÞ ¼
1

pd=2
e�c2 , (9)

and it is customary to characterize its deviation from a Gaussian through a series development in terms of
Sonine polynomials Snðc

2Þ, which, in practice, is truncated to the first non-zero term [11]ef ðc; tÞ ¼ fðcÞ½1þ a2ðtÞS2ðc
2Þ�, (10)

where

S2ðc
2Þ ¼

1

2
c4 �

d þ 2

2
c2 þ

dðd þ 2Þ

8
. (11)

The possible explicit temporal dependence of ef ðc; tÞ appears through the time-dependent coefficient a2ðtÞ of the
Sonine polynomial S2ðc

2Þ.
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For consistency of the description, it is found that the kinetic temperature TðtÞ and the coefficient a2ðtÞ obey
a set of two coupled nonlinear first-order differential equations:

dTðtÞ

dt
¼

mx20
kB

�

ffiffiffiffiffiffiffi
kB

pm

r
nwsd�1ð1� a2ÞSd

d
T3=2ðtÞ 1þ

3

16
a2ðtÞ þ

9

1024
a2
2ðtÞ

� �
, (12)

da2ðtÞ

dt
þ

2mx20
kBTðtÞ

a2ðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTðtÞ

pm

r
4nwsd�1ð1� a2ÞSd

dðd þ 2Þ
1þ

3

16
a2ðtÞ þ

9

1024
a2
2ðtÞ

� �
1þ

dðd þ 2Þ

8
a2ðtÞ

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTðtÞ

pm

r
4nwsd�1Sd

dðd þ 2Þ

1� a2

1þ a2
þD1a2ðtÞ þD2a

2
2ðtÞ

� �
. ð13Þ

Here, Sd ¼ 2pd=2=Gðd=2Þ is the surface of the unit-radius sphere in dimension d, G being Euler’s Gamma
function. Eq. (12) follows from the definition (8) of the kinetic temperature, while Eq. (13) is obtained from the
limit of vanishing velocities of the Boltzmann (2), see Ref. [12]. The coefficients D1 and D2 are given,
respectively, by [12]

D1 ¼
1� 2d � d2

8
þ

1

8ð1þ a2Þ3
½2ð1þa2Þ2ðd2

� 2d � 5Þ þ 4ðd � 1Þða� 1Þ2ð1þ a2Þ þ 8ða4 þ 6a2 þ 1Þ�,

(14)

D2 ¼
dðd þ 2Þ

64
þ

1

32ð1þ a2Þ5
½12a3ð1þ a2Þðd � 1Þðd � 2Þ � 4a2ð1þ a4Þð24þ 4d � d2

Þ

þ 4að1þ a6Þðd þ 6Þðd � 1Þ � ð1þ a8Þð26þ 28d þ 9d2
Þ�. ð15Þ

3.2. Stationary state

In the asymptotic limit, the granular system will reach a stationary state, that results from the balance
between the energy injection by the external thermostat, and the energy dissipation through inelastic collisions
between the particles. The stationary temperature T0 is thus related both to the restitution coefficient a and to
the amplitude x20 of the Gaussian thermostat. Or, to state it differently, in order to ensure a given value of T0

(for a fixed value of a), as resulting from the stationary form of Eq. (12), one has to tune the amplitude x20 of
the stochastic thermostat to

x20 ¼
nwsd�1ð1� a2ÞSd

d
ffiffiffi
p
p

kBT0

m

� �3=2

1þ
3

16
a20 þ

9

1024
a2
20

� �
. (16)

Here, a20 is the stationary value of the coefficient of the first correction to the Gaussian. Its expression can be
obtained from the stationary form of Eq. (13) and it is the solution of the third-order nonlinear equation (see, e.g.,
Ref. [11] for a discussion concerning the relevance of the corresponding three roots in the case of a force-free system):

ð1� a2Þ 1þ
3

16
a20 þ

9

1024
a2
20

� �
1þ a20

ðd þ 2Þðd þ 4Þ

8

� �
¼

ffiffiffi
2
p 1� a2

1þ a2
þD1a20 þD2a

2
20

� �
. ð17Þ

The coefficient a20 can be obtained in a closed analytical form through a Taylor expansion of the above
equation. It was however shown in previous works [12,10] that there are some ambiguities from this
linearization procedure that may affect a20. We therefore chose the linearizing scheme that yields the closest
result to the Monte Carlo simulations of Ref. [12]:

a20 ¼ � 16ð1� a2Þð1þ a2Þð1�
ffiffiffi
2
p
þ a2Þf16

ffiffiffi
2
p
þ 13þ 4dð3

ffiffiffi
2
p
þ 1Þ þ 2d2

ð
ffiffiffi
2
p
� 1Þ

þ a2ð�75þ 44d � 2d2
Þ � a4½16

ffiffiffi
2
p
� 3þ 2dðd þ 6Þð

ffiffiffi
2
p
� 1Þ� þ a6ð�5þ 4d þ 2d2

Þg�1. ð18Þ
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Considering instead the expression derived by van Noije and Ernst [9] would not alter the following
discussion. Note that a20 becomes zero in the elastic limit a ¼ 1, when the stationary probability distribution
recovers trivially the Gaussian, equilibrium shape.

The corresponding stationary pdf is therefore

f 0ðvÞ ¼
n

vd
T0

ef 0ðcÞ ¼
n

vd
T0

fðcÞ½1þ a20S2ðc
2Þ�, (19)

where vT0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT0=m

p
is the stationary value of the thermal velocity.

3.3. Linear stability analysis of the stationary state

The stability of the aforementioned steady state has not been investigated in the literature, even if the
hydrodynamic-like equations have been derived recently for the (dilute) system considered here [13]. A
complete linear stability analysis (and its eventual comparison with the existing results for the homogeneous
cooling state [14]) is a tedious task, and a separate research subject that we shall not address here further.
Instead, we shall consider a simplified version of it, in which the homogeneity of the state is not affected by the
perturbations. This will by no mean influence our general conclusions.

Let us then consider small deviations of the temperature and of the coefficient a2 from their stationary values,

T ¼ T0ð1þ dyÞ; a2 ¼ a20 þ da2, (20)

with jdyj51; jda2j5ja20j.
The linearized evolution equations of these perturbations result from Eqs. (12) and (13),

d

dt
ðdyÞ ¼ �

mx20
kBT0

3

2
dyþ

3=16þ ð9=512Þa20

1þ ð3=16Þa20 þ ð9=1024Þa2
20

da2

� �
, (21)

d

dt
ðda2Þ ¼ �

mx20
kBT0

a20dyþ
d þ 4

2
þ

4

d þ 2
1þ a20

dðd þ 2Þ

8

� �
3

16
þ

9

512
a20

� �"((

�

ffiffiffi
2
p

1� a2
ðD1 þ 2D2a20Þ

#
1þ

3

16
a20 þ

9

1024
a2
20

� ��1)
da2

)
. ð22Þ
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Fig. 1. The eigenvalues of the linear stability matrix for the stationary state as a function of a for d ¼ 2 and 3. The eigenvalues are

measured in units t�10 ¼ nsd�1wSd vT0
=
ffiffiffiffiffiffi
2p
p

.
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In Fig. 1, we have represented the two eigenvalues of the corresponding stability matrix as a function of the
restitution coefficient a, for both d ¼ 2 and 3 cases.

One notices that the two eigenvalues are strictly negative for ao1, which indicates the stability of the
stationary state with respect to small perturbations in the temperature and in the shape of the pdf (in the
scaling form). We emphasize again that spatial homogeneity has been enforced here. As expected, in the elastic
limit a ¼ 1 one of the eigenvalues becomes zero (while the other one remains negative)—which corresponds to
the temperature becoming a marginal mode, and to a relaxation of the distribution function to its equilibrium
Gaussian shape.
4. Entropy production

We now turn to the issue of entropy. For our homogeneous system, we consider the Shannon information
entropy

SðtÞ � �kB

Z
Rd

dv1f ðv1; tÞ ln
f ðv1; tÞ

ehd

� �
(23)

(with Euler’s number e, Planck’s constant h, and ehd the volume of the semiclassical elementary
phase-space cell). It is known that in the elastic limit a ¼ 1 (and in the absence of an external drive)
this reduces to the appropriate expression of the usual thermodynamic entropy and leads to the classical
‘‘H-theorem’’. We now consider the time evolution of SðtÞ as governed by the Boltzmann equation (2),
which reads

dS

dt
¼ � kB

Z
Rd

dv1
qf ðv1; tÞ

qt
ln

f ðv1; tÞ

ehd

� �
¼ �wkB

Z
Rd

dv1I ½f ; f � ln
f ðv1; tÞ

ehd

� �
�

kBx
2
0

2

Z
Rd

dv1
q2

qv21
f ðv1; tÞ ln

f ðv1; tÞ

ehd

� �
. ð24Þ

As mentioned in the Introduction, we wish to introduce a heuristic—albeit physically motivated—entropy
production functional that, hopefully, displays extremal properties in NESS. We shall propose two
approaches. But before proceeding further, we would like to remind the reader the status of dS=dt within the
framework of phenomenological thermodynamics as discussed in standard textbooks [15–17], as well as some
of its extensions to stochastic systems [3–5]. Entropy variations are usually split into two parts:

dS

dt
¼ sirr þ sflux, (25)

where sirrX0 is the entropy production arising due to the dissipative processes that take place inside the
system (that is positively defined according to the second principle of thermodynamics), while the entropy flux
sflux ¼ �

R
V
dVr � JS accounts for the external forces driving the system into a nonequilibrium state (the

related contribution is often reduced to boundary terms). The ‘‘art’’ of phenomenological thermodynamics
precisely bears on JS and on how to decompose it in terms of the energy, particle, momentum, chemical, etc.,
currents. This is done, usually, on the basis of the local equilibrium hypothesis. In a similar way, sirr often
appears as a bilinear form in the fluxes running through the system and the conjugate affinities. In the near-to-
equilibrium regime, the fluxes are usually proportional to the conjugated affinities, with the Onsager
coefficients as proportionality factors, and one recovers Prigogine’s minimum theorem for sirr under the
hypothesis of time-reversibility of the underlying microscopic dynamics.

However, in view of the local character of the energy injection mechanism, as well as of the spatial
homogeneity of the system, the situation is completely different in the case we are considering. Indeed, unlike
the above-mentioned ‘‘conventional’’ NESS, there are neither macroscopic, however weak, currents running
across the system, nor the related phenomenological Onsager response coefficients. Therefore, the separation
into ‘‘source’’ and ‘‘flow’’ for the entropy variation is much more tricky.
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First approach: A first proposed choice of the ‘‘entropy production’’ is

sirr ¼
kBwsd�1

4

Z
dv1 dv2 dbryðbr � v12Þbr � v12ðf ��1 f ��2 � f 1 f 2Þ ln

f ��1 f ��2
f 1f 2

� �
þ

x20
2

Z
dv
ðrvf Þ

2

f
, (26)

the form of the first r.h.s. term being simply chosen by analogy with the elastic-limit case. The second term has
been chosen by analogy with standard diffusion processes. In those processes this term vanishes at equilibrium
because the gradients disappear. Note, however, that here the diffusion process happens in the velocity space,
and thus the vanishing of this term at equilibrium is not due to the system becoming homogeneous in v-space,
but because of the energy source strength x20 being tuned to 0. The above sirr appears to be the sum of two
positive definite terms, and it is therefore also positive definite. Furthermore, sirr can only be zero at

equilibrium, namely when both the energy source (the random kicks) and the energy sink (the dissipative
collisions) are tuned to zero. In that respect, it fulfills the properties expected from standard phenomenological
thermodynamics.

On the other hand, the form of the entropy flux sflux is now constrained to be

sflux ¼
kBwsd�1

4

Z
dv1 dv2 dbryðbr � v12Þbr � v12 f 1f 2 ln

ðf ��1 f ��2 Þðf 1f 2Þ
1�a2

ðf �1f �2Þ
2�a2

" #
, (27)

where we have used the shorthand notations f 1;2 ¼ f ðv1;2; tÞ, respectively f ��1;2 ¼ f ðv��1;2; tÞ for the distribution
functions corresponding to the pre-collisional velocities (4). The above functional of f is negative for a large
class of trial functions, and must definitely assume a negative value sflux�� ðð1� a2Þ=‘ÞT1=2

0 in the steady state
(‘�1=wsd�1 is the mean free path). However, aside from conveying the shrinking of phase space volumes, we
must dismiss both sirr and sflux as relevant candidates for an extremum-entropy functional. Indeed, in the
spirit of phenomenological thermodynamics, the splitting of dS=dt into sirr and sflux is motivated by the desire
to isolate the driving processes (the source and sink referred to above) from the irreversible processes inside the
system. However, there is no simple and univoque manner to do so, and definitely this first choice is not
accomplishing this physically motivated requirement. It must be noted that the last term of Eq. (26) could
have also chosen as a part of sflux, which would then have featured both the source and the sink, at the price of
abandoning its negative definiteness.

Second approach: We now propose an alternative and perhaps more pragmatic route, which consists in
isolating as the only driving mechanism the random kicks provided by the thermostat. The inelastic collisions,
viewed above as an energy sink, are now incorporated into a term describing the system’s intrinsic dissipative
microscopic dynamics. Along these lines we henceforth write that

dS

dt
¼ ssyst þ sext. (28)

The first contribution ssyst corresponds to the entropy production inside the system, i.e., it comes from the
changes of the particles velocities during the binary inelastic collisions,

ssyst ¼
kBwsd�1

2

Z
Rd

dv1

Z
Rd

dv2

Z
dbryðbr � v12Þðbr � v12Þf 1f 2 ln

f 1f 2

f �1f �2

� �
, (29)

where we have used the shorthand notation f �1;2 ¼ f ðv�1;2; tÞ for the distribution functions corresponding to the
post-collisional velocities (5). Of course, in the limit of elastic collisions a ¼ 1 the expression of ssyst reduces to
the usual positive-definite expression of the hard-disk gas that enters the H-theorem. However, in general ssyst

does not have a definite sign. One can imagine the entropy production inside the system as resulting from two
antagonist (although actually undissociated) mechanisms, namely a generic disordering effect of any particle
collisions (e.g., that is also present for elastic hard spheres) in dX2, and an ordering effect due to the inelastic
character of the collisions (i.e., to the reduction of the translational agitation of the particles). Depending on
the actual shape of the distribution function, one of these two mechanisms may prevail on the other, thus
determining the sign of the instantaneous value of ssyst.

The second contribution sext is determined by the effect of the thermostat on the distribution function of the
particles of the system. It corresponds to an energy injection into the system, and to a disordering effect of the
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particles velocities (through ‘‘random kicking’’), and therefore, as expected, is always a positively defined

quantity,

sext ¼
kBx

2
0

2

Z
Rd

dv
1

f ðv; tÞ
½=vf ðv; tÞ�

2. (30)

Introducing the dimensionless quantities

essyst;ext ¼
2ssyst;ext

wsd�1vT0
n2

, (31)

one obtains the expressions for the dimensionless time-dependent entropy production sources:

essyst ¼
TðtÞ

T0

� �1=2 Z
Rd

dc1

Z
Rd

dc2

Z
dbr yðbr � c12Þðbr � c12Þ ef ðc1; tÞef ðc2; tÞ ln ef ðc1; tÞef ðc2; tÞef ðc�1; tÞef ðc�2; tÞ

" #
, (32)

respectively,

esext ¼
T0

TðtÞ

� �
ð1� a2ÞSd

2d
ffiffiffiffiffiffi
2p
p 1þ

3

16
a2ðtÞ þ

9

1024
a2
2ðtÞ

� � Z
Rd

dc
1ef ðc; tÞ ½=c

ef ðc; tÞ�2. (33)

In the stationary regime at temperature T0 one has, obviously, essyst ¼ �esext � �es0. The quantity es0 is positive
and decaying monotonously with a, as illustrated in Fig. 2. Note that es0 is nonzero as long as the collisions are
inelastic, i.e., as long as the stationary probability distribution is non-Gaussian. Note also the negativity ofessyst in the stationary state—the ordering effect due to the inelastic character of the collisions prevails on the
generic disordering effect of the collisions.

Let us now address the question whether the entropy production (as a whole, or one of its parts essyst or esext)
can play the role of some kind of ‘‘nonequilibrium potential’’ for the system, i.e., whether or not it can account
for the linear stability of the stationary state of the system. The particular case of the quasi-elastic limit
� � 1� a51 is especially interesting, given that the stationary state is close to equilibrium. One might then
expect a priori that a ‘‘minimum entropy production theorem’’ (in the spirit of the ‘‘extended Prigogine
theory’’ [3]) might be valid in this case.

Consider thus small perturbations of the temperature and of the coefficient a2 around their stationary
values, as in Eq. (20). A Taylor development of the entropy production terms essyst and esext leads to nonzero
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Fig. 2. The dimensionless stationary entropy production es0 as a function of a in d ¼ 2 and 3.
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linear contributions in the perturbations dy and da2,

essyst � ð�es0Þ ¼ � dy
es0
2

� �
þ da2

Z
Rd

dc1

Z
Rd

dc2

Z
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2 Þ
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þ
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þ
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ln
ef 0ðc1Þ

ef 0ðc2Þef 0ðc
�
1Þ
ef 0ðc

�
2Þ

" #)
þOðdy2; da2

2; dyda2Þ, ð34Þ

respectively,

esext � ðes0Þ ¼ � dyðes0Þ þ da2
3=16þ ð9=512Þa20

1þ ð3=16Þa20 þ ð9=1024Þa2
20

es0 þ ð1� a2ÞSd

2d
ffiffiffiffiffiffi
2p
p 1þ

3
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9
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� �(
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dc
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ef 0ðcÞÞ � ½=cðe
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2
ðe�c2S2ðc

2ÞÞ

pd=2ef 2
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ð35Þ

The total entropy production essyst þ esext also contains linear terms in the perturbations dy and da2.
The same holds true even in the quasielastic limit � � 1� a51, when one can evaluate explicitly to Oð�2Þ the

expression of the coefficients of the perturbations. More precisely,

esext � ð�es0Þ ¼ �dy es0
2

� �
� da2

ffiffiffi
2
p

pðd�1Þ=2

Gðd=2Þ
2ðd � 1Þ a20 þ

4d þ 5

8
� þOð�2Þ

� �
,

essyst � es0 ¼ �dy ðes0Þ þ da2
3

16
es0 þ Oð�2Þ

� �
, (36)

where the stationary values are

es0 ¼ 2
ffiffiffi
2
p

pðd�1Þ=2

Gðd=2Þ
� þ Oð�2Þ (37)

and

a20 ¼ �

ffiffiffi
2
p
ð
ffiffiffi
2
p
� 1Þ

d � 1
� þ Oð�2Þ. (38)

The meaning of this result is that the entropy production as defined above cannot be used for a variational
description of the relaxation of the system towards the stationary state, not even in the quasi-elastic limit.

One may argue that the choice of the definition of the entropy production inside the system might be
inappropriate, since it refers only to the translational degrees of freedom, and it does not take into account
properly the internal degrees of freedom of the particles—that are, in fact, responsible for the inelastic
character of the collisions. The description of the inelasticity through a constant restitution coefficient a might
thus be incompatible with a thermodynamic description of the system in terms of entropy production. We note
that it is known that such a model, although being a useful approximation which captures important physical
effects, is in fact incompatible with basic mechanical laws (see, e.g., Ref. [11], Chapter 3).

Let us now discuss briefly another issue that recently drew some attention, see Refs. [18,19], namely that of
the Kullback relative entropy, defined as

SRðtÞ ¼ � kB

Z
Rd

dvf ðv; tÞ ln
f ðv; tÞ

f 0ðvÞ

� �
¼ �

kBn

vd
T

Z
Rd

dcfðcÞ½1þ a2S2ðc
2Þ� ln

vd
T0

vd
T

1þ a2S2ðc
2Þ

1þ a20S2ðc2Þ

 !
. ð39Þ
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SRðtÞ is a measure of the ‘‘distance’’ between the actual pdf f ðv; tÞ and its stationary profile f 0ðvÞ, and, of
course, is equal to zero at the stationary state. Following Ref. [19], one can parametrize SRðtÞ through the two
sets of parameters, fg1 ¼ a2ðtÞ; g2 ¼ TðtÞg for the nonstationary state, respectively fg10 ¼ a20; g20 ¼ T0g for the
stationary pdf. Considering as above (Section 3.3) small deviations of the temperature and of the coefficient a2

(that result in a small deviation df ðv; tÞ of the pdf) from their stationary values, one finds:

dSR � �
kB

2

Z
Rd

dv
1

f 0ðvÞ
½df ðv; tÞ�2 ¼ �

1

2

X
i;j¼1;2

F ijdg1dg2p0, (40)

where dg1 ¼ da2, dg2 ¼ T0dy, and F ij is the positively defined Fisher information matrix [20]

Fij ¼ kB

Z
Rd

dvf 0ðvÞ
q ln f 0ðvÞ

qgi0

� �
q ln f 0ðvÞ

qgj0

 !
. (41)

It looks therefore as if this relative entropy has the required property of extremum at the steady state (and
monotonous exponential asymptotic relaxation towards it). This property has already been demonstrated for
other types of nonequilibrium stochastic systems (e.g., in Ref. [18], the one-dimensional Ornstein–Uhlenbeck
and Rayleigh processes, noise-perturbed harmonic oscillator, dichotomous noise). The question arises about
its relationship with the thermodynamic entropy production; in Ref. [19] it was shown that in the case of the
usual Smoluchowski diffusion the Kullback entropy time-variation rate coincides with the Shannon entropy
production rate. However, some further case-studies (in particular, on systems described by kinetic
Boltzmann-like equations) are necessary before generalizing this important conclusion to other none-
quilibrium situations. In particular, although very appealing, the Kullback entropy does not reduce to the
usual H-functional in the limit of an elastic gas of particles relaxing to equilibrium. Besides that, computing
Kullback entropy requires the knowledge of the steady-state pdf, while the expected approach would be to
define a proper Lyapunov functional of the system from which to deduce the stationary state.
5. Conclusions

We illustrated on the well-known model of a randomly driven granular gas with constant restitution
coefficient the difficulties that one encounters when trying to construct a variational principle for NESS based
on an ‘‘entropy production’’. Two approaches were proposed for the interpretation of the entropy balance
equation in terms of ‘‘sources’’ and ‘‘flows’’, but none of them lead to the formulation of such a principle. The
main reason for this failure seems to be the intrinsic irreversible microscopic dynamics of the granular gas.
Modeling the internal degrees of freedom of the grains (that are responsible for the inelasticity of the
collisions) through a constant restitution coefficient is thus not appropriate for a thermodynamic description.
This shows thus a major limitation of this model. A further step in the rather involved question of the
refinement of the description would be the use of random restitution coefficients (as done, e.g., in Ref. [21]).
These are meant to describe the possible flow of energy (at the collision) both towards and from the internal
degrees of freedom to the translational degrees of freedom. Such a model, however, cannot be treated
analytically, and no simple analytic conclusions can be therefore drawn on the fate of the corresponding H-
functional. Numerical results are left for further studies.

Moreover, the problem of the Kullback relative entropy, its monotonous relaxation to the steady state, and
its relationship with the thermodynamic entropy production of a nonequilibrium system represent a very
promising direction for further studies.
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