
PHYSICAL REVIEW E 100, 042611 (2019)

Electric double layers with surface charge modulations: Exact Poisson-Boltzmann solutions
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Poisson-Boltzmann theory is the cornerstone for soft matter electrostatics. We provide exact analytical
solutions to this nonlinear mean-field approach for the diffuse layer of ions in the vicinity of a planar or a
cylindrical macroion. While previously known solutions are for homogeneously charged objects, the cases
worked out exhibit a modulated surface charge—or equivalently, surface potential—on the macroion (wall)
surface. In addition to asymptotic features at large distances from the wall, attention is paid to the fate of
the contact theorem, relating the contact density of ions to the local wall charge density. For salt-free systems
(counterions only), we make use of results pertaining to the two-dimensional Liouville equation, supplemented
by an inverse approach. When salt is present, we invoke the exact two-soliton solution to the 2D sinh-Gordon
equation. This leads to inhomogeneous charge patterns, that are either localized or periodic in space. Without
salt, the electrostatic signature of a charge pattern on the macroion fades exponentially with distance for a planar
macroion, while it decays as an inverse power law for a cylindrical macroion. With salt, our study is limited to
the planar geometry and reveals that pattern screening is exponential.
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I. INTRODUCTION

Charges are omnipresent at the microscopic level in soft
matter and biological systems [1]. In a solvent like water,
featuring efficient solvation and screening properties, sur-
face groups dissociate from large macromolecules (colloids),
which results in mobile counterions in the vicinity of charged
surfaces. While mobile ions are generically of both signs (both
co- and counterions), it is possible to approach experimentally
the limit of deionized—or salt-free—suspensions [2], where
coions are absent. This provides a convenient venue for the-
oretical investigations that have studied thermal equilibrium,
both in the weak-coupling [3–5] and in the strong-coupling
[6–14] regimes.

A pillar for the theoretical description of the structure
of mobile ions in the vicinity of charged colloids, the so-
called electric double layer, is provided by the Poisson-
Boltzmann theory (PB). It dates back to the pioneering works
of Gouy [15] and Chapman [16] more than a century ago:
it amounts to relating the local charge density appearing in
the Poisson equation to the Boltzmann weight of the mean
electrostatic potential. In doing so, one considers the mobile
charged species as an inhomogeneous ideal gas in a self-
consistently determined (although external) electric field; see,
e.g., the reviews [17–20]. Electrostatic and steric correlations
are thereby neglected, an approach which requires work in
the weak coupling regime. Such a mean-field approximation
led to the Derjaguin-Landau-Verwey-Overbeek (DLVO) the-
ory [21], which proved essential for rationalizing colloidal
interactions.

Analytical solutions of electrostatic theories are useful,
allowing one to understand the combined effects for differ-
ent parameters such as charge density, temperature, solvent
or electrolyte type, etc. Screening properties in particular

stand foremost and will receive particular attention below.
Previously known explicit analytical exact solutions to the
Poisson-Boltzmann theory are scarce, unfortunately, and are
essentially limited to

(1) A single uniformly charged infinite plate with or with-
out salt, two plates, or a collection of equispaced parallel such
plates in the salt-free case [1,17–20,22]. Such a geometry is
relevant for studying lamellar phases [23].

(2) A cylindrical colloid, such as DNA, when bending
and edge effects are neglected, leading to the infinite cylinder
model. Exact results were obtained in the 1950s for a cylin-
drical concentric Wigner-Seitz cell without salt [24]. This
solution appears as a restricted version of that for a partial
differential equation first studied and solved by Liouville in
the 1850s [25]. More recently, Tracy and Widom obtained
a nontrivial exact solution for a single infinite straight and
homogeneously charged line [26]. Exact but perturbative
treatments were proposed to account for the finite extension
of the charged cylinder [27], which in turn led to an accurate
description for the persistence length of semiflexible polymers
[28,29].

To the best of our knowledge, no exact result has been
reported for heterogeneously charged macroions. It is our
purpose here to put forward a number of such solutions, with
or without salt, and to discuss the corresponding screening
features. To this end, two techniques will be advocated: the
two-dimensional (2D) Liouville artillery for salt-free systems
and the soliton method for solving the 2D sinh-Gordon equa-
tion. Since these approaches are 2D in spirit, their translation
to a three-dimensional (3D) problem necessarily leads to
invariance along one Cartesian coordinate, see below.

A number of experimental “anomalies” pertaining to parti-
cle flocculation, adhesion, or deposition have been attributed
to charge heterogeneities or patterns [30]. Early theoretical
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studies of systems with surface charge modulations were
based on liquid-state approximations [31–33]. The combina-
tion of Monte Carlo simulations with analytic perturbation
techniques to charged-modulated surfaces in the strong cou-
pling [34] and weak or intermediate coupling [35,36] regimes
indicates, for the studied forms of modulations, an increase
of the mean counterion density close to the inhomogeneously
charged surfaces, in comparison with that for the uniformly
charged surfaces of the same averaged charge density. The
notable amplification of this counterion surface enhancement
occurs at planar surfaces with disordered surface charge distri-
butions [37]. For two parallel charge-modulated surfaces the
enhancement of counterion density near the surfaces means
fewer charges at the midplane and therefore leads to a reduc-
tion of the pressure between the charged plates [38–40].

Our interest will be twofold, with focus on both short- and
long-distance features. In the former category, relating the
ionic density at contact with the wall to the surface charge
is of particular interest. For the geometry of one uniformly
charged planar wall, the contact theorem provides an exact
and particularly simple answer [41–44]; see the review [45].
The generalization of the contact relation to curved wall
boundaries was the subject of a number of studies [46–49].
Here, we construct a PB generalization of the contact relation
between the density profile at the wall and the inhomogeneous
surface charge density, based on the fact that the total force
acting on the wall must vanish in thermal equilibrium. All
exact solutions fulfill this nonlocal contact relation, but in-
terestingly, some of the solutions provide a local relationship
between the total particle number density at the wall surface
and the inhomogeneous surface charge density.

Turning to long-distances properties, the decay of density
profiles depends on the model under scrutiny. For charged
plates, we will show that the influence of a charge pattern
on the surface decays exponentially fast away from the plate,
irrespective of the presence of salt. This applies in particular
to the planar no-salt case, where the density profile goes to
zero at large distances from the wall more slowly than an
exponential, as an inverse power law of type 1/x2 [1]. This
asymptotic behavior is universal in the sense that it does not
depend on the strength of the surface charge density. For
a cylindrical macroion, a charge pattern on the surface of
the cylinder extends further than for plates, with a pattern
screening of inverse power-law type, the exponent of which
will be worked out.

The paper is organized as follows. The general formulation
of the models studied together with their PB treatment are
given in Sec. II. The contact relation between the particle
density and the surface charge density, known hitherto for
uniformly charged plates, is generalized to modulated surface
charges. Based on the general solution of the 2D Liouville
equation, exactly solvable cases for surface charge modula-
tions with counterions only are generated in an inverse fashion
in Sec. III. The explicit results for the potential and particle
density are analyzed close and far away from the charged in-
terface. The results are relevant for both planar and cylindrical
geometries. Section IV deals with models with added salt.
The case of small charges is first worked out (Debye-Hückel
perturbative treatment). The exact nonperturbative two-soliton
solution of the nonlinear 2D sinh-Gordon equation is then

presented. Section V brings a short recapitulation of the most
important results.

II. GENERAL FRAMEWORK

A. Relevant boundary conditions

We are interested in the electrostatic potential created by
a charged macroion in the 3D Euclidean space of points
r = (x, y, z). It is sufficient here to restrict our study to the
exterior of the macroion, a region that we shall denote as �.
The presence of the macroion materializes through the bound-
ary conditions fulfilled by the potential. Classical pointlike
particles of (say elementary) charge e can move in �. They
are immersed in a medium of dielectric constant ε. The wall
surface carries a fixed surface charge density σe that can be
position dependent. The system is in thermal equilibrium at
some inverse temperature β = 1/(kBT ).

The interaction energy of two charges q and q′ at the points
r and r′ in � is given by qq′/(ε|r − r′|). The Bjerrum length

�B = βe2

ε
(2.1)

is the distance between two unit charges at which they inter-
act with thermal energy kBT . For a uniform surface charge
density σe, there exists another relevant length scale. Since
the potential energy of a unit charge at distance x from such
a wall is 2πe2σx/ε, this energy equals kBT at the so-called
Gouy-Chapman length

μ = 1

2π�Bσ
. (2.2)

The introduction of μ is a priori meaningful only for uniform
surface charge densities.

Let ρ(r) be the mean charge density of particles at point
r ∈ �. Denoting by ψ (r) the corresponding mean electro-
static potential, the electric field is given by

E = −∇ψ. (2.3)

The electric field can be decomposed into its perpendicular
and parallel components with respect to the wall surface (that
may be curved, see below the cylindrical geometry): E =
(E⊥, E‖) where

E⊥ = −∂ψ

∂x
, E‖ = −

(
∂ψ

∂y
,
∂ψ

∂z

)
. (2.4)

Gauss’s law demands that [50]

∇ · E = 4π

ε
ρ (2.5)

and the mean potential therefore fulfills the Poisson equation

�ψ = −4π

ε
ρ. (2.6)

The surface charge density σe is related to the normal deriva-
tive of ψ at the wall as follows [50]:

∂ψ (x, y, z)

∂x

∣∣∣∣
x=0

= −4πσ (y, z)e

ε
. (2.7)
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The overall system charge neutrality requires that the electric
field vanishes at infinite distance from the wall:

lim
x→∞

∂ψ

∂x
→ 0, (2.8)

where x is a proxy for the distance to the charged macroion.
We thus consider here the infinite dilution limit, with a single,
field-creating, charged body.

B. Poisson-Boltzmann theory

We will address two distinct situations:
(1) For counterions only systems, all mobile particles have

the same charge, say −e. Denoting by n(r) the particle number
density at point r ∈ �, the charge density is simply given by
ρ(r) = −en(r). Due to the requirement of overall electroneu-
trality, the particle density must vanish at asymptotically large
distances from the wall, i.e.,

lim
x→∞ n(r) → 0. (2.9)

In the standard mean-field approach, the particle density at
a given point is proportional to the Boltzmann weight of the
mean electrostatic potential at that point [1],

n(r) = f0 exp [βeψ (r)], (2.10)

where f0 is a normalization constant. Introducing the reduced
potential φ = βeψ , this mean-field assumption applied to
(2.6) leads to the Poisson-Boltzmann (PB) equation

�φ = 4π�B f0eφ, n = f0eφ. (2.11)

Note a gauge freedom in shifting φ by a constant which only
renormalizes f0. The boundary conditions (2.7) and (2.8) read

∂φ

∂x

∣∣∣∣
x=0

= −4π�Bσ, lim
x→∞

∂φ

∂x
→ 0. (2.12)

The asymptotic vanishing of the particle density (2.9) means
that φ goes to −∞ as x → ∞.

(2) For systems with salt, namely, the symmetric two-
component plasma, we consider two kinds of mobile particles
with charges +e and −e. Denoting the number densities of
positively and negatively charged species by n+(r) and n−(r),
the total particle number density is given by

n(r) = n+(r) + n−(r) (2.13)

and the charge density reads as

ρ(r) = e[n+(r) − n−(r)]. (2.14)

The system is electroneutral in the bulk region (x → ∞), so
that the bulk species densities must satisfy n+ = n− = n/2, n
being the (prescribed) total bulk density of particles. Within
the mean-field assumption for position-dependent species
densities

n±(r) = n± exp[∓βeψ (r)], (2.15)

ψ (r) must go to 0 as x → ∞. Defining the inverse Debye
length κ = √

4π�Bn and with regard to the Poisson Eq. (2.6),
the PB equation for the reduced potential φ = βeψ reads as

�φ(r) = κ2 sinh φ(r), (2.16)

and we have

n(r) = n cosh φ(r), ρ(r) = −en sinh φ(r). (2.17)

The boundary condition (2.12) for the reduced potential at
the wall (x = 0) remains unchanged, while the boundary
conditions at asymptotically large distances from the wall take
the forms

lim
x→∞ φ → 0, lim

x→∞
∂φ

∂x
→ 0. (2.18)

C. Generalization of the contact relation for a planar interface

We aim at generalizing to the inhomogeneous case the
contact relation between the particle and uniform surface
charge densities. We restrict our discussion here to a planar
wall, located at x = 0. We start with the definition of the
pressure tensor in a charged medium [51],

↔
�(r) =

[
kBT n(r) + ε

8π
E2(r)

]↔
I − ε

4π
E(r) ⊗ E(r),

(2.19)

where
↔
I is the unity tensor. The pressure tensor satisfies the

mechanical equilibrium condition

∇ ·
↔
� = 0. (2.20)

A surface element dS of the wall at x = 0, which is a vector
perpendicular to the surface, is subject to the force

dF =
↔
� · dS =

[
kBT n + ε

8π

(
E2

⊥ + E2
‖
)− ε

4π
E2

⊥

]
dS,

(2.21)

where all quantities are dependent on the (y, z) coordinates of
the surface element. Now let us place a parallel planar wall
with no surface charge at x → ∞. Since for neutral systems,
E vanishes at x → ∞, we have the force dF′ = kBT nbulkdS′
where the surface element on the oppositely oriented wall
at x → ∞ dS′ = −dS and nbulk is the uniform bulk particle
density. The total (osmotic) pressure at point (y, z) is thus
given by

P(y, z) = kBT [n(0, y, z) − nbulk]

+ ε

8π

[
E2

‖(0, y, z) − E2
⊥(0, y, z)

]
. (2.22)

For a planar surface with uniform surface charge den-
sity σe, E‖ = 0 and the quantities n(0, y, z) = n(0) and
E⊥(0, y, z) = E⊥(0) no longer depend on y, z coordinates.
With regard to Eq. (2.7) taken with σ (y, z) = σ , the require-
ment of the nullity of the pressure P(y, z) = P leads to the
standard contact relation

n(0) − nbulk = 2π�Bσ 2. (2.23)

We recall that nbulk = 0 for charged walls with counterions
only and nbulk = n when both co- and counterions are present
(added salt).

In the inhomogeneous (patterned) case with position-
dependent surface charge σ (y, z)e, we have in general that
E‖ �= 0. The local pressure (2.22) can be expressed in terms
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of the reduced potential as follows:

βP(y, z) = [n(0, y, z) − nbulk] − 2π�Bσ 2(y, z)

+ 1

8π�B

{[
∂φ(0, y, z)

∂y

]2

+
[
∂φ(0, y, z)

∂z

]2
}

.

(2.24)

It may be both positive or negative. The mechanical condition
for the plate equilibrium is that the total pressure exerted on
the wall vanishes, i.e.,∫ ∞

−∞
dy
∫ ∞

−∞
dzP(y, z) = 0. (2.25)

Appendix A offers a rederivation of Eqs. (2.24) and (2.25)
directly from the PB equation.

In the case of a surface charge density varying only along
one direction, i.e., σ (y, z) = σ (y), φ(x, y, z) = φ(x, y), and
n(x, y, z) = n(x, y), one has the simplified expression for the
pressure,

βP(y) = [n(0, y) − nbulk] − 2π�Bσ 2(y)

+ 1

8π�B

[
∂φ(0, y)

∂y

]2

, (2.26)

and the constraint ∫ ∞

−∞
dyβP(y) = 0. (2.27)

If the system is periodic along the y axis with period P , it is
sufficient to integrate over this period, say∫ P

0
dyβP(y) = 0. (2.28)

The validity of the pressure constraint will be verified for ev-
ery exactly solvable planar model. For the uniformly charged
wall σ (y) = σ with E‖ = 0 the local relation βP = 0 applies.

Due to the positivity of [∂yφ(0, y)]2 in (2.26) the following
inequality holds:∫ ∞

−∞
dy[n(0, y) − nbulk] � 2π�B

∫ ∞

−∞
dyσ 2(y), (2.29)

where the equality applies exclusively for the uniform case
with ∂yφ(0, y) = 0. Defining the average over the whole plate
by brackets, inequality (2.29) can be rewritten as

〈n(0)〉 − nbulk

2π�B〈σ 2〉 � 1. (2.30)

In particular, if in an inhomogeneous model the relation
between the contact particle density and the surface charge
density is of local type,

n(0, y) − nbulk ∝ 2π�Bσ 2(y), (2.31)

the prefactor must be less than 1. Local relations of type (2.31)
are rare but they exist, as we shall see later.

Interestingly, relation (2.30) may superficially seem to be
at variance with the phenomenon of increased counterion
condensation near surfaces, reported in [35–37] for systems
with counterions only (nbulk = 0). This enhancement effect

translates into

〈n(0)〉
2π�B〈σ 〉2

> 1. (2.32)

Such an inequality may be compatible with (2.30). In such a
case, we have

2π�B〈σ 〉2 < 〈n(0)〉 < 2π�B〈σ 2〉. (2.33)

While the upper bound is guaranteed, a pending question is
thus whether on general grounds

2π�B〈σ 〉2 ?
< 〈n(0)〉. (2.34)

III. SALT-FREE SYSTEMS (COUNTERIONS ONLY)

A. Uniform planar surface charge density

We first recapitulate the case of a uniform plate charge
density σe, see, e.g., review [1]. The electrostatic potential
and particle density then depend only on the x coordinate.
Introducing its dimensionless counterpart,

x̃ =
√

2π�B f0 x, (3.1)

the PB equation (2.11) can be written as

d2φ

dx̃2
= 2eφ (3.2)

and the boundary condition (2.12) at x̃ = 0 takes the form

∂φ

∂ x̃

∣∣∣∣̃
x=0

= − 4π�Bσ√
2π�B f0

. (3.3)

Multiplying the PB equation (3.2) by dφ/dx̃ leads to

1

2

(
dφ

dx̃

)2

− 2eφ = cst. (3.4)

The constant on the right-hand side of this equation vanishes
due to the boundary conditions at x̃ → ∞. Setting the gauge
φ(0) = 0, the solution reads

φ = −2 ln(1 + x̃). (3.5)

The normalization constant f0 is fixed by the boundary condi-
tion (3.3) to

f0 = 2π�Bσ 2. (3.6)

Thus, x̃ = x/μ, where μ is the Gouy-Chapman length defined
in Eq. (2.2).

The particle number density has the form

n = 2π�Bσ 2 1

(1 + x̃)2
∼

x→∞
1

2π�B

1

x2
. (3.7)

The long-ranged asymptotic decay is universal as it does not
depend on the surface charge density σe. It is power-law-like
as a result of poor screening (counterions only, no salt). The
contact value of the number density n(0) = 2π�Bσ 2 is in
agreement with the contact theorem (2.23).

B. General solution of the 2D Liouville equation

Let us now consider a modulation of the surface charge
density, say along the y axis. The electrostatic potential and
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the particle density depend on coordinates x and y. Let us fix
the normalization constant as follows:

f0 = 1

2π�3
B

. (3.8)

Introducing the dimensionless coordinates

x̃ = x

�B
, ỹ = y

�B
, (3.9)

the PB equation (2.11) is written as

∂2φ

∂ x̃2
+ ∂2φ

∂ ỹ2
= 2eφ. (3.10)

The boundary condition (2.12) at x̃ = 0 has the form

∂φ

∂ x̃

∣∣∣∣̃
x=0

= −4π�2
Bσ (̃y), (3.11)

and the particle density is expressible as

n = 1

2π�3
B

eφ. (3.12)

This relation will remain true in the remainder, for all solu-
tions worked out.

Equation (3.10), known in the mathematical literature as
the 2D Liouville partial differential equation [25], is of elliptic
type and has a number of applications in physics, in soft
matter but also beyond; see, e.g., [52] for a study of the
dynamics of point vortices. Various partial exact solutions of
this equation have been found in the past; see, e.g., [53–56].
The most general real solution of the 2D Liouville equation
has been found by Crowdy [57]. In terms of the complex
variables

z = x̃ + i ỹ, z̄ = x̃ − i ỹ, (3.13)

the general solution takes the form

φ (̃x, ỹ) = −2 ln[c1Y1(z)Ȳ1(z̄) + c2Y2(z)Ȳ2(z̄)

+ c3Y1(z)Ȳ2(z̄) + c̄3Ȳ1(z̄)Y2(z)] + ln[W (z)W̄ (z̄)].

(3.14)

Here, Y1(z) and Y2(z) are two arbitrary but independent ana-
lytic functions with the nonzero Wronskian

W (z) ≡ Y1(z)Y ′
2 (z) − Y ′

1 (z)Y2(z). (3.15)

c1, c2 are real constants and c3 a complex constant, such that
the constraint

|c3|2 − c1c2 = 1
4 (3.16)

is satisfied. The conjugate function f̄ (z̄) is defined by f̄ (z̄) =
f (z).

We shall use the above general solution in an inverse way,
namely, generating from the electrostatic potential (which is
a regular solution of the generic 2D Liouville equation), the
corresponding surface charge density. There are two strong
limitations on acceptable solutions. First, we are interested
only in regular solutions which do not exhibit an unphysical
singularity (divergence) at any point of the available space �.
This means that expressions under logarithms must always
be positive. Second, many exact solutions correspond to non-
neutral systems and have been consequently discarded.

The simplest solution is given by the functions

Y1(z) = z, Y2(z) = 1, (3.17)

with the Wronskian W (z) = −1. Writing c3 = α + iβ, the
solution for the potential reads

φ = −2 ln[c1(̃x2 + ỹ2) + c2 + 2αx̃ − 2β ỹ], (3.18)

where the parameters are constrained by

α2 + β2 − c1c2 = 1
4 . (3.19)

For the choice c1 = 0, c2 = c, α = 1/2, β = 0, one has the ỹ-
independent potential

φ = −2 ln (c + x̃). (3.20)

c is related to the constant surface charge density σ via the
boundary condition (3.11) as follows:

c = 1

2π�2
Bσ

= μ

�B
. (3.21)

With regard to (3.12), the profile of particle density

n = 1

2π�3
B

1

(c + x̃)2
= 2π�Bσ 2 1

(1 + x/μ)2
(3.22)

coincides with the previous one (3.7). Up to the different
choice of units, we recover the plain solution (3.5). As we
shall see, other choices of the building blocks Y1 and Y2 yield
more interesting results. Before we proceed along these lines,
we present a useful mapping between planar and cylindrical
geometry that allows a one-to-one correspondence.

C. Towards heterogeneous charge distributions

If a given solution φ (̃x, ỹ) is known for Eq. (3.10), it is
straightforward to realize that

φcyl (̃r, ϕ) = φ (̃x, ỹ) − 2 ln r̃, (3.23)

where r̃ = ẽx and ϕ = ỹ also obey the PB equation

∇2φcyl = 2 eφcyl (3.24)

in cylindrical coordinates, where the Laplacian takes the form

∇2 = 1

r̃

∂

∂ r̃

(̃
r

∂

∂ r̃

)
+ 1

r̃2

∂2

∂ϕ2
. (3.25)

This mapping has been invoked in Ref. [58] and can already be
found in the pioneering work of Fuoss et al. on charged rods in
Wigner-Seitz cells [24]. It yields a one-to-one correspondence
between a solution in planar geometry (expressed with Carte-
sian coordinates) and another one in cylindrical geometry. It
is interesting to note that while the planar solution associated
to some φ (̃x, ỹ) is electrically neutral [meaning that Eq. (2.8)
holds], the cylindrical partner solution φcyl (̃r, ϕ) is not. We
indeed get that

r̃φ′
cyl (̃r, ϕ) = φ′(ln r̃, ỹ) − 2, (3.26)

where the prime denotes a derivative with respect to the first
argument of the functions considered. From Gauss theorem,
this implies that the electric charge enclosed by a cylinder of
divergent radius tends to 2/�B per unit height of the cylinder.
This is nothing but a manifestation of the well-documented
Manning evaporation phenomenon [58–61]: the logarithmic
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potential created by a bare charged cylinder is not sufficiently
strong for confining all neutralizing counterions. Some coun-
terions evaporate “to infinity,” so that the integrated charge
(cylinder plus localized counterions seen from a distance)
amounts to the aforementioned effective linear value.

The planar ↔ cylindrical mapping is useful to generate
solutions in both geometries from a known solution. In doing
so, we circumvent having to find the appropriate couple of
generating functions Y1 and Y2. For instance, the cylindrical
counterpart of the basic planar solution (3.20) reads

φcyl = −2 ln r̃ − 2 ln (c + ln r̃). (3.27)

It turns out that this solution is associated to the choice

Y1(z) = ln(z + a) + c, Y2(z) = 1, (3.28)

with real parameters a, c constrained by

a, c ∈ R, a, c > 0, ln a + c > 0 (3.29)

and the Wronskian W (z) = −1/(z + a). The constraint (3.16)
is met by setting

c1 = c2 = 0, c3 = 1
2 . (3.30)

The associated general solution (3.14) yields

φ = −2 ln
{
c + 1

2 ln[(̃x + a)2 + ỹ2]
}− ln[(̃x + a)2 + ỹ2],

(3.31)

which is nothing but (3.27) expressed in Cartesian coordi-
nates, where r̃2 = (̃x + a)2 + ỹ2. The corresponding surface
charge density computed on the plate at x = 0 reads

σ = 1

2π�2
B

a

a2 + ỹ2

[
1 + 1

c + 1
2 ln(a2 + ỹ2)

]
. (3.32)

It is, expectedly, localized in the vicinity of ỹ = 0. It implies
a density profile of the form

n = 1

2π�3
B

1

(̃x + a)2 + ỹ2

1{
c + 1

2 ln[(̃x + a)2 + ỹ2]
}2 ,

(3.33)

which decays at asymptotically large distances from the wall
as

n(x, y) ∼
x→∞

1

2π�B

1

x2(ln x)2
. (3.34)

This density falloff is faster than the one ∝1/x2 for the
uniformly charged wall. This stems from the fact that the
surface charge on the plate at x = 0 is no longer uniform
but y dependent and localized, and thus with less strength to
localize the counterions. The decay is universal, independent
of the surface charge characteristics a and c.

To summarize, starting from the basic planar solution
(3.20), we invoked the general mapping (3.23) to generate
a simple solution of PB equation (potential created by a
uniformly charged cylinder), which subsequently we have
re-expressed in Cartesian coordinates to arrive at Eq. (3.31)
to generate the nontrivial solution for a nonuniformly charged
plate with surface charge density (3.32). Yet, the latter planar
solution is of limited interest and in some sense artificial,
since it expresses in a set of coordinates (here Cartesian)

the potential created by a body featuring a cylindrical sym-
metry. In the remainder, we will limit such considerations
to Appendix B and consider solutions to the PB equation
that are truly nontrivial. A key question has to do with the
screening effects pertaining to an inhomogeneous periodic
surface charge density.

D. Periodic modulations of the surface charge

1. Planar formulation

To generate periodically changing surface charge densities,
we propose the following functions:

Y1(z) = z + ae−bz, Y2(z) = 1 (3.35)

and the coefficients

c1 = 0, c2 = c, c3 = 1
2 (3.36)

which fulfill the constraint (3.16). At this stage, the free
parameters a, b, c are supposed to be positive real numbers:

a, b, c ∈ R, a, b, c > 0. (3.37)

The resulting potential has the form

φ = −2 ln[c + x̃ + ae−b̃x cos(b̃y)]

+ ln[1 − 2abe−b̃x cos(b̃y) + (ab)2e−2b̃x]. (3.38)

The regularity of φ in the domain � requires that

c > a, ab < 1. (3.39)

The surface charge pattern generated from the potential
(3.38),

σ = 1

4π�2
B

{
2(1 + bc)

c + a cos(b̃y)
− b[1 − (ab)2]

1 − 2ab cos(b̃y) + (ab)2
− b

}
,

(3.40)

is a periodic function of ỹ with period 2π/b. Depending on the
parameters a, b, and c, it can be both positive and negative, but
its mean value (naturally calculated over the period),

〈σ 〉 ≡ b

2π

∫ 2π/b

0
dỹσ (̃y)

= b

2π�2
B

⎡⎣(1 + 1

bc

)
1√

1 − (
a
c

)2
− 1

⎤⎦, (3.41)

is always positive, as it should be in order to have negatively
charged particles in half space �.

The particle density profile reads

n = 1

2π�3
B

1 − 2abe−b̃x cos(b̃y) + (ab)2e−2b̃x

[c + x̃ + ae−b̃x cos(b̃y)]2
. (3.42)

The exponential terms are negligible at large distances from
the wall, and we recover the universal asymptotic decay of the
particle density

n ∼
x→∞

1

2π�B

1

x2
, (3.43)

exactly the same as in the uniform case (3.7). This means that
the periodic variation of the particle density due to the surface
charge density is suppressed exponentially fast, in spite of
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poor screening properties of the charged system which nor-
mally imply a slow decay of statistical quantities. The simul-
taneous appearance of short-ranged and long-ranged decays
in the particle density profile is an interesting and unexpected
feature of the inhomogeneously charged surfaces. Equations
(3.38) and (3.42) reveal that “memory” of corrugation of the
surface is exponentially suppressed with distance x from the
plate; the corresponding decay length is b−1, thus set by the
periodicity of the charge “pattern” at x = 0. On the other hand,
the mean density decays as a power law.

The mean value of the particle density at the wall reads as

〈n(0)〉 ≡ b

2π

∫ 2π/b

0
dỹn(0, ỹ)

= 1

2π�3
Bc2

1 + (ab)2 + 2 a2b
c[

1 − (
a
c

)2]3/2 . (3.44)

Introducing the new parameters

ab ≡ α ∈ (0, 1),
a

c
≡ β ∈ (0, 1), (3.45)

we derive for the ratio of interest (2.32)

〈n(0)〉
2π�B〈σ 〉2

= 1 + α2 + 2αβ√
1 − β2

β2

(α + β − α
√

1 − β2)2
.

(3.46)

The expression on the right-hand side of this equation is
always bigger than or equal to 1 within the definition regions
(3.45) of the parameters α and β; the unity value is obtained in
the limit α, β → 0. This confirms the previous findings about
the enhancement of the counterion density close to the wall
[35–37]. Recalling the general contact inequality (2.30), the
mean contact particle density of the present model has clear
lower and upper bounds:

2π�B〈σ 〉2 � 〈n(0)〉 � 2π�B〈σ 2〉. (3.47)

Conservation laws take a simple form in periodic systems
as the integrals over the whole ỹ axis are substituted by the
ones over one period. The system’s overall electroneutrality
requires that

�B

∫ 2π/b

0
dỹ

[
eσ (̃y) + �B

∫ ∞

0
dx̃(−e)n(̃x, ỹ)

]
= 0, (3.48)

and this equality was checked to be true. The contact
Eqs. (2.26) and (2.28) for the pressure also hold.

A straightforward generalization of the ansatz (3.35) is

Y1(z) = z +
∑

n

ane−bnz, Y2(z) = 1, (3.49)

where {an} and {bn} are any sets of positive real numbers,
parameters {bn} are distinct. The constants c1, c2, and c3 are
chosen as in (3.36). Under the constraints c >

∑
n an and∑

n anbn < 1, the resulting electrostatic potential and density
profile contain superpositions of cos-functions with different
periods along the ỹ axis. We come back to these solutions
below when discussing “mode mixing.”
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FIG. 1. Isopotential lines associated to (3.51) for b = 1, c = 2,
and a = 0.2. The left panel shows the charged cylinder creating
the field (central circle), together with a zoom of the φ map. The
right panel shows the isopotentials on a larger scale. Long-distance
isotropy becomes apparent.

2. Cylindrical formulation

To transpose the previous periodically corrugated charge
pattern on a plane, to a periodic pattern on a cylinder, we take
advantage of the mapping z → ln z defined in Sec. III C or,
equivalently, take

Y1(z) = ln z + az−b, Y2(z) = 1, c1 = 0,

c2 = c, c3 = 1
2 , (3.50)

with b = 1, 2 . . .. We then obtain

φ (̃r, ϕ) = −2 ln r̃ − 2 ln
[
c + ln r̃ + a

r̃b
cos(bϕ)

]
+ ln

[
1 − 2ab

r̃b
cos(bϕ) + (ab)2

r̃2b

]
. (3.51)

The corresponding surface charge on a cylinder can be com-
puted (with arbitrary radius as long as the quantities under
ln are positive, which precludes too small radii). It is not
our purpose to detail the precise result, since it is sufficient
to note that it corresponds to a periodic pattern (or mode),
with period 2π/b. Equation (3.51) indicates that this charge
pattern has a signature in the potential that decays as the
inverse power law r̃−b. Unlike in the periodic planar case
where corrugation screening is exponential, the pattern is here
screened algebraically. This “duality” appears generic; it can
be viewed as subsumed in the planar to cylindrical mapping
of Sec. III C and stems from the correspondence x̃ ↔ ln r̃.

For completeness, Fig. 1 shows the contour plot of φ(x, y)
for the lowest order mode (b = 1). It appears that the isopoten-
tial lines become more and more isotropic, moving away from
the charged cylinder shown in red on the left-hand panel.

Here also, an ansatz of the form (3.49) yields a family of
new solutions. We now discuss the most salient feature of
these generalized solutions.

3. Mode mixing

In the light of our previous cylindrical or planar mapping
remark, we will discuss here the planar case only, keeping in
mind the correspondence between exponential pattern screen-
ing for planes and algebraic pattern screening for cylinders
(with an exponent related to the period of the periodic charge
or potential pattern on the surface of the cylinder).
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We generalize Eq. (3.35) into

Y1(z) = z + a1e−b1z + a2e−b2z, Y2(z) = 1, (3.52)

with b1, b2 > 0. This lead to the potential φ (̃x, ỹ) given by

φ = −2 ln[c + x̃ + a1e−b1 x̃ cos(b1̃y) + a2e−b2 x̃ cos(b2ỹ)]

+ ln{1 − 2a1b1e−b1 x̃ cos(b1̃y) − 2a2b2e−b2 x̃ cos(b2ỹ)

+ (a1b1)2e−2b1 x̃ + (a2b2)2e−2b2 x̃

+ 2a1b1a2b2 e−(b1+b2 )̃x cos[(b1 − b2 )̃y]}, (3.53)

and a more complex “two-mode” pattern on the plane at
x = 0 than in Sec. III D 1. We see that considering two
modes with periods (in coordinate ỹ) 2π/b1 and 2π/b2 in
the function ansatz (3.52) implies in the potential solution
(3.53) the corresponding decay lengths (in coordinate x̃) 1/b1

and 1/b2, respectively. Yet, the contribution dominating at
long distances is not necessarily the one having the largest
period since there is a contribution with period 2π/|b1 − b2|,
which may possibly be the largest one, with a small decay
length 1/(b1 + b2). From these results, we can surmise that
the Fourier transform of a given charge pattern on the plate
will not allow identification of the long-distance electrostatic
signature of the plate by searching for the mode with smallest
wave number. As outlined above, these results immediately
transpose to the cylindrical geometry upon changing terms
like e−(bi )̃x into (̃r)−bi .

E. A perturbative solution of the Liouville equation

We next propose a perturbative treatment of the 2D Liou-
ville equation around the full solution of the uniform surface
charge density by considering its periodic modulations with
infinitesimally small amplitudes. This will confirm the con-
clusions of the previous sections.

Let us add to the uniform potential solution (3.5) an
infinitesimal perturbation ε f (̃x, ỹ) with ε � 1:

φ (̃x, ỹ) = −2 ln(c + x̃) + ε f (̃x, ỹ). (3.54)

The parameter c > 0 will be related to the surface charge den-
sity subsequently. Inserting this ansatz into the 2D Poisson-
Boltzmann–Liouville equation (3.10) and expanding all func-
tions up to terms linear in the small parameter ε, the function
f (x, y) must obey

∂2 f

∂ x̃2
+ ∂2 f

∂ ỹ2
= 2

(c + x̃)2
f . (3.55)

Using a separation of variables

f (̃x, ỹ) = ϕ (̃x)ψ (̃y), (3.56)

the functions ϕ and ψ fulfill the second-degree ordinary
differential equation

1

ϕ

d2ϕ

dx̃2
= b2 + 2

(c + x̃)2
,

1

ψ

d2ψ

dỹ2
= −b2, (3.57)

with b a free positive real number. The solution for ψ is

ψ = cos (b̃y), (3.58)

where the prefactor is set to unity for simplicity. The solution
for ϕ reads

ϕ = e−b̃x

(
b + 1

c + x̃

)
. (3.59)

The total potential

φ = −2 ln(c + x̃) + εe−b̃x

(
b + 1

c + x̃

)
cos(b̃y) (3.60)

generates the surface charge density σ (̃y) via the relation
(3.11)

4π�2
Bσ (̃y) = 2

c
+ ε

(
b2 + b

c
+ 1

c2

)
cos(b̃y). (3.61)

It is readily checked that the small a limit of the nonperturba-
tive solution provided by Eq. (3.38) coincides with Eq. (3.60).

Averaging Eq. (3.61) along the ỹ axis over the period 2π/b
implies that the parameter c is related directly to the mean
value of the surface charge density,

c = 1

2π�2
B〈σ 〉 . (3.62)

To leading order in the smallness parameter ε, the contact
relation takes the form

n(0, ỹ) = [1 − εb2c cos(bỹ)]2π�Bσ 2(ỹ), (3.63)

with the prefactor smaller than 1, as was expected.
We recover here the same conclusion as above, although

limited to a perturbative treatment: the corrugation (i.e., the
y dependence) of the surface charge σe is exponentially
suppressed upon increasing the distance x to the plate [see
Eq. (3.60) for the spatial dependence of the potential]. In ad-
dition, the connection between the period 2π/b of the pattern,
and the pattern screening length 1/b is clearly apparent.

IV. SITUATIONS WITH ADDED SALT

Now we turn to situations where a planar macroion is
immersed in an infinite sea of electrolyte, playing the role of
a salt reservoir and setting the Debye length κ−1.

Let x, y coordinates be measured in units of 1/κ ,

x̃ = κx, ỹ = κy. (4.1)

We are looking for regular potential solutions of the 2D
version of the PB equation (2.16),

∂2φ

∂ x̃2
+ ∂2φ

∂ ỹ2
= sinh φ, (4.2)

the so-called 2D sinh-Gordon equation which is related to the
better-known 2D sine-Gordon equation via the transformation
φ → iφ. The surface charge density, which in general depends
on ỹ, is again determined by the boundary condition

∂φ (̃x, ỹ)

∂ x̃

∣∣∣∣̃
x=0

= −4π�Bσ (̃y)

κ
. (4.3)

For completeness, we recall in Appendix C the main results
for a homogeneously charged plate.
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A. 2D Debye-Hückel solutions

Unlike in the no-salt case, we start with a perturbative
Debye-Hückel (DH) treatment. Within the DH approach, the
linearization of sinh φ ∼ φ in (4.2) leads to the Helmholtz
equation

∂2φDH

∂ x̃2
+ ∂2φDH

∂ ỹ2
= φDH. (4.4)

Its solutions, which depend on both coordinates, can be ob-
tained by using separation of variables:

φDH = ϕ (̃x)ψ (̃y), (4.5)

where ϕ and ψ obey the second-degree ordinary equations

1

ϕ

d2ϕ

dx̃2
= 1

1 − γ 2
,

1

ψ

d2ψ

dỹ2
= − γ 2

1 − γ 2
, (4.6)

with the real parameter γ ∈ (0, 1). In particular,

φDH = c1 sin

(
γ ỹ√

1 − γ 2

)
exp

(
− x̃√

1 − γ 2

)
, (4.7)

where c1 is real. This electrostatic potential is periodic along
the ỹ axis with period (in units of the Debye length)

P (γ ) = 2π
√

1 − γ 2

γ
. (4.8)

Comparing the result (4.7) with the uniform DH solution
(C10), it is clear that any periodic modulation along the ỹ
axis implies a faster exponential decay in the x̃ direction. The
decay rate along the x axis depends on the period of the sine
function along the y axis: a larger period means smaller γ

and consequently slower decay (the decay length is bounded
from above by the Debye length, a value that is reached for
an infinite period along y, i.e., with γ = 0 [62]). The form
of the corresponding surface charge density follows from the
boundary condition (4.3):

4π�BσDH(̃y)

κ
= c1√

1 − γ 2
sin

(
γ ỹ√

1 − γ 2

)
. (4.9)

Since the Helmholtz equation (4.4) is linear, any superpo-
sition of particular solutions also is a solution:

φDH = c exp (−x̃) +
∑

n

cn sin

(
γnỹ√

1 − γ 2
n

)

× exp

(
− x̃√

1 − γ 2
n

)
, (4.10)

where the parameters γ1 < γ2 < · · · < γN are from the inter-
val (0,1), c is any real constant and c1, . . . , cN are nonzero

real constants. The corresponding surface charge density σDH

is given by

4π�BσDH(̃y)

κ
= c +

∑
n

cn√
1 − γ 2

n

sin

(
γnỹ√

1 − γ 2
n

)
. (4.11)

Note that

4π�B〈σDH〉
κ

= c. (4.12)

If c �= 0, the dominant term at large distances in (4.10) is the
one with the uniform surface charge density equal to 〈σDH〉. If
c = 0, i.e., 〈σDH〉 = 0, the dominant term corresponds to the
smallest γ1, i.e., to the largest period (4.8).

The extension of the DH formalism to general profiles
of the surface charge varying along both the y and z axis
is straightforward. On a general ground a Fourier mode of
wave number k for the charge pattern on the plate results in
a far-field decay with a screening rate

√
1 + k2. Hence, the

smallest k (the smallest γ ) provides the mode that extends the
furthest into the bulk.

Since the potential φ in the 2D Poisson equation (4.2)
vanishes at x̃ → ∞, this equation can be linearized in the
asymptotic region (large x̃) and its general solution is of
type (4.10), which allows one to define renormalized coeffi-
cients following the uniform plate approach. It is seen that
the asymptotic potential is generically of the form exp(−x̃),
meaning that the surface corrugation is washed out with x̃ and
that the asymptotic decay is set by the Debye length. At finite
distance from the wall, surface charge modulations with vari-
ous periods influence each other due to the nonlinearity of the
sinh-Gordon equation. One may surmise here that the above
generic scenario holds provided 〈σ 〉 �= 0. The situation with
〈σ 〉 = 0 is more subtle to analyze; an explicit case is worked
out below. Finally, we emphasize that the phenomenon of
saturation can be documented on exactly solvable cases; it
corresponds to the fact that a divergent surface charge may
nevertheless yield a finite potential at all points outside the
charged body creating the field [63].

B. Soliton solutions of 2D sinh-Gordon equation

All solutions of the 2D equation (4.2) are available due
to the existence of Bäcklund transformation, which reduces
the second-order differential equation (4.2) to a couple of the
first-order ones [64]. The simplest soliton one-particle solu-
tion, formulated standardly within the related 2D sine-Gordon
theory, is used to generate via the Bäcklund transformation
solutions with higher number of soliton “particles” [65,66].

The one-soliton solution has the form

φ = 2 ln

{
exp [(̃x + a)/

√
1 + γ 2] + ξ exp [−γ (̃y + b)/

√
1 + γ 2]

exp [(̃x + a)/
√

1 + γ 2] − ξ exp [−γ (̃y + b)/
√

1 + γ 2]

}
, (4.13)

where the coordinate shifts a and b are arbitrary (they only
renormalize ξ > 0) and the parameter γ is real. There always
exist negative values of ỹ such that the denominator of the

fraction under logarithm is equal to 0 or negative, which is
physically unacceptable. To put it differently, Eq. (4.13) leads
to a physically reasonable solution in the upper quadrant only
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(x � 0; y � 0) and we do not dwell further on its properties.
The only exception is when γ = 0, for which (4.13) (with a =
0) reduces to the uniformly charged plate solution (C4).

We turn to the two-soliton solutions of the sinh-Gordon
equation, which can be written as a formal generalization of
the one-soliton result (4.13):

φ(x̃, ỹ) = 2 ln

[
f (̃x) + g(̃y)

f (̃x) − g(̃y)

]
. (4.14)

The function g(ỹ) should obey the differential equation

[g′ (̃y)]2 = Ag4(̃y) − Bg2 (̃y) + C (4.15)

with some as-yet undetermined real coefficients A, B, and C.
The derivation of this equation with respect to ỹ yields

g′′ (̃y) = 2Ag3(̃y) − Bg(̃y). (4.16)

Similarly, the function f (̃x) satisfies the equation

[ f ′ (̃x)]2 = A′ f 4(̃x) − B′ f 2 (̃x) + C′, (4.17)

with some other real coefficients A′, B′, and C′. As before,
differentiating this equation with respect to x̃ yields

f ′′ (̃x) = 2A′ f 3(̃x) − B′ f (̃x). (4.18)

Inserting the ansatz (4.14) into the sinh-Gordon equation (4.2)
and using the relations (4.15)–(4.18) it can be shown that the
functions f (x) and g(y) provide the solution of (4.2) if

A′ = −A, B′ = −(B + 1), C′ = −C. (4.19)

For a special choice of the coefficients

A = A′ = 0, B = C = γ 2

1 − γ 2
,

B′ = − 1

1 − γ 2
, C′ = − γ 2

1 − γ 2
(4.20)

with the real parameter

0 < γ < 1, (4.21)

the f and g functions are obtained as follows:

f = γ cosh

(
x̃√

1 − γ 2
+ a

)
, g = sin

(
γ ỹ√

1 − γ 2

)
,

(4.22)

where a is a real positive number. The resulting potential is

φ = 2 ln

⎡⎣γ cosh
(

x̃√
1−γ 2

+ a
)+ sin

(
γ ỹ√
1−γ 2

)
γ cosh

(
x̃√

1−γ 2
+ a

)− sin
(

γ ỹ√
1−γ 2

)
⎤⎦. (4.23)

Keeping in mind that x � 0, the inequality

γ cosh a > 1 (4.24)

must hold in order to avoid the singularity in φ. This inequality
is equivalent to

a > ac = ln

[
1

γ
(1 +

√
1 − γ 2)

]
. (4.25)
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FIG. 2. Plot of the dimensionless surface charge σ̃ = π lBσ/κ

stemming from Eq. (4.26) for γ = 0.9 as a function of ỹ = κy. For
this situation, the period of the charge pattern is P � 3.04. The
thick continuous, dashed, dotted, and thin continuous curves are for
a = ac, a = 0.52, 0.6, and 1, respectively. The critical a associated
to the constraint (4.25) is ac � 0.467 and leads to a locally diverging
surface charge.

Using the boundary condition (4.3), the surface charge
density is given by

σ = κ

π�B

γ sinh a√
1 − γ 2

sin
(

γ ỹ√
1−γ 2

)
γ 2 cosh2 a − sin2

(
γ ỹ√
1−γ 2

) . (4.26)

This function is periodic with the period P (γ ) given by (4.8).
The parameter a, constrained by the inequality (4.24), con-
trols the amplitude of oscillations, which is enhanced when
γ cosh a is close to 1. Since σ (̃y) = −σ (−ỹ), the mean value
of the surface charge density over the period vanishes,

〈σ 〉 = 0. (4.27)

The behavior of the surface charge is shown in Fig. 2. For
a = ac, the surface charge is divergent at specific points, yet
the electrostatic potential is regular for x > 0, see Fig. 3. For
x = 0, the potential exhibits a diverging tip at the points where
σ diverges.

The reduced potential decays at large distances from the
wall as

φ (̃x, ỹ) ∼
x̃→∞

8e−a

γ
sin

(
γ ỹ√

1 − γ 2

)
exp

(
− x̃√

1 − γ 2

)
.

(4.28)

It is seen that the surface charge density (4.26), which is peri-
odic function of ỹ with a relatively complicated Fourier series,
implies at asymptotic distances from the wall the potential of
the DH form (4.7) as was expected. The exact relationship to
the DH theory can be documented by considering the limit
a → ∞ of the surface charge density (4.26):

4π�Bσ (̃y)

κ
∼ 8

γ

1√
1 − γ 2

e−a sin

(
γ ỹ√

1 − γ 2

)
, (4.29)
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FIG. 3. Electrostatic potential profiles as given by (4.23). The
plot shows the y dependence (parallel to the charged plate) for
different distances to the plates: γ = 0.9 as in Fig. 2 with a = ac.
The thick continuous, dashed, dotted, and thin continuous curves are
for x̃ = κx = 0, 0.05, 0.2, and 0.5, respectively.

which corresponds to the DH surface charge density (4.9) with
c1 = 8e−a/γ � 1. The DH potential (4.7) is then equivalent
to our asymptotic potential (4.28). Equation (4.28) indicates
that the asymptotic screening length is (in units of the Debye
length) � =

√
1 − γ 2. For the γ parameter of Fig. 3, this

yields a length � � 0.43. This is compatible with the data
shown in Fig. 3, where it is seen that for x̃ = κx = 0.5 al-
ready, φ exhibits significantly reduced oscillations. The linear
response regime, where φ is everywhere smaller than 1, is
reached for x̃ > 0.76.

The particle species densities, given by n± = (n/2)e∓φ ,
read as

n+ = n

2

⎡⎣γ cosh
(

x̃√
1−γ 2

+ a
)− sin

(
γ ỹ√
1−γ 2

)
γ cosh

(
x̃√

1−γ 2
+ a

)+ sin
(

γ ỹ√
1−γ 2

)
⎤⎦2

,

n− = n

2

⎡⎣γ cosh
(

x̃√
1−γ 2

+ a
)+ sin

(
γ ỹ√
1−γ 2

)
γ cosh

(
x̃√

1−γ 2
+ a

)− sin
(

γ ỹ√
1−γ 2

)
⎤⎦2

. (4.30)

At each distance from the wall x̃, the particle species densities
fulfill the equality n+ (̃x, ỹ) = n− (̃x,−ỹ), so the integral over
the charge density vanishes, i.e.,

〈ρ (̃x)〉 = 0 for each x̃ ∈ [0,∞). (4.31)

For large distances from the wall, the particle charge density
decays as

ρ (̃x, ỹ) ∼
x̃→∞

8ene−a

γ
sin

(
γ ỹ√

1 − γ 2

)
exp

(
− x̃√

1 − γ 2

)
.

(4.32)

The total particle density at the wall n(0, ỹ) ≡ n+(0, ỹ) +
n−(0, ỹ) satisfies a local relation of type (2.31)

n(0, ỹ) − n = 1 − γ 2

tanh2 a
2π�Bσ 2 (̃y). (4.33)

Using the restriction on the a parameter (4.25), it can be
shown that the prefactor

1 − γ 2

tanh2 a
< 1, (4.34)

in agreement with the general theory presented in Sec. II. It
is easy to show that the contact relations (2.26) and (2.28) are
satisfied. The mean value (over the period) of the total particle
density as the function of the distance from the wall x̃ behaves
as

〈n(̃x)〉
n

− 1 =
4
[
γ cosh

(
x̃√

1−γ 2
+ a

)]
{[

γ cosh
(

x̃√
1−γ 2

+ a
)]2 − 1

}3/2 . (4.35)

At asymptotically large distances x̃, one has

〈n(̃x)〉
n

− 1 ∼
x̃→∞

16e−2a

γ 2
exp

(
− 2̃x√

1 − γ 2

)
, (4.36)

or a more detailed asymptotic relation

n(̃x, ỹ)

n
− 1 ∼

x̃→∞
32e−2a

γ 2
sin2

(
γ ỹ√

1 − γ 2

)

× exp

(
− 2̃x√

1 − γ 2

)
. (4.37)

Comparing this formula with its analog for the particle charge
density (4.32), we see that the approach of the particle number
to its bulk value is faster by a factor of 2 in the exponential.

Finally, let the amplitude of the surface charge density
(4.26) go to infinity, i.e., γ cosh a = 1, which defines ac.
Equivalently,

eac = 1

γ
(1 +

√
1 − γ 2). (4.38)

Considering this relation in the asymptotic decay of the po-
tential (4.28), the prefactor

8 e−a

γ
= 8

1 +
√

1 − γ 2
(4.39)

becomes finite, which is evidence for the saturation phe-
nomenon [63]. Note that the saturated prefactor depends on
γ and its value ranges between 4 for γ → 1 and 8 for γ → 0.
This leads to the remark that the situation leading to the most
enhanced large-distance potential is when γ → 0, meaning
that the period of the charge pattern diverges. We have already
met this feature earlier. Figure 4 illustrates saturation of the
electrostatic signature for the different charge patterns pre-
sented in Fig. 2. It is observed that for a � 0.6, the potential
at the chosen distance from the plate (̃x = 0.5) depends quite
weakly on a while the surface charge evolves from strongly
modulated at a = 0.6 to locally divergent at a = ac. Besides,
the divergent surface charge for a = ac yields a well-behaved
potential. The potential for a = 1 is distinct from the other
three, since it corresponds to too weak modulation.

A natural next step is to proceed to many-soliton solutions,
using, e.g., a simplified Hirota’s method [67]. The problem is
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FIG. 4. Electrostatic potential at a fixed distance from the wall,
x̃ = 0.5, for the various charge patterns shown in Fig. 2. The thick
continuous, dashed, dotted, and thin continuous curves are for a =
ac, a = 0.52, 0.6, and 1, respectively, with ac � 0.467.

that the transition from the sine-Gordon to sinh-Gordon theo-
ries via the transformation φ → iφ converts regular solutions
to unacceptable singular ones.

C. A perturbative solution of the sinh-Gordon equation

The above nonperturbative solution of the 2D Poisson-
Boltzmann equation for the potential (4.23) contains two in-
dependent parameters γ ∈ (0, 1) and a, constrained by (4.24).
By varying these parameters one can obtain a number of vari-
ous forms of the corresponding surface charge density (4.26);
however, all forms have the common property that 〈σ 〉 = 0.
In analogy with the 2D Liouville equation in Sec. III E, we
propose in what follows a perturbative treatment of the 2D
problem around the full solution of the uniform surface charge
density by considering a small periodic modulation. We recall
that in the standard DH approach the whole potential is taken
as a small quantity, in which case the sinh function can be
linearized. The present treatment thus differs from the linear
response derived in Sec. IV A.

Let us add to the uniform potential solution (C4) an in-
finitesimal perturbation ε f (̃x, ỹ) with ε � 1:

φ (̃x, ỹ) = φ0 (̃x) + ε f (̃x, ỹ), φ0 = 2 ln

(
ẽx + ξ

ẽx − ξ

)
. (4.40)

The parameter ξ is as-yet unspecified and will be related to
the surface charge density. Inserting this ansatz into the 2D
sinh-Gordon equation (4.2), the function f (̃x, ỹ) must obey

∂2 f

∂ x̃2
+ ∂2 f

∂ ỹ2
= f cosh φ0, (4.41)

where

cosh φ0 (̃x) = 1

2

[(
ẽx + ξ

ẽx − ξ

)2

+
(

ẽx − ξ

ẽx + ξ

)2
]

= 1 + 8ξ 2e−2̃x

(1 − ξ 2e−2̃x )2
. (4.42)

Note that Eq. (4.41) is in fact the linearized DH version of
the sinh-Gordon equation with the position-dependent κ (̃x) =√

4π�Bn(̃x), where n(̃x) is the standard PB total particle
density for the uniformly charged plate.

Using separation of variables

f (̃x, ỹ) = ϕ (̃x)ψ (̃y) (4.43)

in Eq. (4.41), the ϕ and ψ functions must obey

1

ϕ

d2ϕ

dx̃2
= 1

1 − γ 2
+ 8ξ 2e−2̃x

(1 − ξ 2e−2̃x )2
,

1

ψ

d2ψ

dỹ2
= − γ 2

1 − γ 2
.

(4.44)

The solution for ψ reads as

ψ = sin

(
γ ỹ√

1 − γ 2

)
. (4.45)

The solution for ϕ is searched as a series

ϕ = e−x̃/
√

1−γ 2
∞∑

n=0

cnξ
2ne−2ñx. (4.46)

Inserting this series into Eq. (4.44) implies a recurrent scheme
for the coefficient

1

2
n

(
n + 1√

1 − γ 2

)
cn =

n−1∑
j=0

(n − j)c j, (4.47)

where n = 1, 2, . . . and c0 is free. It is straightforward to
verify that the constant series

cn = 2
√

1 − γ 2

1 +
√

1 − γ 2
c0 (4.48)

solves the recursion (4.47). Setting c0 = 1, ϕ is found to be

ϕ = e−x̃/
√

1−γ 2

(
1 + 2

√
1 − γ 2

1 +
√

1 − γ 2

ξ 2e−2̃x

1 − ξ 2e−2̃x

)
. (4.49)

The total potential reads as

φ = 2 ln

(
ẽx + ξ

ẽx − ξ

)
+ ε sin

(
γ ỹ√

1 − γ 2

)
e−x̃/

√
1−γ 2

×
(

1 + 2
√

1 − γ 2

1 +
√

1 − γ 2

ξ 2e−2̃x

1 − ξ 2e−2̃x

)
. (4.50)

The corresponding surface charge density σ (̃y), generated via
the relation (4.3), takes the form

4π�Bσ (̃y)

κ
= 4ξ

1 − ξ 2
+ ε sin

(
γ ỹ√

1 − γ 2

)

× (1 + ξ 2)2 +
√

1 − γ 2(1 − ξ 4) − 2γ 2ξ 2√
1 − γ 2(1 +

√
1 − γ 2)(1 − ξ 2)2

.

(4.51)

Averaging this equation over the period leads to

4π�B〈σ 〉
κ

≡ a = 4ξ

1 − ξ 2
, (4.52)

where ξ as the function of a is expressed in Eq. (C5).
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It stands to reason that in the limit 〈σ 〉 → 0(ξ → 0) our
equations (4.50) and (4.51) reduce to their DH counterparts
(4.7) and (4.9). The conclusions of previous sections on
screening lengths and periodicity are unaltered.

V. CONCLUSION

This article was devoted to deriving new analytical so-
lutions to the Poisson-Boltzmann theory, which describes
equilibrium electric double layers around charged macro-
molecules. We have addressed deionized situations (counteri-
ons only, also known as salt-free) and others when the double
layer is in equilibrium with a bulk of salt, playing the role of
a reservoir. Previously known solutions pertain to uniformly
charged macromolecules, and we focused on models with in-
homogeneous surface charge densities, referred to as patterns.
In doing so, generic effects of screening emerge.

The no-salt case was solved in Sec. III, taking advantage
of known results for the 2D Liouville equation (3.10) for the
mean (reduced) potential φ. All solutions of this equation are
known; see relations (3.13)–(3.16). Once a solution for φ is
chosen, the corresponding surface charge density is generated
in an inverse way from the boundary condition (3.11). The
problem with these solutions is that the great majority of
them have singularities (divergencies) in the particle region
� and/or the nonvanishing derivative of φ with respect to
x at x → ∞, which corresponds to unphysical non-neutral
charge systems. A generic feature in the no-salt case is that a
periodic charge pattern (with nonvanishing mean) is screened
exponentially in the planar case. This may be surprising since
the counterion density, a measure of charge screening, decays
algebraically as the inverse squared distance to the plate. One
should thus distinguish charge screening (the recovery of a
neutral system at large distance) from heterogeneity screening
(the loss of charge or potential patterning). The situation for
a charged cylinder differs in the sense that pattern screening
becomes algebraic. This can be rationalized by the planar-to-
cylindrical mapping presented in Sec. III C, which highlights
the Cartesian or cylindrical coordinates correspondence x̃ ↔
ln r̃, ỹ ↔ ϕ. More precisely, a charge pattern on the cylinder
with angular period 2π/b, where b is some integer, has a
signature in the potential that decays as the inverse power
law r̃−b. This is superimposed to the global decay of potential
or density away from the charged cylinder, which reduces at
large distance to that of a cylinder without any charge pattern.

For a system with added salt, our main results pertain to
planar interfaces with periodic charge patterns. The planar-to-
cylindrical correspondence is lost. This discussion is devel-
oped in Sec. IV. The linearized DH approach, based on the
Helmholtz equation (4.4), provides the modulated solutions
of type (4.7) where the decay rate along the x axis is directly
related to the period of the sine function along the y axis.
The nonlinear Poisson-Boltzmann approach is associated with
the 2D sinh-Gordon equation (4.2). This equation is inte-
grable and possesses a number of many-soliton solutions, but
practically all solutions suffer from singularities within the
space � occupied by the particles. An exception is represented
by the two-soliton solution for the potential (4.23), which
implies the periodic surface charge density (4.26) with zero
mean. It is interesting that this relatively complicated solution

provides the local contact relation (4.33). The phenomenon of
saturation [63,68] is documented on this model: increasing the
amplitude of periodic oscillations of the surface charge den-
sity to infinity implies the asymptotic decay of the potential
(4.28) with the finite prefactor (4.39). To understand also the
systems with a nonzero mean of the surface charge density, we
constructed in Sec. IV C a perturbative treatment of the 2D
sinh-Gordon equation in infinitesimal periodic modulations
of the uniform surface charge density, in close analogy with
the 2D Liouville equation. Moreover, we have found that the
signature of surface charge pattern extends all the more into
the bulk electrolyte as the associated period of the pattern is
large. The connection between the period P of the charge
pattern and the screening length � reads

�

P = 1√
κ2P2 + (2π )2

. (5.1)

For small period κP � 1, we have � ∼ P/(2π ). Increasing
P , the screening length increases as well and saturates to κ−1

for large periods.
A general analysis of the statistical quantities at the wall

contact was the subject of Sec. II. Using the pressure tensor,
we have derived the integral constraint for the local pressure
given by Eqs. (2.24) and (2.25) which relates the surface
charge density and the statistical quantities at the wall contact,
namely, the particle density and the parallel component of
the electric field. This integral constraint was verified to be
true for every exactly solvable model. The inequality (2.30)
consequently applies. An important feature for the no-salt
case is the confirmation of the enhancement of the counterion
density at the wall in comparison with the uniform case. It is
possible that the established upper bound of the mean contact
particle density in Eq. (3.47) is of general validity.

Variations of the surface charge density studied in this
paper were restricted to one direction, so that the proposed
solutions depend on two coordinates and not three. It would
be useful to have exactly solved models for more general
profiles of the surface charge varying along both the y and
z axis, but this requires the solution of 3D versions of the
Liouville or sinh-Gordon equations. Although a 3D Bäcklund
transformation has already been proposed for the Liouville
equation [69,70], the exact solutions seem out of reach.

Finally, while we focused on macroion features, it would
be relevant to study macroion-macroion interactions within
this formalism and to compare to known results. It was indeed
shown recently that nanopatterned surfaces exhibit an inter-
action force that strongly depends on the alignment between
charged domains and of the domain size [71,72]. Work along
these lines is in progress.
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APPENDIX A: REDERIVATION OF THE INTEGRAL
PRESSURE RELATION

We show here how to recover Eqs. (2.24) and (2.25)
by direct use of the PB equation (2.11). We consider the
counterion-only situation. Multiplying the PB equation by
∂φ/∂x and integrating over x from 0 to ∞, we obtain

4π�Bn(0, y, z) − 1

2

(
∂φ

∂x

)2
∣∣∣∣∣
x=0

+
∫ ∞

0
dx

∂φ

∂x

∂2φ

∂y2
+
∫ ∞

0
dx

∂φ

∂x

∂2φ

∂z2
= 0. (A1)

Next we use the boundary condition (2.12) at x = 0, divide
the above equation by 4π�B, and finally integrate it over y and
z from −∞ to ∞, to get∫ ∞

−∞
dy
∫ ∞

−∞
dz
[
n(0, y, z) − 2π�Bσ 2(y, z)

]
+ 1

4π�B

∫ ∞

0
dx
∫ ∞

−∞
dy
∫ ∞

−∞
dz

∂φ

∂x

∂2φ

∂y2

+ 1

4π�B

∫ ∞

0
dx
∫ ∞

−∞
dy
∫ ∞

−∞
dz

∂φ

∂x

∂2φ

∂z2
= 0.

(A2)

Using integrations by parts with neglect of boundary terms at
infinity in the (x, y) subspace, we get the following equiva-
lence of integrals:∫ ∞

−∞
dy

(
∂φ

∂y

)2
∣∣∣∣∣
x=0

= −
∫ ∞

−∞
dy
∫ ∞

0
dx

∂

∂x

(
∂φ

∂y

)2

= −2
∫ ∞

0
dx
∫ ∞

−∞
dy

∂2φ

∂x∂y

∂φ

∂y

= 2
∫ ∞

0
dx
∫ ∞

−∞
dy

∂φ

∂x

∂2φ

∂y2
.

(A3)

Proceeding similarly in the (x, z) subspace results in∫ ∞

−∞
dz

(
∂φ

∂z

)2
∣∣∣∣∣
x=0

= 2
∫ ∞

0
dx
∫ ∞

−∞
dz

∂φ

∂x

∂2φ

∂z2
. (A4)

Inserting the last two integral equalities into (A2), we arrive
at the contact relation given by Eqs. (2.24) and (2.25).

APPENDIX B: DERIVATION OF NON-NEUTRAL
SOLUTIONS

Choosing in (3.18) the parameters

c1 = 1

2c
, c2 = − c

2
+ a2

2c
, α = a

2c
, β = 0, (B1)

which fulfill the constraint (3.19), we obtain

φ = −2 ln

{
1

2c
[(̃x + a)2 + ỹ2] − c

2

}
. (B2)

To ensure that the expression under logarithm is positive at
any point in �, it is necessary that

0 < c < a. (B3)

The boundary condition (3.11) yields the surface charge den-
sity on the plate at x = 0:

σ = 1

π�2
B

a

a2 − c2 + ỹ2
. (B4)

It is maximal at ỹ = 0 and monotonously decays to zero for
ỹ → ±∞. The corresponding density profile follows from
Eq. (3.12):

n = 2c2

π�3
B

1

[(̃x + a)2 − c2 + ỹ2]2
. (B5)

There exists a nontrivial local relation between the particle
density at the wall and the surface charge density

n(0, ỹ) =
( c

a

)2
2π�Bσ 2 (̃y) (B6)

which is of type (2.31) with the prefactor (c/a)2 < 1, in
agreement with the theory developed in Sec. II. The integral
contact relation given by Eqs. (2.26) and (2.27) is easily
verified to be valid. For a finite value of the ỹ coordinate and
at asymptotically large distances x̃ from the wall, we have

n(x, y) ∼
x→∞

2c2�B

π

1

x4
, (B7)

which is thus y independent. This asymptotic relation is
partially nonuniversal since it contains the surface charge
parameter c; however, it does not involve the parameter a.
Since

(−e)�2
B

∫ ∞

−∞
dỹ
∫ ∞

0
dx̃n(̃x, ỹ) = (−e)

�B

(
a√

a2 − c2
− 1

)
(B8)

and

e�B

∫ ∞

−∞
dỹσ (̃y) = e

�B

a√
a2 − c2

, (B9)

one particle (per unit length in the z direction) is evaporated
in the sense of the Manning-Oosawa condensation [58–61].

Other solutions are given by the choices

Y1(z) = zn (n = 2, 3, . . .), Y2(z) = 1. (B10)

They possess qualitatively the same features as the n = 1 case.
In particular, the asymptotic decay of the density profile is
of the type n(x, y) ∼ x−2−2n for x → ∞. We do not dwell
further on this family for the following reason. While we
started the analysis in planar geometry, the very form of the
solutions obtained [see Eq. (B2)], together with the intrusion
of a Manning-like evaporation phenomenon, indicates that
we are actually contemplating the potential created by a
charged cylinder and that cylindrical coordinates with radial
variable r̃ =

√
(̃x + a)2 + ỹ2 would simplify the formulation,

for the angular dependence is here absent. The resulting
charged cylinder problem is thus isotropic (homogeneous
surface charge) and the charge inhomogeneity obtained with
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Cartesian coordinates is thus artificial, stemming from an in-
appropriate choice of coordinates. Besides, the solution (B2)
actually corresponds to a non-neutral system where, beyond
the unavoidable Manning evaporation [58–61], there are too
few counterions to neutralize the cylinder charge.

All these solutions (including n = 1) correspond to “ini-
tially non-neutral” cylindrical geometry configurations, since
the potential decays too fast at infinity; we do not have a
−2 ln r but a −2(1 + n) ln r. What is meant here is that be-
yond the unavoidable Manning evaporation phenomenon, the
solutions here correspond to a non-neutral system enclosed in
a concentric Wigner-Seitz cylinder, the radius of which is sent
to infinity [73].

APPENDIX C: HOMOGENEOUS SURFACE CHARGE
DENSITY FOR SYSTEMS WITH SALT

Introducing the dimensionless coordinate x̃ = κx, the one-
dimensional version of the PB equation (2.16) is written as

d2φ

dx̃2
= sinh φ (C1)

and the boundary condition (2.12) at x̃ = 0 takes the form

−∂φ

∂ x̃

∣∣∣∣̃
x=0

= 4π�Bσ

κ
≡ a. (C2)

The potential φ is positive and its derivative φ′ (̃x) negative for
all x̃ � 0 (we are dealing with a positively charged surface).
Multiplying the PB equation (C1) by φ′ (̃x), it can be simply
integrated to [1]

φ′ (̃x) = −2 sinh
φ (̃x)

2
, (C3)

which has the explicit solution

φ = 2 ln

(
ẽx + ξ

ẽx − ξ

)
, a = 4ξ

1 − ξ 2
. (C4)

In order to ensure the positivity of φ, the parameter ξ is chosen
as the positive root of the quadratic equation,

ξ = −2 + √
4 + a2

a
. (C5)

Its value is from the interval (0,1), namely, ξ → 0 for a → 0
(small σ ) and ξ → 1 for a → ∞ (large σ ).

At large distances from the wall, φ decays to zero expo-
nentially,

φ ∼
x̃→∞

4ξe−x̃, (C6)

as it should be for dense Coulomb systems. The species
densities

n± (̃x) = n

2
e∓φ (̃x) = n

2

(
1 ∓ ξe−x̃

1 ± ξe−x̃

)2

(C7)

also decay exponentially to their bulk value n/2, from below
for coions and from above for counterions. The total particle
density at the wall,

n(0) = n+(0) + n−(0) = n cosh φ(0) = n + 2π�Bσ 2, (C8)

fulfills the contact theorem (2.23).
The Debye-Hückel (DH) approach is based on the lin-

earization of the PB equation (C1),

d2φDH

dx̃2
= φDH. (C9)

The regular solution of this equation with the boundary con-
dition (C2) reads as

φDH = 4π�Bσ

κ
exp (−x̃). (C10)

Also, the original nonlinear PB equation (C1) can be lin-
earized at x̃ → ∞ since φ is small, and the general solution of
the linearized equation is analogous to the DH one (C9), up to
a σ -dependent prefactor,

φ ∼
x̃→∞

A(σ ) exp (−x̃). (C11)

In analogy with the DH solution (C10), the prefactor A(σ )
defines an effective (or renormalized) surface charge density
σeff via the relation [68,74–76]

A(σ ) = 4π�Bσeff

κ
. (C12)

The explicit nonlinear solution (C4), when expanded in
exp(−x̃), implies

4π�Bσeff

κ
= 4ξ . (C13)

For small σ , ξ ∼ a/4 and σeff ∼ σ . In the limit σ →∞, ξ → 1
and σeff saturates to a finite value given by

π�Bσ sat
eff

κ
= 1. (C14)
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