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Critical phenomena and phase sequence in a classical bilayer Wigner crystal at zero temperature
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We study the ground-state properties of a system of identical classical Coulombic point particles, evenly
distributed between two equivalently charged parallel plates at distance d; the system as a whole is electroneutral.
It was previously shown that upon increasing d from 0 to ∞, five different structures of the bilayer Wigner
crystal become energetically favored, starting from a hexagonal lattice (phase I, d = 0) and ending at a staggered
hexagonal lattice (phase V, d → ∞). In this paper, we derive series representations of the ground-state energy for
all five bilayer structures. The derivation is based on a sequence of transformations for lattice sums of Coulomb
two-particle potentials plus the neutralizing background, having their origin in the general theory of Jacobi theta
functions. The series proposed in this manuscript provide convenient starting points for both analytical and
numerical progress. Its convergence properties are indeed excellent: truncation at the fourth term determines in
general the energy correctly up to 17 decimal digits. The accurate series representations are used to improve the
specification of transition points between the phases and to solve a controversy in previous studies. In particular,
it is shown both analytically and numerically that the hexagonal phase I is stable only at d = 0, and not in a finite
interval of small distances between the plates as was anticipated before. The expansions of the structure energies
around second-order transition points can be done analytically, which enables us to show that the critical behavior
is of the Ginzburg-Landau type, with a mean-field critical index β = 1/2 for the growth of the order parameters.
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I. INTRODUCTION

Classical charged particles, confined in a two-dimensional
(2D) layer and interacting via the usual three-dimensional
Coulomb potential, exhibit a crystallization into a Wigner
hexagonal structure, when kinetic energy is small compared to
potential energy.1,2 We shall be interested here in bilayer sys-
tems that describe several properties of real physical systems in
condensed and soft matter, such as semiconductors,3 quantum
dots,4 boron nitride,5 laser-cooled trapped ion plasmas,6 dusty
plasmas,7 and colloids.8 For a recent review of numerical
methods for quasi-2D systems with long-range interactions,
see Ref. 9. In addition, the creation of a bilayer Wigner
crystal on two charged plates at some distance is of primary
importance in the study of “anomalous” strong-coupling
effects such as like-charge attraction or overcharging.10–15

In this paper, we study the ground-state properties of
a classical one-component plasma of identical Coulombic
particles of the charge −e, evenly distributed between two
plates of the same homogeneous fixed charge density σe,
which are at distance d. The total surface density of the
particles is n, the particle density in each layer is nl = n/2.
The overall electroneutrality of the system is ensured by
the condition nl = σ . The phase diagram of the system at
temperature T = 0 is determined by a single dimensionless
parameter η = d

√
n/2 = d

√
σ . By comparing the static en-

ergy of various lattices, five distinct phases were detected to be
stable (providing global minimum of the energy) in different
ranges of η.16–22 In order of increasing η, these phases are a
hexagonal lattice (I) for η ∈ [0,ηc

1], a staggered rectangular
lattice (II) for η ∈ [ηc

1,η
c
2], a staggered square lattice (III) for

η ∈ [ηc
2,η

c
3], a staggered rhombic lattice (IV) for η ∈ [ηc

3,η
c
4]

and a staggered hexagonal lattice (V) for η ∈ [ηc
4,∞]; although

we use an index c in ηc, the transition point ηc from one
structure to the other is not necessarily a critical point.
The structures are pictured in Fig. 1. The different symbols

correspond to particle positions on the opposite surfaces. The
primitive translation vectors of the Bravais lattice on one of
the surfaces are denoted by a1 and a2.

The ground-state structures I, III and V are “rigid,” i.e., they
have fixed (η-independent) primary cells within their region
of stability. The structures II and IV are “soft,” i.e., the shape
of their primary cells is varying with increasing η, within their
region of stability. We now outline the basic characteristics of
the structures.16–22

(i) Structures I, II, and III: Within one single layer, the
structure corresponds to a rectangular lattice with the aspect
ratio � = |a2|/|a1|. The equivalent structures on the two
layers are shifted with respect to one another by a half period,
i.e., by (a1 + a2)/2. Structure I with � = √

3 arises naturally
in the simple limit η → 0, where the bilayer structure reduces
to a single layer, which is known to crystallize in a hexagonal
(equilateral triangular) lattice.23,24 An open question is whether
phase I (with the fixed aspect ratio � = √

3) exists only
at η = 0 or is stable also in a finite interval [0,ηc

1] with
some ηc

1 > 0. Some numerical calculations indicate very
small, but nonzero values of ηc

1 = 0.006 (Ewald technique18)
and 0.028 (Monte Carlo simulations20). On the other hand,
another study for Yukawa bilayers in the limit of infinite
screening length indicates that ηc

1 = 0, so that a buckled
phase of type II preempts structure I when η is small but
nonvanishing.21 Structure II continuously interpolates between
the rigid structures I and III. The value of the aspect ratio �

then changes smoothly from
√

3 at ηc
1 (phase I) to 1 at the

transition point ηc
2 to phase III. It is not clear whether or not

ηc
1, zero or nonzero, is a standard transition point between

phases I and II. The transition between phases II and III is
continuous (of second order).

(ii) The structure IV is characterized by an angle θ between
primitive cell vectors a1 and a2 of the same length a.
Increasing η, the angle ϕ changes continuously from π/2 at
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FIG. 1. Ground-state structures I–V of counterions on two paral-
lel equivalently and homogeneously charged plates. Open and filled
symbols correspond to particle positions on the opposite surfaces.
The primitive translation vectors of the Bravais lattice on one of the
surfaces are denoted by a1 and a2. For structures I–III, we define
the aspect ratio as � = |a1|/|a2|, so that � = √

3 with structure I,
1 < � <

√
3 for structure II, and � = 1 for structure III. The dashed

circle for structure IV is a guide to the eye for identifying those points
that are equidistant to the ion in the circle center. For a more detailed
description of the structures, see the text.

ηc
3 (continuous transition between phases III and IV) up to

ηc
4, where it drops to π/3. Together with an additional shift

between the sublattices on the two layers, this corresponds to
a discontinuous (first-order) transition to phase V.

(iii) The presence of structure V is expected for large
enough η � ηc

4: At large separation between the layers, the
two-particle sublattices are only weakly coupled and so two
staggered hexagonal lattices form the stable structure.

In this paper, we derive series representations of the energy
for all five bilayer structures. The derivation is based on

a sequence of transformations for lattice sums of Coulomb
potentials plus the neutralizing background, having their origin
in the general theory of Jacobi theta functions.25 The series
has excellent convergence properties, which is convenient for
numerical investigations, but is also conducive to analytical
progress. It will be used to improve the specification of transi-
tion points between the phases and to solve the aforementioned
controversy concerning the stability of phase I. In particular,
it is shown both analytically and numerically that phase I is
realized only at η = 0, i.e., ηc

1 = 0. The expansions of the
structure energies around second-order transition points can
be done analytically, which enables us to derive the critical
exponents at phase transition points. The critical behavior is of
the Ginzburg-Landau type,26 with the mean-field critical index
β = 1/2 for the growth of the order parameters. A preliminary
account of this work has appeared in Ref. 27.

The paper is organized as follows. Section II is devoted
to a detailed derivation of the series representation of the
energy for structures I–III. The existence of phase I at η = 0
only is established analytically and illustrated numerically.
The second-order phase transition between phases II and
III is then described. The energy of structure IV and the
second-order phase transition between phases III and IV are
treated in Sec. III. Section IV deals with structure V and the
first-order phase transition between phases IV and V, while
our conclusions are finally presented in Sec. V.

II. PHASES I–III

Structures I, II, and III are treated on equal footings by
considering the general case of structure II (see Fig. 1). For one
single layer, the 2D lattice points are indexed by ja1 + ka2,
where j,k are any two integers (positive, negative, or zero) and

a1 = a(1,0), a2 = a(0,�) with a = 1√
σ�

(1)

are the primitive translation vectors of the Bravais lattice.
The lattice spacing a is determined by the electroneutrality
condition nl = σ with the one-layer particle density nl =
1/(�a2). The aspect ratio � is a continuous parameter in the
interval [1,

√
3]; as was already mentioned, the limiting cases√

3 and 1 correspond to the phases I and III, respectively.

A. Energy of phases I–III

The dielectric constant of the medium is set to unity for
simplicity, and we start by a preliminary remark, valid for all
phases. Our goal is to compute the total electrostatic energy,
including particle-particle, particle-plate, and plate-plate in-
teractions. The latter two contributions per unit surface can be
derived straightforwardly, and respectively read as 4πσ 2e2d

and −2πσ 2e2d. The sum of both, 2πσ 2e2d, thus gives 1/2
of the particle-plate energy, and this is why in the subsequent
analysis, we shall add to the nontrivial particle-particle energy
one half of the particle-plate energy (also referred to as the
particle-background term). The resulting sum provides the full
energy of the system.

The energy per particle E of the bilayer system consists of
the intralayer and interlayer contributions

E = Eintra + Einter. (2)
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We first consider the intralayer contribution. It is well known
that lattice sums involving the pair Coulomb interactions
exhibit infinities which are canceled exactly by the neutralizing
background term.9,28 To maintain mathematical rigor, we first
restrict ourselves to a disk of finite radius R around a reference
particle localized at the origin (0,0). The interaction energy due
to the discrete Wigner crystal is given by

e2

2a

∑
j,k

(j,k)�=(0,0)

1√
j 2 + k2�2

, j 2 + k2�2 �
(

R

a

)2

. (3)

Hereinafter, the omission of the lower and upper values for
integer indices j,k automatically means a summation from
−∞ to ∞. The interaction of the reference particle with the
2D charge background in the disk is expressed as

−σe2

2

∫ R

0
d2r

1

|r| = − e2

2a�

∫ R/a

0
dr 2πr

1

r
. (4)

Eintra is the sum of Eqs. (3) plus (4). We intend to rewrite Eintra

by using the gamma identity

1√
z

= 1√
π

∫ ∞

0

dt√
t
e−zt , z > 0 (5)

a common procedure in the field.9,28 Each term 1/(j 2 +
k2�2)1/2 in Eq. (3) can consequently be written as

1√
j 2 + k2�2

= 1√
π

∫ ∞

0

dt√
t
e−tj 2

e−t�2k2
. (6)

As concerns the background contribution (4), the application
of the identity (5) to the term 1/r = 1/

√
r2 under integration

leads to∫ R/a

0
dr 2πr

1

r
=

∫ R/a

0
dr 2πr

1√
π

∫ ∞

0

dt√
t
e−tr2

= 1√
π

∫ ∞

0

dt√
t

π

t

[
1 − e−t(R/a)2]

. (7)

Altogether, we get

Eintra = e2

2a
√

π

∫ ∞

0

dt√
t

{ ∑
j,k

e−tj 2
e−t�2k2 − 1

− π

t�

[
1 − e−t(R/a)2]}

, j 2 + k2�2 �
(

R

a

)2

. (8)

Here, the subtraction of unity is due to the absence of the term
(j,k) = (0,0) in the sum (3). Having all contributions under the
same integration, we are allowed to take the limit R/a → ∞,
which removes the exponentially small term exp[−t(R/a)2]
and the disk constraint for lattice indices. By using the
definition of the Jacobi theta function with zero argument29

θ3(q) = ∑
j qj 2

and making the substitution t� → t , we end
up with the result

Eintra

e2
√

n
= 1

23/2
√

π

∫ ∞

0

dt√
t

[
θ3(e−t�)θ3(e−t/�) − 1 − π

t

]
.

(9)

We shall repeatedly use the Poisson summation formula
∞∑

j=−∞
e−(j+φ)2t =

√
π

t

∞∑
j=−∞

e2πijφe−(πj )2/t . (10)

The asymptotic behaviors

θ3(e−t ) ∼t→0

√
π

t
(1 + 2e−π2/t + · · ·),

θ3(e−t ) ∼t→∞ 1 + 2e−t + · · · (11)

follow immediately. We see that the background charge
contribution −π/t correctly cancels the t → 0 singularity of
the product of two θ3 functions inside the square bracket in
Eq. (9) and the integral converges.

The Wigner lattices on the opposite layers are shifted with
respect to one another by the vector (a1 + a2)/2 (see Fig. 1).
To obtain the interlayer contribution to the energy, we first
consider the disk of radius R around the (perpendicular) image
of the reference particle on the opposite layer. The interaction
energy of the Wigner crystal is given by

e2

2a

∑
j,k

1√(
j − 1

2

)2 + (
k − 1

2

)2
�2 + (d/a)2

,

(
j − 1

2

)2

+
(

k − 1

2

)2

�2 �
(

R

a

)2

. (12)

The interaction with the background charge is described by

−σe2

2

∫ R

0
d2r

1

|r + d| = − e2

2a�

∫ R/a

0
dr 2πr

1√
r2 + (d/a)2

.

(13)

Proceeding as in the previous case and taking into account that
d/a = η

√
�, we find

Einter

e2
√

n
= 1

23/2
√

π

∫ ∞

0

dt√
t
e−η2t

[
θ2(e−t�)θ2(e−t/�) − π

t

]
(14)

with the Jacobi theta function θ2(q) = ∑
j q(j− 1

2 )2

. It follows
from Eq. (10) that

θ2(e−t ) ∼
t→0

√
π

t

(
1 − 2e−π2/t + . . .

)
,

θ2(e−t ) ∼
t→∞ 2 e−t/4 + . . . , (15)

so that the integral in Eq. (14) converges, as it should.
The total energy per particle E reads as

E(�,η)

e2
√

n
= 1

23/2
√

π

∫ ∞

0

dt√
t

{[
θ3(e−t�)θ3(e−t/�) − 1 − π

t

]

+ e−η2t

[
θ2(e−t�)θ2(e−t/�) − π

t

]}
. (16)

Note the invariance of E with respect to the transformation
� → 1/�, which is physically clear from the configuration
sketched in Fig. 1 (label exchange of the two Bravais vectors
a1 and a2). From a numerical point of view, there are
two “dangerous” limits, t → 0 and t → ∞, that jeopardize
accuracy. To simplify the integral representation of E, we
split the range of integration into two parts, [0,π ] and
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[π,∞], and transform the integral over [π,∞] to the one over [0,π ] by using the Poisson formula (10). For the term
containing the product of two θ3 functions, the procedure reads as

∫ ∞

π

dt√
t

[
θ3(e−t�)θ3(e−t/�) − 1 − π

t

]
≡

∫ ∞

π

dt√
t

⎡
⎣∑

j

e−tj 2�
∑

k

e−tk2/� − 1 − π

t

⎤
⎦

=
∫ ∞

π

dt√
t

⎡
⎣π

t

∑
j

e−(πj )2/(�t)
∑

k

e−(πk)2�/t − 1 − π

t

⎤
⎦

=
∫ π

0

π dt ′

(t ′)3/2

⎡
⎣ t ′

π

∑
j

e−t ′j 2/�
∑

k

e−t ′k2� − 1 − t ′

π

⎤
⎦

≡
∫ π

0

dt√
t

[
θ3(e−t�)θ3(e−t/�) − 1 − π

t

]
. (17)

Here, going from the third integral to the fourth one, we applied the substitution t ′ = π2/t . Similarly, we have

∫ ∞

π

dt√
t
e−η2t

[
θ2(e−t�)θ2(e−t/�) − π

t

]
≡

∫ ∞

π

dt√
t
e−η2t

⎡
⎣∑

j

e−t(j− 1
2 )2

�
∑

k

e−t(k− 1
2 )2

/� − π

t

⎤
⎦

=
∫ ∞

π

dt√
t
e−η2t

⎡
⎣π

t

∑
j

(−1)j e−(πj )2/(�t)
∑

k

(−1)ke−(πk)2�/t − π

t

⎤
⎦

=
∫ π

0

π dt ′

(t ′)3/2
e−(πη)2/t ′

⎡
⎣ t ′

π

∑
j

(−1)j e−t ′j 2/�
∑

k

(−1)ke−t ′k2� − t ′

π

⎤
⎦

≡
∫ π

0

dt√
t
e−(πη)2/t [θ4(e−t�)θ4(e−t/�) − 1], (18)

where the Jacobi theta function θ4(q) = ∑
j (−1)j qj 2

. The
asymptotic behaviors

θ4(e−t ) ∼
t→0

√
π

t
e−π2/(4t) + · · · , θ4(e−t ) ∼

t→∞ 1 − 2e−t + · · ·
(19)

ensure the convergence of the resulting integral. To summarize
this paragraph, the total energy (16) can be rewritten as an
integral over the finite interval [0,π ] as follows:

E(�,η)

e2
√

n
= 1

23/2
√

π

∫ π

0

dt√
t

{
2

[
θ3(e−t�)θ3(e−t/�) − 1 − π

t

]

+ e−η2t

[
θ2(e−t�)θ2(e−t/�) − π

t

]

+ e−(πη)2/t
[
θ4(e−t�)θ4(e−t/�) − 1

] }
. (20)

The exact cancellation of singular terms near t = 0 in this
expression for E represents a numerical obstacle that should
be circumvented. To accomplish the cancellation analytically,
we shall consider the series representations of Jacobi theta
functions and apply to them the Poisson transformation
formula (10); after subtracting explicitly the singular term,

the result appears as a series of special functions. In particular,
for the first term in the integral (20), we obtain

∫ π

0

dt√
t

[
θ3(e−t�)θ3(e−t/�) − 1 − π

t

]

=
∫ π

0

dt√
t

⎡
⎣∑

j,k

e−tj 2�e−tk2/� − π

t

⎤
⎦ − 2

√
π

=
∫ π

0
dt

π

t3/2

⎡
⎣∑

j,k

e−(πj )2/(�t)e−(πk)2�/t − 1

⎤
⎦ − 2

√
π.

(21)

The subtraction of the singularity is equivalent to the omission
of the term (j,k) = (0,0) from the summation. Using the
substitution t ′ = t/π2 and introducing the function

zν(x,y) =
∫ 1/π

0

dt

tν
e−xt e−y/t for y > 0, (22)
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the last expression in Eq. (21) can be written as

2
∞∑

j=1

[z3/2(0,j 2/�) + z3/2(0,j 2�)] + 4
∞∑

j,k=1

z3/2(0,j 2/� + k2�) − 2
√

π. (23)

Finally, performing the above procedure for all terms under integration in Eq. (20), we end up with the series representation

E(�,η)

e2
√

n
= 1

23/2
√

π

{
4

∞∑
j=1

[z3/2(0,j 2/�) + z3/2(0,j 2�)] + 8
∞∑

j,k=1

z3/2(0,j 2/� + k2�)

+ 2
∞∑

j=1

(−1)j [z3/2((πη)2,j 2/�) + z3/2((πη)2,j 2�)] + 4
∞∑

j,k=1

(−1)j (−1)kz3/2((πη)2,j 2/� + k2�)

+ 4
∞∑

j,k=1

z3/2(0,η2 + (j − 1/2)2/� + (k − 1/2)2�) − 4
√

π − πz1/2(0,η2)

}
. (24)

The function zν(x,y) with x = 0 is related to the so-called
Misra function,30,31 which was extensively used in single-layer
lattice summations.32,33 For our bilayer system with positive
η, we need the more general function (22) with x � 0. The
convergence properties of our series can be anticipated from
the asymptotic relation zν(0,y) ∼ e−πyπν−2/y.

In numerical calculations, for a given η we have to find
such �∗ which provides the minimum value of the energy
(24). In practice, the series (24) must be cut at some j,k = M .
We document excellent convergence properties of the series
(24) by considering the single-layer case (� = √

3,η = 0) for
which the exact34

E(
√

3,0)/(e2√n) = −1.96051578931989165 . . . . (25)

The cut at M = 1,2,3,4 reproduces this exact value up to
2,5,10,17 decimal digits, respectively. A similar accuracy is
reached in all considered cases. To be extremely accurate, we
apply the M = 5 cut everywhere, and use the MATHEMATICA

software. Another advantage of the series representation (24)
is the possibility of an explicit expansion of the function
E(�∗,η)/(e2√n) around the controversial point η = 0 and
around the critical point ηc

2. As will be shown, this requires an
analogous Taylor expansion of our z functions.

B. Going from phase I to phase II

We know23,24 that for the single layer, i.e., η = 0, the
structure providing the minimum of the energy is the hexagonal
lattice with � = √

3. In what follows, we shall investigate
the minimum of the energy (24) in the neighborhood of the
point (� = √

3,η = 0). We set � = √
3 − ε and consider ε to

be infinitesimally small. To derive a small-ε expansion of the
energy (24), we first perform this task for its series components.
From the integral definition (22), it is easy to show that the
z functions under consideration exhibit an analytic (Taylor)
expansion in ε of the form

z3/2(0,j 2�) = z3/2(0,j 2
√

3) + εj 2z5/2(0,j 2
√

3) + 1

2
ε2j 4z7/2(0,j 2

√
3) + O(ε3), (26)

z3/2(0,j 2/�) = z3/2(0,j 2/
√

3) − ε
j 2

3
z5/2(0,j 2/

√
3) + ε2

[
j 4

18
z7/2(0,j 2/

√
3) − j 2

33/2
z5/2(0,j 2/

√
3)

]
+ O(ε3), (27)

z3/2(0,j 2/� + k2�) = z3/2(0,j 2/
√

3 + k3
√

3) + ε

(
k2 − j 2

3

)
z5/2(0,j 2/

√
3 + k2

√
3)

+ ε2

[
1

2

(
k2 − j 2

3

)2

z7/2(0,j 2/
√

3 + k2
√

3) − j 2

33/2
z5/2(0,j 2/

√
3 + k2

√
3)

]
+ O(ε3). (28)

Similar expansions can be derived for z3/2((πη)2,j 2�), z3/2((πη)2,j 2/�), etc. By inserting these expansions into Eq. (24), we
obtain

E(
√

3 − ε,η)

e2
√

n
= E(

√
3,η)

e2
√

n
+ f1(η)ε + f2(η)ε2 + O(ε3), (29)
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where the explicit form of the prefactor functions f1(η) and
f2(η) is written in the Appendix.

Being close to the point (� = √
3,η = 0), we are interested

in the small-η behavior of the functions f1(η) and f2(η).
The corresponding Taylor expansions in powers of η2 can
be performed explicitly, too. The explicit form of E(

√
3,η)

is here immaterial. We find that f1(0) = 0, and, with a high
precision,

f1(η) = −0.5833059875 . . . η2 + O(η4),
(30)

f2(η) = 0.0408440789 . . . + O(η2).

For a fixed η, the extremum of the energy (29) appears at
ε∗ = √

3 − �∗ given by the stationarity condition

∂

∂ε

E(
√

3 − ε,η)

e2
√

n

∣∣∣∣∣
ε=ε∗

= 0 = f1(η) + 2f2(η)ε∗. (31)

Namely,

√
3 − �∗ ≡ ε∗(η) = − f1(η)

2f2(η)
= 7.14064 . . . η2 + O(η4).

(32)

Since ∂2
ε E(

√
3 − ε,η)|ε=ε∗ = f2(η) > 0, the extremum is the

minimum. The result (32) tells us that howsoever small
the dimensionless distance η is, the buckled structure II
with � <

√
3 takes place. In other words, the structure I

exists only strictly at ηc
1 = 0. The fact that in the previous

works18,20 the structure I was detected also for very small
positive values of η is probably related to extremely small
values of the deviation ε∗ ∝ η2 for these η’s, which are
“invisible” by standard numerical methods. For instance, the
structure I border reported in18 ηc

1 = 0.006 corresponds to
ε∗ = 0.00026 . . . .

In Fig. 2, we present the plots of the difference between the
dimensionless energies [E(�,η) − E(

√
3,η)]/(e2√n) versus

ε = √
3 − �, calculated numerically by using Eq. (24) for

two very small values of η: (a) η = 10−3 and (b) η = 10−2,
which are well below/above the previous estimate of the phase
I threshold,18 respectively. Alternatively, using the analytical
expressions (29) and (30) leads to the very same data. The
nonzero values of ε∗, which provide the energy minima in the

asymptotic limit η → 0 according to formula (32), are depicted
by the dashed lines for comparison. We see that the energy
minima fit well with the expected ε∗ which is clear evidence
for the phase I instability. Note extremely small values ∝
10−12−10−8 of the energy difference, in Fig. 2, which justifies
the derivation of an accurate formula for the Coulombic
energy.

In Fig. 3, the asymptotic relation (32) (dashed line) is
tested against numerical minimization of the energy (24) (solid
curve) for small and intermediary values of η in the logarithmic
scale. The agreement is very good, not only for small η, but in
the whole range of stability of phase II (it will be shown in the
next section that phase II border is given by ηc

2 � 0.26276 . . .).

C. Transition between phases II and III

Going from phase I to phase II is not a phase transition in
the usual sense. However, the symmetry of the energy E with
respect to the transformation � → 1/� has the fixed (self-
dual) point at � = 1, which is the critical point of the phase
transition from phase II to III. Let us parametrize � as follows:
� = exp(ε). The symmetry � → 1/� is now equivalent to
ε → −ε, i.e., the energy E is an even function of ε. The
expansion of E around the critical point � = 1 (ε = 0) in
small deviation ε follows from the representation (24):

E(eε,η)

e2
√

n
= E(1,η)

e2
√

n
+ g2(η)ε2 + g4(η)ε4 + O(ε6). (33)

The explicit form of g2(η) is written in the Appendix and g4(η)
is not presented due to lack of space, but has been derived. The
energy (33) has the Ginzburg-Landau form, ε being the order
parameter. In contrast to that mean-field theory, the expression
for our energy is exact.

The critical point is associated with the vanishing of the
prefactor to ε2:

g2(η)|η=ηc
2
= 0, ηc

2 = 0.2627602682 . . . . (34)

The values of ηc
2 obtained in the previous studies were 0.262,18

which is remarkably precise, 0.28,20 and 0.27.22 The functions
g2(η) and g4(η) exhibit the following expansions around the

0 5×10-6 1×10-5 2×10-5

√
⎯
3 − Δ

-3×10
-12

-2×10
-12

-1×10
-12

0

1×10
-12

2×10
-12

3×10
-12

(a)

0 5×10-4 1×10-3 2×10-3

√
⎯
3 − Δ

-2×10-8

-1×10-8

0

1×10-8

2×10-8
(b)

FIG. 2. The difference between the dimensionless energies [E(�,η) − E(
√

3,η)]/(e2√n) versus ε = √
3 − �, calculated numerically by

using Eq. (24) for two small values of η: (a) η = 10−3 and (b) η = 10−2. For the range of aspect ratios chosen, these curves are indistinguishable
from the analytical prediction −0.5833 η2ε + 0.0408 ε2, stemming from Eqs. (29) and (30). The values of ε∗, which provide the energy
minimum in the asymptotic limit η → 0 according to (32), are depicted by the vertical dashed lines for comparison.
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0.001                             0.01                               0.1
η

1e-05

0.0001

0.001

0.01

0.1

1

√⎯ 3 
− 

Δ∗

η2
c

FIG. 3. Going from phase I to II: The test of the asymptotic
relation (32) (dashed line) against numerical minimization of the
energy (24) (solid curve) for small and intermediary values of η in
the logarithmic scale.

critical ηc
2:

g2(η) = −0.4620982808 . . .
(
ηc

2 − η
) + O

[(
ηc

2 − η
)2]

,

g4(η) = 0.1054378203 . . . + O
(
ηc

2 − η
)
. (35)

The extremum (minimum) of the energy (33) appears at ε∗ �
�∗ − 1 given by the condition

∂

∂ε

E(eε,η)

e2
√

n

∣∣∣∣∣
ε=ε∗

= 0 = 2g2(η)ε∗ + 4g4(η)ε∗3
. (36)

For η < ηc
2 (the “ordered” phase II), we have one trivial

solution ε∗ = 0, which, however, provides the local maximum
of the energy. There exist two conjugate nontrivial solutions
which yield the needed energy minimum; considering one of
these solutions, we arrive at

�∗ − 1 � ε∗ =
(

− g2(η)

2g4(η)

)1/2

� 1.48031
√

ηc
2 − η. (37)

The critical index β, describing the growth of the order
parameter from its zero critical value via ε∗ ∝ (ηc

2 − η)β , has
the mean-field value 1/2. In Fig. 4, in the logarithmic scale,
the asymptotic relation (37) (dashed line) is compared with
the numerical minimization of the energy (24) (solid curve).

For η > ηc
2 (the “disordered” phase III), we have the only

solution to (36) ε∗ = 0 (or equivalently �∗ = 1), i.e., the rigid
phase III is stable, up to a transition to phase IV discussed in
the next section. The plot of the lattice aspect ratio �∗ versus
η, obtained by the numerical minimization of the energy (24)
in the whole stability range of the phase II, is pictured by the
solid curve in Fig. 5. �∗ changes from

√
3 at η = 0 to 1 at

η = ηc
2. Numerical data of Goldoni and Peeters18 (open circles)

are also presented for comparison. The asymptotic relations
(32) for η → 0 and (37) for η → ηc

2 are also provided, for
completeness.

III. PHASE IV

In each of the two layers of phase IV (see Fig. 1), the
elementary cell is the rhombus with angle ϕ between the

0.0001 0.001 0.01 0.1

ηc
2 - η

10-2

10-1

100

Δ∗  −
 1

FIG. 4. Transition between phases II and III: The test of the
asymptotic relation (37) (dashed line) against numerical minimization
of the energy (24) (solid curve) in the logarithmic scale.

primitive translation vectors

a1 = a(1,0), a2 = a(cos ϕ, sin ϕ) with a = 1√
σ sin ϕ

.

(38)

The lattice spacing a is determined by the electroneutrality
condition nl = σ ; there is just one particle per rhombus of the
surface a2 sin ϕ and so nl = 1/(a2 sin ϕ). The special case of
ϕ = π/2 corresponds to phase III.

A. Energy of phase IV

As before, the energy per particle E of the bilayer structure
consists of the intralayer and interlayer contributions E =
Eintra + Einter. As concerns the intralayer part, the 2D lattice
vectors on one layer are indexed with respect to a reference
particle on the same layer by r(j,k) = ja1 + ka2, where j,k

0 0.05 0.1 0.15 0.2 0.25
η

1

1.2

1.4

1.6

1.8

Δ
∗

η2
c

FIG. 5. The stability range of phase II: The plot of the lattice
aspect ratio �∗ versus η, obtained by the numerical minimization of
the energy (24), is pictured by the solid curve. Numerical data of
Ref. 18 are presented by open circles. The asymptotic relations (32)
for η → 0 and (37) for η → ηc

2 are depicted by dashed curves.
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are any two integers except for (0,0). The square of the lattice vector can be written as

|r(j,k)|2 = a2(j 2 + k2 + 2jk cos ϕ) = a2[(j + k)2 cos2(ϕ/2) + (j − k)2 sin2(ϕ/2)]. (39)

This formula represents a kind of “diagonalization” of |r(j,k)|2 in indices. If j + k is an even integer, we introduce new indices
n = (j + k)/2 and m = (j − k)/2 covering all integers except for (n,m) �= (0,0). If j + k is an odd integer, we introduce indices
n = (j + k + 1)/2 and m = (j − k + 1)/2 covering all integers. Thus, the interaction energy due to the Wigner crystal can be
expressed as

e2

2

∑
j,k

(j,k)�=(0,0)

1

|r(j,k)| = e2

4a

⎡
⎣ ∑

n,m

(n,m)�=(0,0)

1√
n2 cos2(ϕ/2) + m2 sin2(ϕ/2)

+
∑
n,m

1√
(n − 1/2)2 cos2(ϕ/2) + (m − 1/2)2 sin2(ϕ/2)

⎤
⎦ .

(40)

Adding to this expression the interaction with the neutralizing background and using the gamma identity (5) in close analogy
with the previous section, we obtain

Eintra

e2
√

n
= 1

4
√

π

∫ ∞

0

dt√
t

{[
θ3(e−tδ)θ3(e−t/δ) − 1 − π

t

]
+

[
θ2(e−tδ)θ2(e−t/δ) − π

t

]}
, (41)

where δ = tan(ϕ/2).
The Wigner lattices on the opposite layers are shifted with respect to one another by the vector (a1 + a2)/2. To determine the

interlayer contribution to the energy, we first consider the square of the vector between the reference particle on one layer and
the vertices of the Wigner crystal on the other layer at distance d:

|r(j,k)|2 = a2[(j − 1/2)2 + (k − 1/2)2 + 2(j − 1/2)(k − 1/2) cos ϕ] + d2

= a2[(j + k − 1)2 cos2(ϕ/2) + (j − k)2 sin2(ϕ/2) + (d/a)2]. (42)

Thus, the interaction energy with the Wigner crystal reads as

e2

2

∑
j,k

1

|r(j,k)| = e2

4a

[∑
n,m

1√
(n − 1/2)2 cos2(ϕ/2) + m2 sin2(ϕ/2) + d2/(2a)2

+
∑
n,m

1√
n2 cos2(ϕ/2) + (m − 1/2)2 sin2(ϕ/2) + d2/(2a)2

]
. (43)

Adding the background term and using the gamma identity, we find that

Einter

e2
√

n
= 1

4
√

π

∫ ∞

0

dt√
t
e−η2t/2

{[
θ3(e−tδ)θ2(e−t/δ) − π

t

]
+

[
θ2(e−tδ)θ3(e−t/δ) − π

t

]}
. (44)

The total energy per particle E is the sum of Eqs. (41) and (44). Note the invariance of E with respect to the transformation
δ → 1/δ. With respect to the definition of δ = tan(ϕ/2), this symmetry is equivalent to the obvious one ϕ → π − ϕ. Following
subsequently similar lines as in previous sections, the integral range [0,∞] can be reduced to [0,π ] by using the Poisson
formula (10):

E(δ,η)

e2
√

n
= 1

4
√

π

∫ π

0

dt√
t

{
2

[
θ3(e−tδ)θ3(e−t/δ) − 1 − π

t

]
+

[
θ2(e−tδ)θ2(e−t/δ) − π

t

]
+ [θ4(e−tδ)θ4(e−t/δ) − 1]

+ e−η2t/2

[
θ3(e−tδ)θ2(e−t/δ) − π

t

]
+ e−(πη)2/(2t)[θ3(e−tδ)θ4(e−t/δ) − 1]

+ e−η2t/2

[
θ2(e−tδ)θ3(e−t/δ) − π

t

]
+ e−(πη)2/(2t)[θ4(e−tδ)θ3(e−t/δ) − 1]

}
. (45)

Applying again the Poisson transformation formula (10) to the series representations of Jacobi theta functions, the singular t → 0
terms are canceled explicitly and we end up with the representation of the energy per particle E in terms of z functions defined
in Eq. (22):

E(δ,η)

e2
√

n
= 1

2
√

π

{ ∞∑
j=1

[2 + (−1)j ][z3/2(0,j 2/δ) + z3/2(0,j 2δ)] + 2
∞∑

j,k=1

[2 + (−1)j (−1)k]z3/2(0,j 2/δ + k2δ)

+ 2
∞∑

j,k=1

z3/2(0,(j − 1/2)2/δ + (k − 1/2)2δ) +
∞∑

j=1

[1 + (−1)j ][z3/2((πη)2/2,j 2/δ) + z3/2((πη)2/2,j 2δ)]

+ 2
∞∑

j,k=1

[(−1)j + (−1)k]z3/2((πη)2/2,j 2/δ + k2δ)
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+ 2
∞∑

j,k=1

[z3/2(0,η2/2 + (j − 1/2)2/δ + k2δ) + z3/2(0,η2/2 + (j − 1/2)2δ + k2/δ)]

+
∞∑

j=1

[z3/2(0,η2/2 + (j − 1/2)2/δ) + z3/2(0,η2/2 + (j − 1/2)2δ)] − 3
√

π − πz1/2(0,η2/2)

}
. (46)

B. Transition between phases III and IV

The symmetry of the energy E with respect to the trans-
formation δ → 1/δ has the fixed point at δ = 1, which is the
critical point of the phase transition between the phases III and
IV. Parametrizing δ as δ ≡ tan(ϕ/2) = exp(−ε), the symmetry
takes form ε → −ε and the energy E is an even function of ε.
The expansion of E around the critical point δ = 1 (equivalent
to θ = π/2 or ε = 0) in small ε follows from the representation
(46):

E(e−ε,η)

e2
√

n
= E(1,η)

e2
√

n
+ h2(η)ε2 + h4(η)ε4 + O(ε6). (47)

The explicit form of h2(η) is presented in the Appendix. The
expression for h4(η) is too lengthy to be given, but is at our
disposal.

The critical point is associated with the vanishing of the
prefactor of ε2,

h2(η)|η=ηc
3
= 0, ηc

3 = 0.6214809246 . . . . (48)

The values of ηc
3 obtained in the previous studies are 0.622,18

0.59,20 and 0.62.22 The functions h2(η) and h4(η) exhibit the
following expansions around the critical ηc

3:

h2(η) = −0.2675826391 . . .
(
η − ηc

3

) + O
[(

η − ηc
3

)2]
,
(49)

h4(η) = 0.0863245072 . . . + O
(
η − ηc

3

)
.

10
-4

10
-3

10
-2

10
-1

η − ηc

3

10
-2

10
-1

10
0

1 
- 

δ∗

-0.5 -0.2 0.0 0.2 0.5
ln δ

-1.43

-1.42

-1.41

-1.40

-1.39

-0.5 -0.2 0.0 0.2 0.5
ln δ

-1.395

-1.394

η = 0.5

η = 0.7

FIG. 6. Transition between phases III and IV: The test of the
asymptotic relation (51) (dashed line) against a numerical minimiza-
tion of the energy (46) (solid curve), in the logarithmic scale. The
content of upper and lower insets is commented in the text.

The extremum (minimum) of the energy (47) appears at ε∗ �
π/2 − ϕ∗ given by the condition

∂

∂ε

E(e−ε,η)

e2
√

n

∣∣∣∣∣
ε=ε∗

= 0 = 2h2(η)ε∗ + 4h4(η)ε∗3
. (50)

For η < ηc
3 (“disordered” phase III), we have the only

solution ε∗ = 0 (or equivalently ϕ∗ = π/2), which provides
the energy minimum, i.e., the rigid phase III is stable. For η >

ηc
3 (“ordered” phase IV), the trivial solution ε∗ = 0 becomes

unstable. The couple of conjugate nontrivial solutions, which
provide the energy minimum, implies

1 − δ∗ � ε∗ � π

2
− ϕ∗ =

(
− h2(η)

2h4(η)

)1/2

�1.24494
√

η−ηc
3.

(51)

The critical index β has again the mean-field value 1/2. In
Fig. 6, in a log-log scale, the asymptotic relation (51) (dashed
line) is tested against numerical minimization of the energy
(46) (solid curve). In the upper inset, we show the dependence
of the energy on the logarithm of the angle parameter
δ = tan(ϕ/2) for η = 0.5, where the phase III with δ = 1 is
stable. In the lower inset, the analogous plot is presented for
η = 0.7, where the phase IV with δ �= 1 is stable; phase III
corresponds in fact to a local maximum of the energy. Note
the symmetry of the energy with respect to the transformation
δ → 1/δ or, equivalently, ln δ → − ln δ.

The plot of the angle parameter δ∗ = tan(ϕ∗/2) versus η,
obtained by numerical minimization of the energy (24) in the

0.6 0.65 0.7 0.75
η

0.6

0.8

1

δ∗

1 / √
⎯
 3

ηc

3
ηc

4

δc

FIG. 7. Stability range of phase IV: The plot of the angle
parameter δ∗ versus η, obtained by the numerical minimization of
the energy (46), is shown by the solid curve. Numerical data of
Ref. 18 are presented by open circles. The asymptotic relation (51)
for η → ηc

3 is depicted by the dashed curve.
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whole stability range of the phase IV, is displayed by the solid
curve in Fig. 7. δ∗ changes from 1 at η = ηc

3 (transition point
from phase III to IV) to δc = 0.69334 . . . at η = ηc

4 (transition
point from phase IV to V, see the next section). Numerical
data of Goldoni and Peeters18 (open circles) are presented
for comparison. The asymptotic relation (51) for η → ηc

3 is
depicted by the dashed curve.

IV. PHASE V

In a single layer of the phase V (see Fig. 1), the elementary
cell of the hexagonal lattice is the rhombus with the angle π/3
between the primitive translation vectors

a1 = a(1,0), a2 = a

2
(1,

√
3) with a =

√
2

31/4

1√
σ

. (52)

The lattice spacing a follows from the electroneutrality
condition nl = σ ; there is just one particle per rhombus of

surface
√

3a2/2, so that nl = 2/(
√

3a2). Note that the images
of vertices on the opposite layer are localized in the center
of triangles and not rhombuses, as was the case of phase IV.
There is no continuous way to pass from phase IV to phase V.

A. Energy of phase V

To study the intralayer contribution to the energy of the
reference particle at the origin, we first consider the Wigner
crystal of lattice vectors r(j,k) = ja1 + ka2, where integers
(j,k) �= (0,0). The square of the lattice vector is expressible as

|r(j,k)|2 = a2(j 2 + k2 + jk) = a2

4
[3(j + k)2 + (j − k)2].

(53)

In analogy with phase IV, we introduce new n,m indices
for each of the cases j + k being an even and odd integer.
The interaction energy due to the Wigner crystal then reads
as

e2

2

∑
j,k

(j,k)�=(0,0)

1

|r(j,k)| = e2

2a

⎡
⎣ ∑

n,m

(n,m)�=(0,0)

1√
3n2 + m2

+
∑
n,m

1√
3(n − 1/2)2 + (m − 1/2)2

⎤
⎦ . (54)

Adding to this expression the interaction with the neutralizing background and using the gamma identity, we find

Eintra

e2
√

n
= 1

4
√

π

∫ ∞

0

dt√
t

{[
θ3(e−t/

√
3)θ3(e−t

√
3) − 1 − π

t

]
+

[
θ2(e−t/

√
3)θ2(e−t

√
3) − π

t

]}
. (55)

The hexagonal lattices on the opposite layers are shifted with respect to one another by the vector (a1 + a2)/3; note that the
factor 1/3 differs from 1/2 of the previous phases I–IV. To determine the interlayer contribution to the energy, we first consider
the square of the vector between the reference particle on one layer and the vertices of the Wigner crystal on the other layer at
distance d:

|r(j,k)|2 = a2[(j + 1/3)2 + (k + 1/3)2 + (j + 1/3)(k + 1/3)] + d2 = a2

4
[3(j + k + 2/3)2 + (j − k)2] + d2. (56)

Going from (j,k) to integers (n,m), the interaction energy with the Wigner crystal on the opposite side takes the form

e2

2

∑
j,k

1

|r(j,k)| = e2

2a

[∑
n,m

1√
3(n + 1/3)2 + m2 + (d/a)2

+
∑
n,m

1√
3(n − 1/6)2 + (m − 1/2)2 + (d/a)2

]
. (57)

Adding the background term, using the gamma identity and the readily derivable relations∑
j

e−3t(j+1/3)2 = 1

2

[
θ3(e−t/3) − θ3(e−3t )

]
,

∑
j

e−3t(j−1/6)2 = 1

2

[
θ2(e−t/3) − θ2(e−3t )

]
, (58)

we find that

Einter

e2
√

n
= 1

4
√

π

∫ ∞

0

dt√
t

(
− 1

2
e−η2t/2 +

√
3

2
e−3η2t/2

){[
θ3(e−t/

√
3)θ3(e−t

√
3) − 1 − π

t

]
+

[
θ2(e−t/

√
3)θ2(e−t

√
3) − π

t

]}
. (59)

The total energy per particle E is given by the sum of Eqs. (55) and (59). The Poisson formula (10) enables us to reduce the
integral range to [0,π ]:

E(η)

e2
√

n
= 1

4
√

π

∫ π

0

dt√
t

{(
1 − 1

2
e−η2t/2 +

√
3

2
e−3η2t/2

)[
θ3(e−t/

√
3)θ3(e−t

√
3) − 1 − π

t

]

+
(

1 − 1

2
e−(πη)2/(2t) +

√
3

2
e−3(πη)2/(2t)

)[
θ3(e−t/

√
3)θ3(e−t

√
3) − 1 − π

t

]
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+
(

1 − 1

2
e−η2t/2 +

√
3

2
e−3η2t/2

)[
θ2(e−t/

√
3)θ2(e−t

√
3) − π

t

]

+
(

1 − 1

2
e−(πη)2/(2t) +

√
3

2
e−3(πη)2/(2t)

)[
θ4(e−t/

√
3)θ4(e−t

√
3) − 1

]}
. (60)

In terms of the functions

I2(x,y) ≡
∫ π

0

dt√
t
e−xt/π2

e−yπ2/t

[
θ2(e−t/

√
3)θ2(e−t

√
3) − π

t

]

= 2
∞∑

j=1

(−1)j [z3/2(x,y + j 2/
√

3) + z3/2(x,y + j 2
√

3)] + 4
∞∑

j,k=1

(−1)j (−1)kz3/2(x,y + j 2/
√

3 + k2
√

3), (61)

I3(x,y) ≡
∫ π

0

dt√
t
e−xt/π2

e−yπ2/t

[
θ3(e−t/

√
3)θ3(e−t

√
3) − 1 − π

t

]

= 2
∞∑

j=1

[z3/2(x,y + j 2/
√

3) + z3/2(x,y + j 2
√

3)] + 4
∞∑

j,k=1

z3/2(x,y + j 2/
√

3 + k2
√

3) − πz1/2(x,y), (62)

I4(x,y) ≡
∫ π

0

dt√
t
e−xt/π2

e−yπ2/t [θ4(e−t/
√

3)θ4(e−t
√

3) − 1]

= 4
∞∑

j,k=1

z3/2[x,y + (j − 1/2)2/
√

3 + (k − 1/2)2
√

3] − πz1/2(x,y), (63)

the energy per particle E is expressible as

E(η)

e2
√

n
= 1

4
√

π

{[
2I3(0,0) − 1

2
I3((πη)2/2,0) − 1

2
I3(0,η2/2) +

√
3

2
I3(3(πη)2/2,0) +

√
3

2
I3(0,3η2/2)

]

+
[
I2(0,0) − 1

2
I2((πη)2/2,0) +

√
3

2
I2(3(πη)2/2,0)

]
+

[
I4(0,0) − 1

2
I4(0,η2/2) +

√
3

2
I4(0,3η2/2)

]}
. (64)

B. Transition between phases IV and V

Increasing η from ηc
3, phase IV is stable up to the point ηc

4
at which the energy of phase IV [Eq. (46)], evaluated at δ∗
which minimizes this energy, equals to the energy of phase V
[Eq. (64)]. Our result is

ηc
4 = 0.73242 . . . . (65)

The values of ηc
4 obtained in the previous studies were

relatively dispersed: 0.732,18 0.70,20 and 0.87.22 The phase
transition is of first order since the energies of phases IV
and V have as functions of η different slopes, which causes
the discontinuity of the first derivative of the energy with
respect to η at the transition point ηc

4. The angle parameter
δ, which minimizes the energy of the phase IV at the critical
point ηc

4, is found to be δc = 0.69334 . . . . Since δ = tan(ϕ/2),
the corresponding angle ϕc = 69.4702 . . .◦; this angle is very
close to the estimate ϕc = 69.48◦ of the work.18 Going from
phase IV to V, the angle skips to 60◦ as is indicated in Fig. 7.

C. Discussion

Two different “sum rules” can be derived that allow for a
critical assessment of the results obtained. The simplest one
relies on the geometrical proximity between structures I (a
single hexagonal crystal) and V (two hexagonal crystals at

half density). For large distances, the two crystals decouple
and we have, making use of straightforward notations,

EI(
√

3,η = 0) =
√

2 EV(η → ∞). (66)

With our series representations (24) for EI and (64) for EV, this
identity holds. Another more subtle constraint follows from a
combination of elementary geometric considerations,35 which
impose that

EV(η = 0) = 1 + √
3

2
√

2
EI(

√
3,η = 0). (67)

We have also checked that this identity holds with the
expressions provided above (note though that η = 0 lies
outside the stability range of structure V).

Finally, it is interesting to consider both the large small
and large distance behavior of the energy. For small η, it can
be shown that both structures I and II share the same energy
expansion, up to order η3 included:

EII(�
∗,η) = EI(η) + O(η4), (68)

where �∗ is the previously introduced optimal aspect ratio that
minimizes EII(�∗,η) for a given η. Explicit calculation up to

205131-11
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order η2 shows that

EII(�∗,η)

e2
√

n
= EII(

√
3,0)

e2
√

n
+ π η√

2
− 2.59372 . . . η2 + O(η3),

(69)

where the precise value of EII(
√

3,0) = EI(0) has been given
in Eq. (25). We note that the linear term in (69) generates
a contact pressure −2πσ 2e2 for η → 0. A similar term was
reported in Ref. 18 where, however, the term in η2 differs from
ours by a large factor (0.2122 instead of 2.5937).

At large distances, the relevant phase is structure V, from
which the interplate pressure follows. The large-η case is
encoded in the small-t limit of Eq. (60) or, equivalently,
Eq. (59). A saddle-point argument leads to

EV(η)

e2
√

n
∼ EV(∞)

e2
√

n
− 35/4

4
exp

(
− 4π√

2 31/4
η

)
. (70)

We recover an expression already obtained in Ref. 18 at
variance with other approaches.17 Taking the η derivative and
remembering that n = 2σ yields the interplate pressure

P = −2 σ
∂EV

∂d
= −2σ 3/2 ∂EV

∂η

∼ −6π (σe)2 exp

(
− 4π√

2 31/4
η

)
. (71)

The η dependence is well known since it can be written
exp(−G0d), with G0 the modulus of the first reciprocal lattice
vector. It should be noted though that the prefactor differs from
the often reported 2π (σe)2 (see, e.g., Ref. 10) by a factor 3.

V. CONCLUSION

The system of classical charged particles, forming a
sequence of bilayer Wigner structures at zero temperature as
the distance between the plates is increasing, has a rather long
history. We have presented here a method to calculate the
Coulomb ground-state energy of each Wigner structure. Based
on a series of transformations and using general properties of
the Jacobi theta functions, we expressed the energies in terms
of quickly converging series of the functions zν(x,y) defined
in Eq. (22). The presence of the neutralizing background
manifests itself simply as the subtraction of singularities of
the Jacobi theta functions under an auxiliary integration.

Numerical evaluation of the series requires modest com-
puter and programming facilities, and at the same time
provides extremely accurate estimates of the energy. We took
advantage of this feature, supplemented by analytical work, to
improve and complete previous studies in three aspects:

(i) There was a relatively large dispersion in the determi-
nation of the transition points between phases; this concerns
especially the first-order phase transition between phases IV
and V. Our method improves significantly the location of

η

ηc
1

ηc ηc ηc
432

0.263 0.621 0.732

II III IV VI

0

FIG. 8. Summary of phase transition scenario. The rounded off
values of the thresholds are mentioned. Structure I is realized at η = 0
only (vanishing interplate separation).

all transition points, which can be worked out with arbitrary
precision. Figure 8 gives an overview of the sequence of phases
together with the corresponding thresholds.

(ii) We resolved, analytically and numerically, a previous
controversy about the stability phase I, thereby corroborating
the findings of Ref. 21. We found that this phase is stable only
at zero distance between the plates η = 0 = d. To confirm
numerically this result, we worked with extremely small
values of the energy differences ∝10−12−10−8 for distances
η = 10−3 and 10−2 (see Fig. 2), which are “invisible” by
standard numerical methods. The agreement between the
η → 0 asymptotic relation (32), calculated analytically by
using the Taylor expansions of the functions zν(x,y), and the
numerical minimization of the energy, presented in Fig. 3, is
excellent.

(iii) The expansions of the structure energies around second-
order transition points can be done analytically, which enables
us to specify the critical phenomena at the phase transition
points; see the expansions pertaining to the transitions from
phase II to III [Eq. (37)] and from phase III to IV [Eq. (51)].
The agreement between these analytic formulas and numerical
minimization of the ground-state energy is very good; it can
be appreciated in Figs. 4 and 6. Quite expectedly for a zero-
temperature situation, the critical behavior is always of the
Ginzburg-Landau type, with the mean-field critical index β =
1/2 for the growth of the order parameters in the “ordered”
phases.

It is clear that our method can be directly generalized
to other problems concerning the lattice summations over
pair interactions, not only the Coulomb ones. The bilayers
with repulsive Yukawa interactions, extensively studied in the
past,9,21 or with inverse power laws,36 deserve our attention.
We additionally emphasize that the ground states under
consideration here are such that the ions are distributed evenly
(50% on each plate): in other words, the ionic surface density
of one Wigner crystal on a given plate is σ , and coincides
with the plate homogeneous surface density. When dealing
with asymmetric plates, this local neutrality assumption should
be relaxed,37,39 still enforcing global neutrality. This makes
the asymmetric problem significantly more complex, and an
interesting perspective for future work. Finally, consideration
of dielectric jumps between the walls and the interstitial slab
is also a relevant venue for forthcoming investigations.
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APPENDIX

The prefactor functions f1(η) and f2(η) of the expansion (29) read as

f1(η) = 1

23/2
√

π

{
4

∞∑
j=1

j 2

[
z5/2(0,j 2

√
3) − 1

3
z5/2(0,j 2/

√
3)

]
+ 8

∞∑
j,k=1

(
k2 − j 3

3

)
z5/2(0,j 2/

√
3 + k2

√
3)

+ 2
∞∑

j=1

(−1)j j 2

[
z5/2((πη)2,j 2

√
3) − 1

3
z5/2((πη)2,j 2/

√
3)

]

+ 4
∞∑

j,k=1

(−1)j (−1)k
(

k2 − j 2

3

)
z5/2((πη)2,j 2/

√
3 + k2

√
3)

+ 4
∞∑

j,k=1

[(
k − 1

2

)2

− 1

3

(
j − 1

2

)2
]

z5/2(0,η2 + (j − 1/2)2/
√

3 + (k − 1/2)2
√

3)

}
, (A1)

f2(η) = 1

23/2
√

π

{
4

∞∑
j=1

[
j 4

2
z7/2(0,j 2

√
3) + j 4

18
z7/2(0,j 2/

√
3) − j 2

33/2
z5/2(0,j 2/

√
3)

]

+ 8
∞∑

j,k=1

[
1

2

(
k2 − j 3

3

)2

z7/2(0,j 2/
√

3 + k2
√

3) − j 2

33/2
z5/2(0,j 2/

√
3 + k2

√
3)

]

+ 2
∞∑

j=1

(−1)j
[
j 4

2
z7/2((πη)2,j 2

√
3) + j 4

18
z7/2((πη)2,j 2/

√
3) − j 2

33/2
z5/2((πη)2,j 2/

√
3)

]

+ 4
∞∑

j,k=1

(−1)j (−1)k
[

1

2

(
k2 − j 3

3

)2

z7/2((πη)2,j 2/
√

3 + k2
√

3) − j 2

33/2
z5/2((πη)2,j 2/

√
3 + k2

√
3)

]

+ 4
∞∑

j,k=1

[
1

2

[(
k − 1

2

)2

− 1

3

(
j − 1

2

)2
]2

z7/2(0,η2 + (j − 1/2)2/
√

3 + (k − 1/2)2
√

3)

− 1

33/2

(
j − 1

2

)2

z5/2(0,η2 + (j − 1/2)2/
√

3 + (k − 1/2)2
√

3)

]}
. (A2)

The prefactor function g2(η) of the expansion (33) takes the form

g2(η) = 1√
2π

{
2

∞∑
j=1

[
j 4z7/2(0,j 2) − j 2z5/2(0,j 2)

] + 2
∞∑

j,k=1

[(j 2 − k2)2z7/2(0,j 2 + k2) − (j 2 + k2)z5/2(0,j 2 + k2)]

+
∞∑

j=1

(−1)j [j 4z7/2((πη)2,j 2) − j 2z5/2((πη)2,j 2)]

+
∞∑

j,k=1

(−1)j (−1)k[(j 2 − k2)2z7/2((πη)2,j 2 + k2) − (j 2 + k2)z5/2((πη)2,j 2 + k2)]

+
∞∑

j,k=1

([(j − 1/2)2 − (k − 1/2)2]2z7/2(0,η2 + (j − 1/2)2 + (k − 1/2)2)

− [(j − 1/2)2 + (k − 1/2)2]z5/2(0,η2 + (j − 1/2)2 + (k − 1/2)2))

}
. (A3)

Finally, the prefactor function h2(η) of the expansion (47) can be written as

h2(η) = 1

2
√

π

{
2

∞∑
j=1

[
j 4z7/2(0,j 2) − j 2z5/2(0,j 2)

] +
∞∑

j=1

(−1)j [j 4z7/2(0,j 2) − j 2z5/2(0,j 2)]

+ 2
∞∑

j,k=1

[(j 2 − k2)2z7/2(0,j 2 + k2) − (j 2 + k2)z5/2(0,j 2 + k2)]
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+
∞∑

j,k=1

(−1)j (−1)k[(j 2 − k2)2z7/2(0,j 2 + k2) − (j 2 + k2)z5/2(0,j 2 + k2)]

+
∞∑

j,k=1

([(j − 1/2)2 − (k − 1/2)2]2z7/2(0,(j − 1/2)2 + (k − 1/2)2)

−[(j − 1/2)2 + (k − 1/2)2]z5/2(0,(j − 1/2)2 + (k − 1/2)2))

+
∞∑

j=1

[j 4z7/2((πη)2/2,j 2) − j 2z5/2((πη)2/2,j 2)] +
∞∑

j=1

(−1)j [j 4z7/2((πη)2/2,j 2) − j 2z5/2((πη)2/2,j 2)]

+ 2
∞∑

j,k=1

(−1)j [(j 2 − k2)2z7/2((πη)2/2,j 2 + k2) − (j 2 + k2)z5/2((πη)2/2,j 2 + k2)]

+
∞∑

j=1

[(j − 1/2)4z7/2(0,η2/2 + (j − 1/2)2) − (j − 1/2)2z5/2(0,η2/2 + (j − 1/2)2)]

+ 2
∞∑

j,k=1

([(j − 1/2)2 − k2]2z7/2(0,η2/2 + (j − 1/2)2 + k2)

− [(j − 1/2)2 + k2]z5/2(0,η2/2 + (j − 1/2)2 + k2))

}
. (A4)
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