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Fate of Boltzmann’s breathers: Kinetic theory perspective

P. Maynar 1, and M. I. García de Soria
Física Teórica, Universidad de Sevilla, E-41080 Sevilla, Spain

David Guéry-Odelin
Laboratoire Collisions, Agrégats, Réactivité, FeRMI, Université Toulouse III–Paul Sabatier, 31062 Toulouse Cedex 09, France

Emmanuel Trizac
LPTMS, UMR 8626, CNRS, Université Paris-Saclay, 91405 Orsay, France

and ENS de Lyon, F-69364 Lyon, France

(Received 5 July 2024; accepted 11 September 2024; published 3 October 2024)

The dynamics of a system composed of elastic hard particles confined by an isotropic harmonic potential are
studied. In the low-density limit, the Boltzmann equation provides an excellent description, and the system does
not reach equilibrium except for highly specific initial conditions: it generically evolves toward and stays in a
breathing mode. This state is periodic in time, with a Gaussian velocity distribution, an oscillating temperature,
and a density profile that oscillates as well. We characterize this breather in terms of initial conditions and
constants of the motion. For low but finite densities, the analysis requires taking into account the finite size
of the particles. Under well-controlled approximations, a closed description is provided, which shows how
equilibrium is reached at long times. The (weak) dissipation at work erodes the breather’s amplitude, while
concomitantly shifting its oscillation frequency. An excellent agreement is found between molecular dynamics
simulation results and the theoretical predictions for the frequency shift. For the damping time, the agreement is
not as accurate as for the frequency and the origin of the discrepancies is discussed.
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I. INTRODUCTION

The Boltzmann equation determines the dynamics of the
one-particle distribution function, f (r, v, t ), of a dilute gas
composed of particles with short-range interaction (r denoting
position, v velocity, and t time). The system can be confined
by an external force [1–3]. Essentially, the dynamics of the
distribution function can be decomposed into streaming due
to the external force and binary collisions between the parti-
cles. The equation was derived by Boltzmann by “counting”
collisions under the assumption of molecular chaos, i.e., ab-
sence of correlations between the particles that are going to
collide. Nearly a century later, the equation could be derived
in a rigorous mathematical way for hard core systems [4,5]:
assuming uncorrelated initial conditions, it can be proved in
the low-density limit that the equation holds in some time
window [6]. Nowadays, the Boltzmann equation is an active
area of research in mathematics [7,8]. Besides, it is one of
the cornerstones of statistical physics [2,3]. It is widely used
to study transport phenomena in different areas (solid state,
plasmas, granular systems, traffic flow, population dynamics).
To pinpoint just one of many applications, it is at the root
of the lattice Boltzmann method that has gained a prominent
role as a key computational tool for a wide variety of com-
plex states of flowing matter across a broad range of scales,
from turbulence to biosystems or nanofluidics and recently to
quantum-relativistic subnuclear fluids [9].

Apart from the fact that the state of the system can be de-
scribed in terms of the one-particle distribution function with
a known evolution equation, Boltzmann introduced a func-

tional, H[ f ] ≡ ∫
dr

∫
dv f (r, v, t ) log f (r, v, t ) from which

the irreversible dynamics of the gas can be understood.
More precisely, he proved the so-called H-theorem, which
states that if f (r, v, t ) satisfies the Boltzmann equation, then
dH [ f ]

dt � 0. As H is bounded from below, it must reach a sta-
tionary value and this only occurs when log f is a collisional
invariant or, equivalently, when the distribution function is
a Maxwellian with some space and time dependent density,
flow velocity and temperature. By introducing this distribution
into the Boltzmann equation, it can be seen that, except for
some external potentials that will be considered later, the only
possibility is to have spatial and time independent temperature
and flow velocity, with a density field given by the equilibrium
one. Then, invoking the above argument, it can be proved that
independent of the initial condition, the equilibrium Maxwell-
Boltzmann distribution is reached in the long-time limit. Yet,
Boltzmann himself realized that if the system is confined
by an isotropic harmonic potential, there exist more exotic
solutions in which the distribution function is a local equilib-
rium Maxwell-Boltzmann distribution, but with some specific
space and time-dependent hydrodynamic fields [10]: the tem-
perature is spatially homogeneous, the flow velocity is linear
in r and the density is Gaussian. The temperature and the
cloud size oscillate with the same frequency but with opposite
phases around their equilibrium values. The amplitude of the
flow velocity also oscillates with the same frequency, van-
ishing when the temperature is extremum. These “breathing
modes” result from a perpetual conversion of kinetic and po-
tential energy, through a swinglike mechanism. These modes
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also exist beyond the harmonic confinement, for specific po-
tentials worked out in Refs. [11,12].

The breathing modes have long been considered as a
mathematical curiosity without any possibility of realization
in Nature [13]. Any small imperfection in the trapping po-
tential will eventually thermalize the system, and “pin” it
at equilibrium. In the past years, however, interest in these
modes has increased, especially in the context of cold atoms
where the system is typically confined by a magnetic trap
and the resulting confining potential can be accurately con-
sidered to be harmonic [14]. Moreover, if the temperature is
somewhat larger than the critical temperature for the Bose-
Einstein condensate, then the dynamics of the system are
well described by the classical Boltzmann equation. When
the confined harmonic potential is anisotropic, there still exist
breathing modes but damped and with a different frequency of
oscillations with respect to the isotropic case. The frequency
and damping coefficient of some modes (the monopole and
quadrupole ones) can be calculated from the Boltzmann
equation [15], yielding a very good agreement with experi-
ments [16] in the above-mentioned conditions. Remarkably,
recently, thanks to a new magnetic trap capable of producing
near-isotropic harmonic potential, the nondamping monopole
(i.e., the breather) has been experimentally observed [17,18].
Actually, the mode decays very slowly as a consequence of
small anharmonic perturbations, which decrease with cloud
size. Beyond a mere mathematical curiosity, the relevance of
the breather is highlighted in Ref. [17], as its relaxation time
can be made as small as desired with respect to all the other
modes. This leaves open the question of a possible thermal-
ization of the system, in a perfectly isotropic and harmonic
trap.

In this paper, we consider a system confined by an isotropic
harmonic potential with a twofold objective. The first is to
clarify, at the level of the Boltzmann equation, which type
of breather emerges out of the interactions. Second, the goal
is to analyze the problem beyond the Boltzmann level, in a
finite (although small) density system. To this end, we will
consider that the particles are hard particles and the questions
of interest are: do breathers survive and if so, how are they
affected? Is equilibrium reached in the long time limit? We
will see that a breather indeed appears, which oscillates with a
frequency that is slightly shifted with respect to its Boltzmann
counterpart, and that its amplitude decays very slowly in time.
Close to equilibrium, we will compute the frequency shift
of the oscillations as well as the damping time. The same
questions were recently tackled in Ref. [19] using a hydro-
dynamic description, finding similar results (but restricted,
by construction, to the hydrodynamic regime). It was found
that the damping is associated to the nonlocality of collisions
(meaning the fact that the centers of mass of particles colliding
are at slightly different locations), so that it vanishes in the
low-density limit. Remarkably, for finite densities, the equi-
librium relaxation time is related to the usually neglected bulk
viscosity. This is so because the relaxation is carried out at
constant temperature and with a shearless velocity field. In the
present paper, it is shown that the results of [19] are also valid
beyond the hydrodynamic scale. In addition, by performing
the analysis microscopically, an intuitive understanding of the
damping mechanism at the particle level is achieved.

The paper is organized as follows. The model is introduced
in Sec. II. In Sec. III, the dynamics of the system are studied
in the low-density limit. The main properties of the breathers
are derived, and the theoretical predictions are compared with
molecular dynamics (MD) simulations; the agreement is very
good. In Sec. IV, the dynamics of the system are studied
beyond the Boltzmann limit, accounting for asymptotically
long times (not accessible otherwise). A closed description is
obtained, featuring a novel dissipation mechanism, impinging
of the breather’s late evolution. It is found that the ampli-
tude of their oscillations decays, and that the corresponding
frequency is shifted with respect to the Boltzmann limiting
case. Testing the predictions against MD simulations yields
an excellent agreement for the frequency; the damping time is
not as accurately captured, but its scaling behavior is found to
match the predicted one. A discussion is presented in Sec. V,
together with our conclusions.

II. THE MODEL

We consider N elastic hard particles of mass m and diam-
eter σ . Let ri(t ) and vi(t ) denote the position and velocity of
particle i at time t , respectively, with i = 1, . . . , N . The sys-
tem is confined by an isotropic harmonic potential: a particle
at position ri is subject to a force F i = −kri, where k > 0 is
the stiffness. The spatial dimension of the system is d (d = 2
disks, d = 3 for spheres). Upon binary encounter between
two particles, say particle i and j, of velocities vi and v j , the
velocities are instantaneously changed to the postcollisional
values, v′

i and v′
j , in such a way that total momentum and

energy are conserved:

v′
i = vi + (v ji · σ̂ )̂σ, (1)

v′
j = v j − (v ji · σ̂ )̂σ, (2)

where v ji ≡ v j − vi is the relative velocity and σ̂ a unit vector
joining the two centers of particles at contact.

As the collisions are elastic, the total energy,

E = m

2

N∑
i=1

[
v2

i (t ) + ω2r2
i (t )

]
, (3)

is conserved. Here, the characteristic frequency of the os-

cillations of one particle, ω ≡
√

k
m , has been introduced. In

addition, the total angular momentum

L = m
N∑

i=1

ri(t ) × vi(t ), (4)

relative to the center of the force, is also a constant of the
motion. However, although momentum is conserved in the
instantaneous collisions, total momentum is not a constant of
the motion due to the presence of the external force.

An interesting property of this kind of system is that the
center of mass of the system fulfills a closed equation due to
the linear character of the force:

d2

dt2
R(t ) = −ω2R(t ), with R(t ) ≡ 1

N

N∑
i=1

ri(t ). (5)
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This property is independent of the interparticle potential,
as it stems from the action-reaction principle and the linear
character of the confining potential. Hence, the center of mass
of the system oscillates around the origin with frequency ω.
Of course, equilibrium can only be reached if R and d

dt R are
zero. If this is not the case, then the system can be studied
in the noninertial frame of reference in which the center of
mass is at rest. In this frame, the equations of motion are the
same as in the original inertial frame of reference, again, as a
consequence of the linear character of the force. This property
is specific to the harmonic potential (isotropic or anisotropic)
and it is also valid for a general interparticle potential.

III. BOLTZMANN EQUATION DESCRIPTION
OF THE SYSTEM

In the low-density limit, a Boltzmann description of the
system is supposed to be valid. In this case, the state of the
system is described by the one-particle distribution function,
f (r, v, t ), defined as usual in kinetic theory as the averaged
density of particles in position and velocity space. The dy-
namics of the one-particle distribution function are given by
the Boltzmann equation(

∂

∂t
+ v · ∂

∂r
− ω2r · ∂

∂v

)
f (r, v, t ) = J[ f | f ], (6)

where

J[ f | f ] = σ d−1
∫

dv1

∫
d σ̂θ (−g · σ̂)|g · σ̂|(bσ̂ − 1)

× f (r, v1, t ) f (r, v, t ) (7)

is the so-called collisional contribution. Here, we have intro-
duced the Heaviside step function, θ , the relative velocity, g ≡
v1 − v, and the operator bσ̂ , that replaces the precollisional
velocities into the postcollisional velocities

v′ ≡ bσ̂v = v + (g · σ̂ )̂σ, (8)

v′
1 ≡ bσ̂v1 = v1 − (g · σ̂ )̂σ. (9)

Let us define the averaged values in phase space as

〈a(r, v)〉 ≡ 1

N

∫
dr

∫
dva(r, v) f (r, v, t ). (10)

Although 〈a(r, v)〉 depends on time, this dependence will not
be explicitly written. By taking moments in the Boltzmann
equation, it can be shown that 〈r2〉 and 〈r · v〉 satisfy the
following first-order system of differential equations:

d

dt
〈r2〉 = 2〈r · v〉, (11)

d

dt
〈r · v〉 = 2e

m
− 2 ω2〈r2〉, (12)

where we have introduced the total energy per particle

e ≡ m

2
〈v2〉 + m

2
ω2〈r2〉, (13)

which is a constant of the motion. The system given by
Eqs. (11) and (12) provides a closed description of the mo-
ments 〈r2〉 and 〈r · v〉, i.e., they are completely determined in
terms of the initial condition 〈r2〉0 and 〈r · v〉0. This, at first

sight, surprising feature is a peculiarity of systems confined
by an isotropic harmonic potential and can be intuitively un-
derstood as a consequence of the fact that, at the Boltzmann
level, particles are considered to be point particles [17]. In
effect, for one particle Eqs. (11) and (12) trivially hold. Let
us then consider a system of two particles and identify 〈r2〉
with 1

2 (r2
1 + r2

2 ) and 〈r · v〉 with 1
2 (r1 · v1 + r2 · v2). Between

collisions the result clearly holds. When a collision takes
place, the velocities of the particles change, but 1

2 (r2
1 + r2

2 )
and 1

2 (r1 · v1 + r2 · v2) do not change if the two particles can
be considered to be “at the same place” and momentum is
conserved in collisions. Due to this fact and as energy is con-
served in a collision [note that the energy explicitly appears
in Eq. (12)], the system of equations (11) and (12) holds for
any time. For a system composed of an arbitrary number of
particles, the argument is the same as the dynamics can be
seen as a sequence of binary collisions.

The system of differential equations (11) and (12) is equiv-
alent to the second-order differential equation

d2

dt2
〈r2〉 = 4e

m
− 4 ω2〈r2〉, (14)

to be solved with the initial condition 〈r2〉0 and d
dt 〈r2〉0 = 2〈r ·

v〉0. The explicit solution of Eq. (14) can be written in the form

〈r2〉 = ρ2 + � cos(2 ωt − ϕ), (15)

where

ρ2 = e

mω2
(16)

is the corresponding equilibrium value of 〈r2〉,

� =
√

〈r · v〉2
0

ω2
+

(
〈r2〉0 − e

mω2

)2
, (17)

and tan ϕ = 〈r · v〉0/(ω 〈r2〉0 − e
m ω

). That is, 〈r2〉 oscillates
around the equilibrium value, ρ2, with angular frequency 2 ω,
and with amplitude �, given by Eq. (17). From this, it is
clearly seen that, in general, equilibrium cannot be reached.
It can only be reached for the exceptional initial conditions in
which � = 0, i.e., when 〈r · v〉0 = 0 and 〈r2〉 is equal to the
equilibrium value.

Finally, let us mention that, by taking moments in the
Boltzmann equation, the following relations are obtained:

d

dt
〈r〉 = 〈v〉, (18)

d

dt
〈v〉 = −ω2〈r〉, (19)

consistent with the fact that the center of mass of the system
obeys Eq. (5).

A. Breather state

It was shown by Boltzmann that Eq. (6) admits as a solu-
tion a Gaussian distribution,

fB(r, v, t ) = exp[−α(r, t ) − β(r, t )v2 − γ (r, t ) · v], (20)

if the coefficients α, β, and γ verify certain conditions [10,13].
We will see that these solutions describe breathing modes,
where a perpetual conversion of kinetic energy and potential
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energy operates through a swinglike mechanism. The sub-
script B denotes this particular state, the breather state. By
substituting Eq. (20) into the Boltzmann equation, Eq. (6), it
can be shown that β has to be position independent and obeys
the following third-order differential equation:

˙̇β̇ (t ) + 4 ω2β̇(t ) = 0, (21)

where the dot denotes time derivative. The other coefficients
must be of the form

α(r, t ) = α0 − γ̇0(t ) · r + 1
2 [β̈(t ) + 2β(t )ω2]r2, (22)

γ (r, t ) = γ0(t ) + J × r − β̇(t )r, (23)

where α0 and J are constants (time and position independent)
and γ0(t ) satisfies the second-order differential equation

γ̈0(t ) + ω2γ0(t ) = 0. (24)

The vectors γ0(t ) and J describe the position of the center of
mass of the system and the total angular momentum, respec-
tively. Taking into account the remarks of Sec. II, we can take
γ0(t ) = 0. In addition, we will take J = 0 for simplicity. The
analysis for J �= 0 can be done in a similar fashion.

It is convenient to introduce the hydrodynamic fields, as
usual in kinetic theory, as the first velocity moments of the
distribution function:

n(r, t ) =
∫

dv f (r, v, t ), (25)

n(r, t )u(r, t ) =
∫

dvv f (r, v, t ), (26)

d

2
n(r, t )T (r, t ) =

∫
dv

m

2
[v − u(r, t )]2 f (r, v, t ). (27)

These moments are, respectively, the particle density, momen-
tum density, and kinetic energy density. In terms of these
moments, and under the above-mentioned conditions in which
total momentum and total angular momentum are null, the
one-particle distribution of the breather reads

fB(r, v, t ) = nB(r, t )

[
β(t )

π

]d/2

exp{−β(t )[v − uB(r, t )]2},
(28)

with the following hydrodynamic fields:

nB(r, t ) = N

[
a

4πβ(t )

]d/2

exp

[
− a

4β(t )
r2

]
, (29)

uB(r, t ) = β̇(t )

2β(t )
r. (30)

Here, N is the total number of particles and the only condition
for β(t ) is to fulfill Eq. (21), whose solution is

β(t ) = βs + �β cos(2 ωt − ϕ). (31)

We have also introduced the constant

a = 4 ω2(β2
s − �2

β

)
, (32)

which is positive by definition. The relation between β(t ) and
the temperature of the breather, TB(t ), is simply TB(t ) = m

2β(t ) .

As the density profile is Gaussian, 〈r2〉 can be calculated in a

simple way, obtaining

〈r2〉 = 2d

a
β(t ), (33)

consistent with Eq. (15) and with the fact that we have intro-
duced the same notation for the two phases, ϕ. In fact, Eq. (33)
can be inverted to express the parameters that define β (βs and
�β) in terms of the ones that define 〈r2〉 (e and �), obtaining

β−1
s = 2(1 − q2)e

dm
, (34)

with

q ≡ �β

βs
= mω2�

e
. (35)

We have 0 � q < 1; q is a meaningful index for quantifying
departure from equilibrium, it measures the breather strength:
q = 0 at equilibrium while q → 1 means that βs → ∞, cor-
responding to a breather of maximal amplitude. Equivalently,
β can be explicitly written in terms of 〈r2〉 as

d

2β(t )
= 2e

m
− ω2〈r2〉 − 〈r · v〉2

〈r2〉 . (36)

Nevertheless, it must be stressed that, while the time evolution
of 〈r2〉 is always described by Eq. (15), the inverse of the tem-
perature, β, fulfills Eq. (21) only in the breather state. Let us
also mention that the breather solution of the Boltzmann equa-
tion, fB, although expressed in terms of the hydrodynamic
fields, is an exact solution of the kinetic equation independent
of the values of the fields gradients. In other words, there is
no “hydrodynamic” approximation behind and the fields of fB

can vary over distances of the order of the mean free path.
To sum up, the Boltzmann equation admits a time de-

pendent Gaussian solution completely characterized by β(t )
or, equivalently, by 〈r2〉. As the dynamics of 〈r2〉 are fully
described in terms of the initial conditions 〈r2〉0, 〈r · v〉0, and
e, for the considered case in which the center of mass of the
system is at rest and the total angular momentum is zero,
the breather is completely determined in terms of the total
number of particles, N , 〈r2〉0, 〈r · v〉0, and e. In addition, from
the H-theorem, it is known that, independent of the initial
condition, log f (r, v, t ) will tend in the long-time limit to be a
collisional invariant [2,3], i.e.,

log f (r, v, t ) → −α(r, t ) − β(r, t )v2 − γ (r, t ) · v. (37)

As the breather state is of this form, it turns out that, for
any initial condition, the system will reach in the long-time
limit the only compatible breather with the initial condition,
the one characterized by N , 〈r2〉0, 〈r · v〉0 and e. Hence, in
the context of the studied model, the breather state plays an
essential role as it is the “attractor” to which any state will
tend to. Moreover, equilibrium will be reached if and only if
the initial condition fulfills 〈r2〉0 = ρ2 and 〈r · v〉0 = 0.

B. Simulation results

In this section we present MD simulations results of N
hard disks (i.e., d = 2) of mass m and diameter σ confined
by an harmonic force of constant k. In the simulations m, σ ,
and k are taken to be unity. When there is a binary encounter
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FIG. 1. 〈r2〉
ρ2 as a function of the dimensionless time, ωt , for

φ0 = 9 × 10−3 and q = 0.5. The circles are the molecular dynamics
simulation results in d = 2 dimensions and the solid line the theo-
retical prediction given by Eq. (15). The number of collisions per
particle and per period of oscillation is close to 4.

between the particles, they collide following the collision rule
given by Eqs. (1) and (2). The original event-driven algorithm
for hard spheres [20] is modified to take into account the exter-
nal force. The objective is to see if, independent of the initial
condition, the system reaches the breather state studied in the
previous section. Of course, the comparison only makes sense
for low densities where the Boltzmann equation is supposed to
accurately describe the dynamics of the system. In all the sim-
ulations performed in this section, we have taken N = 1000
and the results have been averaged over 50 trajectories. The
initial condition is generated by placing the particles inside
a ring with an inner radius of Rm and an outer radius of RM

as follows: S concentric, equally spaced circles are defined
within the ring, with radii ranging from Rm to RM . The same
number of particles, N/S, is uniformly distributed in each
circle. The initial velocity distribution is Gaussian with null
total momentum and total angular momentum. In addition,
〈r · v〉0 is zero and 〈r2〉0 is maximum, so that 〈r2〉0−ρ2

ρ2 = q. Let
us also define the maximum dimensionless density of a system
in equilibrium with energy per particle, e, at the Boltzmann
level

φ0 = N

(
d

2πρ2

)d/2

σ d , (38)

in terms of which the parameters of the simulations will be
expressed.

In Fig. 1, 〈r2〉
ρ2 is plotted as a function of the dimensionless

time, ωt , for φ0 = 9 × 10−3 and q = 0.5. The circles are the
simulation results and the solid line the theoretical prediction
given by Eq. (15). For the chosen values of the parameters,
the density at the origin (the maximum density) oscillates
between 6 × 10−3σ−2 and 1.8 × 10−2σ−2, so that the system
is supposed to be accurately described by the Boltzmann equa-
tion. The measurements of 〈r2〉 are taken each 1/30 collisions
per particle. That is why it is seen in the figure that the density
of circles is higher when 〈r2〉 is close to the minimum. At
those times the temperature and the density are close to the
respective maxima and there are more collisions per particle

0 10 20 30 40 50
ωt

0

0.5

1

1.5

2

<
r2

>
/ρ

2

FIG. 2. Same as in Fig. 1, but with a smaller density, for φ0 =
2 × 10−3. The number of collisions per particle and per period of
oscillation is around 3.

in a given time window. As it is seen, in the timescale of the
figure, the agreement between the simulation results and the
theoretical prediction is very good from the initial time (as ex-
pected), 〈r2〉

ρ2 oscillating with frequency 2 ω around unity. This
is so because, as it was discussed in Sec. III, Eq. (15) holds
for any initial condition at any time. Nevertheless, a slight
discrepancy between the frequency seen in the simulations
and the theoretical one, 2 ω, is observed. The measured time
average of 〈r2〉

ρ2 is around 1.0036. It is not plotted because it
cannot be distinguished from the theoretical prediction (unity)
in the scale of the figure. Figure 2 shows the same data as
Fig. 1, but for another value of the density, φ0 = 2 × 10−3.
The initial scaled variance is the same that in the previous
case so that q = 0.5. The circles are the simulation results and
the solid line the theoretical prediction given by Eq. (15). As
the energy is larger than in the previous case, the density is
smaller and the Boltzmann prediction is expected to be even
better. In fact, in this case, the discrepancy between the fre-
quency of the simulation results and the theoretical prediction,
2 ω, cannot be observed in the scale of the figure. As the
measurements of 〈r2〉 are also taken each 1/30 collisions per
particle, the density of points depends on time in a similar
way as in Fig. 1. Let us note that, for the chosen values of the
parameters, the amplitude of the oscillations is of the order
of the mean value (q = 0.5) and the dynamics are highly
nonlinear. As discussed in Sec. III A, the state of the system
is described by an exact solution of the complete nonlinear
Boltzmann equation.

In Fig. 3, the amplitude of the oscillations of 〈r2〉
ρ2 is plotted,

but over a much wider timescale. The solid line (red) corre-
sponds to φ0 = 2 × 10−3, while the dashed line (black) is for
φ0 = 9 × 10−3. The point line is at unity and is plotted only
for reference. It is seen that the amplitudes decay very slowly,
with faster decay for the one associated to the larger density.
These effects (decay of the amplitude and corrections to the
frequency and time average value) are beyond Boltzmann
and will be discussed in the following sections. In any case,
there is a wide timescale in which the Boltzmann prediction
is accurate, and that we study in more detail below.
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FIG. 3. Amplitude of oscillations for 〈r2〉
ρ2 as a function of the di-

mensionless time. The solid line (red) corresponds to φ0 = 2 × 10−3,
while the dashed line (black) is for φ0 = 9 × 10−3. The dotted line at
unity is a guide to the eye.

To see that the system reaches the breather state, we have
measured the fourth position and velocity moments of the dis-
tribution function, 〈r4〉 and 〈v4〉, respectively. In the breather
state, due to the Gaussian character of the distribution func-
tion, these moments are simply related to their respective
second moments. In the d = 2 case, we get

〈r4〉B = 2〈r2〉2
B, (39)

〈v4〉B = 2〈v2〉2
B. (40)

In Fig. 4, MD simulation results for 〈r4〉−2〈r2〉2

ρ4 are plotted as a

function of the dimensionless time, ωt , for φ0 = 9 × 10−3 and
q = 0.5. It can be seen that, for times ωt ∼ 50 (around 100
collisions per particle), the simulation results are close to zero,
indicating that the breather state has been reached. Similarly,
In Fig. 5, MD simulation results for 〈v4〉−2〈v2〉2

ω4ρ4 are plotted as a
function of time, for the same values of the parameters. Again,
for times ωt ∼ 50, the simulation results are close to zero,
indicating that the breather state has been reached. It is also
possible to determine if the system has reached the breather
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FIG. 4. MD simulation results for 〈r4〉−2〈r2〉2

ρ4 as a function of the

dimensionless time, ωt , for φ0 = 9 × 10−3 and q = 0.5.
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FIG. 5. MD simulation results for 〈v4〉−2〈v2〉2

ω4ρ4 as a function of the
dimensionless time, ωt , for the same parameters as Fig. 4.

state by measuring the total number of particles inside a
“small” sphere in the position and velocity space centered
at the origin. By small, it is understood that the distribution
function does not vary appreciably inside it. This is so because
the distribution function of the breather at the origin is simply
fB(0, 0, t ) = Na

4π2 , that is time-independent (a similar quantity
was considered in Ref. [21] to measure the damping of the
breathing mode). In Fig. 6, the total number of particles inside
a sphere centered at the origin in the position and velocity
space of radius r0 = 50σ and v0 = 50 ω σ , respectively, W ,
is plotted as a function of the dimensionless time, ωt , for
φ0 = 9 × 10−3 and q = 0.5. As the phase-space volume is
“small,” it is

W (t ) ≈ �r�v f (0, 0, t ), (41)

with �r = πr2
0 and �v = πv2

0 . The solid line are the sim-
ulation results and the dashed line the theoretical prediction
in the breather state. Although the quantity fluctuates much
more than 〈r4〉 and 〈v4〉, it can safely be said that, for ωt ∼ 25
(see Fig. 6), the breather value has been reached. Note that,

0 25 50 75 100 125 150
ωt

0

10

20

30

40

W

FIG. 6. W as a function of the dimensionless time, ωt , for the
same parameters as Figs. 4 and 5. The solid line are the simulation
results and the dashed line the theoretical prediction in the breather
state. Note that, unlike the fourth moments, W does not oscillate in
the transient to the breather state.
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FIG. 7. σM(r, t ) as a function of r/σ for the initial time, t = t1

(where 〈r2〉 is approximately maximum) and t = t2 (where 〈r2〉 is
approximately minimum). The dots, (black) circles and (red) squares
are the simulation results for the initial condition, t = t1 and t = t2,
respectively. The (black) solid and the (red) dashed lines are the
theoretical predictions for t = t1 and t = t2, respectively.

unlike the fourth moments, 〈r4〉 and 〈v4〉, W does not oscillate
in the transient to the breather state. The results for φ0 =
2 × 10−3 and q = 0.5 are similar, finding that, after around
100 collisions per particle (in this case ωt ∼ 120) 〈r2〉, 〈v2〉
and W reach the corresponding values in the breather state.

With the aid of the above-defined quantities, it is possi-
ble to determine if the breather state has been reached. In
particular, the measured values of the fourth position and
velocity moments indicate that the distribution function is
Gaussian. The objective now is to measure the hydrodynamic
fields once the breather state has been reached, to compare
them with the theoretical predictions. Concretely, the spatial
domain of the system has been divided into rings of internal
radius r and external radius r + �r, that will be denoted
as R(r,�r), and three quantities (functions of r) have been
measured at different times: (a) the number of particles in the
ring, M(r, t )�r; (b) the averaged radial component of the
velocity in the ring, U (r, t ) ≡ 1

M(r,t )�r

∑
i∈R(r,�r) vi(t ) · ri (t )

ri (t ) ;
and (c) the averaged kinetic energy in the ring, Ek (r, t ) ≡

1
M(r,t )�r

∑
i∈R(r,�r)

m
2 v2

i (t ). The subindex i ∈ R(r,�r) indi-
cates that the sum is extended over the particles that are inside
the ring R(r,�r). From Eqs. (29) and (30), the theoretical
expressions for the above-defined quantities can be calculated
in the breather. Assuming that �r is small enough and for d =
2, they are: M(r, t ) = 2N

〈r2〉 re
− r2

〈r2〉 , U (r, t ) = r
2〈r2〉

d〈r2〉
dt , and

Ek (r, t ) = TB(t ) + m
8 [ r

〈r2〉
d〈r2〉

dt ]2. We have taken �r = 2.3σ ,
which satisfies the desired condition that the hydrodynamic
fields do not vary appreciably over distances of this order.

The following MD simulation results are also for φ0 = 9 ×
10−3 and q = 0.5. In Fig. 7, σM(r, t ) is plotted for the initial
time, for ωt1 = 1080 (where 〈r2〉 is approximately maximum)
and for ωt2 which is the value of the available dimensionless
time closest to ωt1 + π

2 (where 〈r2〉 is approximately mini-
mum). As mention above, for these values of the parameters,
the system is well in the breather state for these times. The
dots, (black) circles and (red) squares are the simulation re-
sults for the initial condition, t = t1 and t = t2, respectively.
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FIG. 8. U (r,t )
σ ω

as a function of r/σ for t = t3 and t = t4 where the
absolute value of the slope of the velocity profile is maximum. The
(black) circles and (red) squares are the simulation results at time
t = t3 and t = t4, respectively, and the (black) solid and (red) dashed
lines are the corresponding theoretical prediction.

The (black) solid and the (red) dashed lines are the theoretical
predictions for t = t1 and t = t2, respectively. With the chosen
parameters, the values of Rm and RM are 100σ and 300σ ,
respectively, so that M(r, 0) is only different from zero for
100σ < r < 300σ where it is constant. It is seen that the
agreement between the simulation results and the theoretical
prediction is remarkable. For t = t1 + πm

ω
with m ∈ N and t

being not too large for the amplitude of 〈r2〉 to have decayed, a
very similar profile to the one measured at time t1 is obtained.
The same occurs for the profiles at t = t2 + πm

ω
and the one

measured at time t = t2.
In Fig. 8, U (r,t )

σ ω
is plotted for the available times closer

to t1 + π
4 ω

and t2 + π
4 ω

that will be denoted as t3 and t4,
respectively. For these times the absolute value of the slope of
the velocity profile is approximately maximum. The (black)
circles and (red) squares are the simulation results at time
t = t3 and t = t4, respectively, and the (black) solid and (red)
dashed lines are the corresponding theoretical prediction. It is
seen that the agreement between the simulation results and
the theoretical prediction is very good from the origin to
r ∼ 400σ . For r > 400σ the data becomes more noisy be-
cause there are very few particles (at those times, the number
of particles that are inside the circle centered at the origin
of radius 400σ is about 950 so that the number of particles
outside the circle is about 50). In fact, as it can be seen in
the figure, there are several cells where there are no particles.
U (r,t )
σ ω

at times t = t1 and t = t2 is not shown, but it fluctuates
around zero.

In Fig. 9, Ek (r,t )
mω2σ 2 is plotted for t = t1, t = t2, t = t3 and

t = t4. The (black) circles, (red) squares, (dark blue) triangles,
and (sky blue) stars are the simulation results for t = t1, t = t2,
t = t3, and t = t4, respectively, and the (black) solid, (red)
dashed, and (dark blue) solid-dashed lines the corresponding
theoretical prediction. The agreement between the simulation
results and the theoretical prediction is very good from the
origin to r ∼ 400σ , r ∼ 200σ , and r ∼ 300σ for the times
t = t1, t = t2, and t = t3 (the same for t = t4), respectively. As
in the previous case of U , above these values of the distance
to the origin, the data become very noisy.
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FIG. 9. Ek (r,t )
mω2σ 2 as a function of r/σ for t = t1, t = t2, t = t3, and

t = t4. The (black) circles, (red) squares, (dark blue) triangles, and
(sky blue) stars are the simulation results for t = t1, t = t2, t = t3,
and t = t4, respectively, and the (black) solid, (red) dashed, and (dark
blue) solid-dashed lines the corresponding theoretical prediction.

All these results indicate that for times of the order of t1
the system is already in the breather state where it remains for
long time. Similar results are obtained starting with different
initial conditions and for different values of the parameters if
the density is small enough, proving the attractive character of
the breather state at the Boltzmann level.

IV. BREATHERS BEYOND THE BOLTZMANN
EQUATION DESCRIPTION

The objective of this section is the study of the existence of
the breather states beyond the low-density limit. The question
we want to address is: for the considered model at finite
densities, is a breather state or, on the contrary, equilibrium
reached in the long-time limit?

We have shown in Sec. III that one of the essential features
not to reach equilibrium in the low-density limit is the fact that
we have a closed equation for 〈r2〉, Eq. (14). The solution of
this equation is given by Eq. (15), where it is manifestly seen
that equilibrium can only be reached for a particular class of
initial conditions. It was also shown in Sec. III by intuitive ar-
guments that, to have the above-mentioned closed description,
it is essential that the particles be pointlike. Hence, we expect
not to have a closed description for 〈r2〉 in a finite-density
system. However, for a finite-density system of hard spheres,
the so-called Enskog equation is supposed to describe the
dynamics of the system if the density is “moderate” [2,22,23].
The structure of the Enskog equation is similar to that of the
Boltzmann equation, but with the collisional term modified
in such a way that the size of the particles as well as the
existence of spatial correlations between the colliding parti-
cles are considered. For this equation, a H-theorem has been
proved [24,25] but, in this case, the condition for the long-time
behavior of log f is

log f (r, v, t ) → −α(r, t ) − β(t )v2 − γ (t ) · v − δ(t ) · r × v,

(42)

where, in contrast to Eq. (37), β and γ depend only on time
but not on the position. The new function, δ, is included here
because total angular momentum is conserved in a collision

(in the Boltzmann framework this term is included in the γ

that can depend on r). The difference between Eqs. (37) and
(42) is due to the fact that, at the Enskog level, f (r + σ, v) is
not approximated by f (r, v) (as it is done at the Boltzmann
level in which the size of the particles is neglected). Then, in
a collision, it is taken into account that particles are located
at different places. For example, β(r, t )v1 + β(r + σ, t )v2 �=
β(r, t )v′

1 + β(r + σ, t )v′
2, while β(t )v1 + β(t )v2 = β(t )v′

1 +
β(t )v′

2 due to conservation of total momentum in a collision
(the same occurs with γ and δ). The fact that, at the Enskog
level, γ can only depend on time forbids the existence of the
breather and equilibrium is always reached.

For the above-mentioned reasons, it is expected that the
system will always reach equilibrium in the long-time limit.
Nevertheless, we would also expect that if the system is dilute
enough, then the Boltzmann description will provide a good
approximation of the dynamics and the system will reach a
state close to the breather where it will remain for some time.
To study this situation, we will start by a Liouville description
of the system. The first equation of the BBGKY hierarchy is
[3] (

∂

∂t
+ v · ∂

∂r
− ω2r · ∂

∂v

)
f (r, v, t ) = L[ f2], (43)

where

L[ f2] = σ d−1
∫

dv1

∫
d σ̂|g · σ̂|[θ (g · σ̂ )bσ̂ − θ (−g · σ̂)]

× f2(r + σ, v1, r, v, t ), (44)

and f2(r + σ, v1, r, v, t ) is the two-particle distribution func-
tion of the colliding particles. Note that the Boltzmann
equation is obtained by making the approximation f2(r +
σ, v1, r, v, t ) ≈ f (r, v1, t ) f (r, v, t ), i.e., neglecting position
and velocity correlations and the variation of the one-particle
distribution function in distances of the order of the diameter
of the particles.

Performing a similar analysis to the one made in the pre-
vious section with the Boltzmann equation, i.e., by taking
moments in Eq. (43), one obtains (see Appendix A)

d

dt
〈r2〉 = 2〈r · v〉, (45)

d

dt
〈r · v〉 = 2e

m
− 2 ω2〈r2〉 + 1

mN

∫
drTrP (c)(r, t ), (46)

where P (c)(r, t ) is the collisional contribution to the pressure
tensor. Its explicit expression is

P (c)
i j (r, t ) = m

2
σ d

∫
dv1

∫
dv

∫ 1

0
dλ

∫
d σ̂θ (−g · σ̂ ) f2

× [r1(λ, σ̂), v1, r2(λ, σ̂ ), v, t](g · σ̂ )2σ̂iσ̂ j, (47)

where

r1(λ, σ̂ ) = r + λσ, r2(λ, σ̂ ) = r + (λ − 1)σ. (48)

Physically, P (c)(r, t ) represents the contribution to the flux of
momentum due to collisions [25]. In a hard-sphere system,
there is flux of momentum through a given surface due to
particles that cross the surface, P (k)(r, t ), and due to colli-
sions between particles without crossing the surface (the two
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particles are in opposite sites of the surface, do not cross the
surface, but interchange momentum in a collision). The first
contribution is described simply by the tensor P (k)

i j (r, t ) =
m

∫
dv[vi − ui(r, t )][vi − ui(r, t )] f (r, v, t ), while the second,

P (c)
i j (r, t ), is given by Eq. (47).

Equations (45) and (46) are exact but, in contrast to the
Boltzmann ones given by Eqs. (11) and (12), they are not
closed. They depend on

∫
drTrP (c)(r, t ), which is unknown.

Moreover, this new term is a collisional contribution
which arises from the fact that, in a collision, particles
are not at the same place due to their finite size [see
Eq. (47)]. So, everything is consistent with the intuitive
explanation of Eq. (14) in which it was essential that
the particles were “at the same place” in a collision to
have a closed equation for 〈r2〉: for finite size particles the
evolution equation for 〈r2〉 is not closed due to a collisional
contribution that vanishes for point particles. In fact, an
intuitive derivation of Eqs. (45) and (46) can be made in the
same lines as in the Boltzmann context. In effect, in this case∑N

i=1 ri · vi changes instantaneously in a collision. Concretely,
ri · v′

i + r j · v′
j − ri · vi − r j · v j = −σv ji · σ̂, where σ̂ has

been defined taking the particle i as the tagged particle. Note
that the increment is always positive because σv ji · σ̂ < 0
when a collision is going to take place. Hence, the change
of

∑N
i=1 ri · vi in a time window �t due to collisions is the

sum of −σv ji · σ̂ for all the collisions taking place in �t .
The average of this quantity is precisely the new contribution
�t
mN

∫
drTrP (c)(r, t ) = �tσ d

2N

∫
dr

∫
dv1

∫
dv2

∫
d σ̂θ (−v12 · σ̂ )

(v12 · σ̂ )2 f2(r + σ, v1, r, v2, t ).
To study Eqs. (45) and (46) some approximations have to

be done. Firstly, we will assume molecular chaos, i.e.,

f2(r + σ, v1, r, v, t ) ≈ f (r + σ, v1, t ) f (r, v, t ), (49)

without the approximation f (r + σ, v1, t ) ≈ f (r, v1, t ). This
is the simplest approximation that still takes into account the
fact that, in a collision, particles are not at the same place.
To continue, we need to express the distribution function as
functionals of 〈r2〉 and 〈r · v〉. The simulation results of the
previous section show that, for the considered values of the
parameters, the one particle distribution function of the finite-
density system is very well characterized by the distribution
function of the breather at the Boltzmann level. This is so on
the timescale in which the amplitude of the breather does not
vary. For this reason, we assume that the distribution function
has the same functional form in terms of 〈r2〉 and 〈r · v〉 as the
distribution function of the breather at the Boltzmann level.
Taking into account Eqs. (28), (29), and (30), the distribution
is then approximated by

f (r, v, t ) ≈ n(r, t )

[
β(t )

π

]d/2

e−β(t )[v−u(r,t )]2
, (50)

with

n(r, t ) = N

[
d

2π〈r2〉
]d/2

e
− d

2〈r2〉 r2

, (51)

u(r, t ) = 〈r · v〉
〈r2〉 r. (52)

The inverse of the temperature, β, is given in terms of 〈r2〉 and
〈r · v〉 by Eq. (36),

d

2β(t )
= 2e

m
− ω2〈r2〉 − 〈r · v〉2

〈r2〉 . (53)

As the distribution function of the breather is an exact solution
of the Boltzmann equation in all the regimes, i.e., from the
collisionless to the hydrodynamic regime, our approximation
is expected to be valid in all the regimes as well.

Taking into account molecular chaos and inserting Eq. (50)
into Eq. (47), the expression for TrP (c) to first order in the
gradients is (see Appendix B)

TrP (c)(r, t ) ≈ TrP (c,0)(r, t ) + TrP (c,1)(r, t ), (54)

where the zeroth- and first-order terms are

TrP (c,0)(r, t ) = πd/2

�
(

d
2

)n2(r, t )σ d T (t ) (55)

and

TrP (c,1)(r, t ) = − 2π
d−1

2

d�
(

d
2

)n2(r, t )σ d+1[mT (t )]1/2∇ · u(r, t ),

(56)

respectively. Note that TrP (c) is proportional to n2(r, t ) con-
sistent with the fact that we are beyond the Boltzmann
framework.

Let us remark that the same result is obtained in a simpler
way (without any calculation) if, for P (c), we take the hydro-
dynamics expression at the Enskog level to first order in the
gradients and neglect position correlation [26,27] (taking the
pair correlation function equal to unity) as it was done in Ref.
[19]. In effect, the hydrodynamic expression for P (c) to first
order in the gradients is [2]

P (c)
i j = nT �p∗δi j − ηc

(
∂u j

∂xi
+ ∂ui

∂x j
− 2

d
∇ · uδi j

)
− ν∇ · uδi j, (57)

where �p∗ is the excess pressure with respect to the ideal one,
nT , ηc is the collisional contribution to the shear viscosity, ν is
the bulk viscosity and xi denotes the ith component of r. The
explicit expression for �p∗ and ν are (the coefficient ηc is not
needed in the subsequent analysis)

�p∗ = πd/2

d�
(

d
2

)g2nσ d (58)

and

ν = 2π
d−1

2

d2�
(

d
2

)g2n2σ d+1(mT )1/2, (59)

where g2 is the pair correlation function at contact. The trace
of the tensor is

TrP (c) = dnT �p∗ − dν∇ · u. (60)

Taking into account the explicit expressions for �p∗ and ν

given above and approximating the two-pair correlation func-
tion by unity, Eq. (60) reduces to Eq. (54) with the zeroth
order and first order in the gradients contribution given by
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Eqs. (55) and (56), respectively. The coincidence between
the kinetic theory approach and the hydrodynamic approach
deserves some comments as it is not incidental: in the kinetic
theory approach the distribution function is Gaussian, while in
the hydrodynamic one the distribution function to first order in
the gradients is not Gaussian. Nevertheless, the non-Gaussian
contribution to P (c) are all immersed in the shear viscosity,
that does not appear in the trace. Let us also remark that, in
the hydrodynamic approach, it is implicitly assumed that the
fields vary over distances much larger than the mean free path
while, in the kinetic approach, it is only assumed that the fields
vary smoothly over distances of the order of the diameter of
the particles [so that the expansion given by Eq. (54) makes
sense].

Finally, taking into account the expressions for the hydro-
dynamic fields, Eqs. (51), (52), and (53), the spatial integral
of the pressure tensor can be evaluated, obtaining∫

drTrP (c,0)(r, t ) = πd/2

2
d
2 �

(
d
2

)NT (t )φ[〈r2〉], (61)∫
drTrP (c,1)(r, t ) = − π

d−1
2

2
d−2

2 �
(

d
2

)Nσ
√

mT (t )
〈r · v〉
〈r2〉 φ[〈r2〉],

(62)

where the value of the maximum density (the one at the origin)
at the Boltzmann level at time t has been introduced:

φ[〈r2〉] = N

[
d

2π〈r2〉
]d/2

σ d . (63)

Equations (45) and (46) with
∫

drTrP (c)(r, t ) given by
Eqs. (61) and (62) form a closed set of first-order nonlin-
ear differential equations for 〈r2〉 and 〈r · v〉. They are valid
arbitrary far from equilibrium if the hypothesis we have pos-
tulated are valid, i.e., if Eqs. (49), (50), and (54) hold. In the
next section, we will analyze the equation for states close to
equilibrium.

A. Close to equilibrium states

In this section, the dynamics of the system are studied for
states close to thermal equilibrium. It is convenient to work
with the second-order differential equation for 〈r2〉 equivalent
to the system of Eqs. (45) and (46) that reads

d2

dt2
〈r2〉 = 4e

m
− 4 ω2〈r2〉 + 2

mN

∫
drTrP (c)(r, t ), (64)

where
∫

drTrP (c)(r, t ) is given by Eqs. (61) and (62) with 〈r ·
v〉 = 1

2
d
dt 〈r2〉. Equation (64) admits a stationary solution (the

equilibrium solution), 〈r2〉e, that satisfies

2e

m
− 2 ω2〈r2〉e + π

d
2

2
d
2 �

(
d
2

)φ[〈r2〉e]
Te

m
= 0, (65)

with Te = 2
d e − mω2

d 〈r2〉e. 〈r2〉e differs from the corresponding
Boltzmann value, ρ2 = e

mω2 , due to excluded volume effects.
Assuming that the density is small, 〈r2〉e should be close to
ρ2. It is convenient to introduce the deviation

δ〈r2〉e ≡ 〈r2〉e − ρ2, (66)

which, to linear order, can be calculated, obtaining

δ〈r2〉e = π
d
2

d2
d
2 +1�

(
d
2

)φ0ρ
2, (67)

where φ0 is the value of the maximum density of a system in
equilibrium with energy per particle, e, at the Boltzmann level,
defined in Eq. (38). Of course, φ0 = φ[ρ2]. Remarkably, the
prediction for 〈r2〉e given by Eq. (67) coincides with the equi-
librium one in the first virial approximation (see Appendix C).

To study the dynamics, we introduce the deviation of 〈r2〉
around the actual equilibrium value

x ≡ 〈r2〉 − 〈r2〉e. (68)

To linear order in x and for low densities, we have

2

mN

∫
drTrP (c,0)(r, t ) ≈ 2πd/2

2d/2�
(

d
2

)φ[〈r2〉e]
Te

m

− (d + 2)πd/2

d2d/2�
(

d
2

) φ0ω
2x, (69)

2

mN

∫
drTrP (c,1)(r, t ) ≈ − 2π

d−1
2

d1/22d/2�
(

d
2

)φ0
σ

ρ
ωẋ. (70)

Taking into account the above relations, by linearizing
Eq. (64) around the equilibrium solution, one finds that, for
low densities, x satisfies the following second-order linear
differential equation with constant coefficients

ẍ + 2

τ
ẋ + �2x = 0, (71)

with

ωτ = d1/22d/2�
(

d
2

)
π

d−1
2

ρ

φ0σ
(72)

and (
�

ω

)2

= 4 + (d + 2)πd/2

d2d/2�
(

d
2

) φ0. (73)

The solution of the differential equation can be written in
terms of the roots of the characteristic equation, m2 + 2

τ
m +

�2 = 0,

m = − 1

τ
± i

√
�2 −

(
1

τ

)2

≈ − 1

τ
± i�, (74)

where, again, the linear approximation in φ0 has been made.
Then, within this approximation, the solution of Eq. (71) can
be written as

x(t ) = x(0)e− t
τ cos(�t − ϕ), (75)

with the phase, ϕ, depending on the initial condition. The
coefficient τ , given by Eq. (72), is identified as the relaxation
time of the amplitude of the oscillations, and �, given by
Eq. (73), is the frequency of the oscillations. This is the
main result of the paper as it lets us understand the origin
of the relaxation to equilibrium as a consequence of density
corrections with respect to the Boltzmann framework. The
relaxation time, τ , depends on the two parameters that define
the equilibrium state, φ0 and ρ/σ (or, equivalently, N and e).
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In the conditions we are working (for low densities), the re-
laxation is very slow, as the relaxation time goes as τ ∝ 1/φ0.
The divergence in the low-density limit is consistent with the
Boltzmann description, in which equilibrium is never reached.
However, the frequency of the oscillations, �, is “renormal-
ized” with respect to the Boltzmann prediction, 2 ω, being
the former one always larger than the last one. The origin
of the renormalization of the frequency and of the damping
can be identified: from Eq. (69), it is seen that the renormal-
ization of the frequency (and also of the time average of the
oscillations) comes from TrP (c,0) while, from Eq. (70), it is
seen that the damping comes from TrP (c,1). These results are
equivalent to the ones obtained in Ref. [19] by hydrodynamic
arguments where TrP (c,0) is associated to the excess pressure
and TrP (c,1) to the bulk viscosity. Concretely, in Ref. [19] the
relaxation time, τ , was identified as a functional of the bulk
viscosity in equilibrium, νe(r), in the form

τ = 2mNρ2

d2
∫

drνe(r)
, (76)

that coincides with Eq. (72). Equation (75) highlights the two
timescales of the state of the system: the one related to the
oscillations, ω−1, that is fast and it is given by the external
force, and τ that controls the decay of the amplitude of the
oscillations and that is much slower than the previous one.

B. Simulation results

The objective of this section is to compare the theoretical
predictions obtained above with MD simulation results. The
idea is to measure 〈r2〉 as a function of time, extracting from
it 〈r2〉e, τ , and �. 〈r2〉e is obtained from the averaged value
around which 〈r2〉 oscillates, τ by fitting the relative maxima
(or minima) to an exponential and � by measuring the time
between two relative maxima (or minima) that can be sepa-
rated by several periods. The MD simulations are performed
as in Sec. III B. The only difference is that the initial condition
is generated in such a way that the initial density profile is
Gaussian. Hence, at the initial time the system is closer to the
breather and the condition for the theory to be valid, i.e., that
the distribution function has the same functional form that the
breather at the Boltzmann level, is reached faster.

We have performed a series of simulations with N =
1000 disks and q = 0.2 for different values of the energy,
in such a way that φ0 varies approximately in the interval
(0.005, 0.015). These values of the density are expected to
be small enough for the theory to be valid, as the Boltz-
mann prediction describes accurately the dynamics in a wide
enough time window. The results have been averaged over
50 trajectories. With the chosen values of the parameters,
the system is close enough to equilibrium so that the linear
approximation is supposed to be valid. This is supported by
the fact that the nonlinear solution of Eqs. (45) and (46) with∫

drTrP (c)(r, t ) given by Eqs. (61) and (62) is very close to
the linear approximation for the above-mentioned parameters.
For the considered values of the parameters, the minimum
mean free path (the one at the origin) is of the same order as
the size of the system measured by ρ, so that the conditions for
the validity of hydrodynamics are doubtful. Nevertheless, this
is not relevant in our case because, as it has been mentioned
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δ<
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FIG. 10. δ〈r2〉e
ρ2 as a function of the dimensionless density, φ0. The

dots are the simulation results and the solid line is the theoretical
prediction given by Eq. (67).

above, our predictions do not rely on a hydrodynamic descrip-
tion. In addition, this gives support to the analysis performed
in Ref. [19], as the theoretical predictions do not depend on
the regime.

In Fig. 10, δ〈r2〉e

ρ2 is plotted as a function of the dimension-
less density, φ0. The dots are the simulation results and the
solid line the theoretical prediction given by Eq. (67). As can
be seen, the agreement between them is excellent.

In Fig. 11, ωτ is plotted as a function of φ0 in logarithmic
scale. The dots are the simulation results and the solid line the
theoretical prediction given by Eq. (72) that, for d = 2 and
expressed in terms of N and φ0, takes the form

ωτ = 2
√

2

π

N1/2

φ
3/2
0

. (77)

The dashed line is the linear fitting of the simulation results
with slope −1.53 ± 0.02 in good agreement with Eq. (77).
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(Ω
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FIG. 11. ωτ as a function of the dimensionless density, φ0, in
logarithmic scale. The points are the simulation results, the solid
line the theoretical prediction given by Eq. (77), and the dashed line
is the linear fitting of the simulation results. In the inset, ( �

ω
)2 is

plotted as a function of the dimensionless density, φ0. The dots are
the simulation results and the solid line is the theoretical prediction
given by Eq. (73).
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FIG. 12. 〈r2〉
ρ2 as a function of the dimensionless time, ωt , for

φ0 = 0.013 and q = 0.95. The points are the MD simulation results,
the (black) solid line is the nonlinear theoretical prediction and the
(red) dashed line is the linear theoretical prediction. The number of
collisions per particle and per period of oscillation is around 10.

As in the previous cases, the error bars cannot be observed in
the scale of the figure. Note that, in this case, the agreement
is not as good as in the previous two quantities. The quotient
between the theoretical prediction and the measured quantities
is always of the order of 1.5, indicating that, although the
density dependence is perfectly captured by the theory, there
are other not considered ingredients that renormalize the am-
plitude of φ

−3/2
0 . Similar results are obtained for other values

of the number of particles, so that the discrepancies are not
due to finite size effects. In the next section we will further
comment about that.

Finally, ( �
ω

)2 is plotted as a function of the dimensionless
density, φ0, in the inset of Fig. 11. The dots are the simulation
results and the solid line the theoretical prediction given by
Eq. (73). The agreement between the simulation results and
the theoretical prediction is very good. The error bars in the
measured quantities cannot be observed in the scale of the
figures. We have also performed MD simulations very far
from equilibrium where the linear approximation is supposed
to fail. The values of the chosen parameters are N = 1000,
φ0 = 0.013 and the “extreme” value q = 0.95, so that the
amplitude of the oscillations of 〈r2〉 is nearly ρ2. In Fig. 12,
〈r2〉 is plotted as a function of the dimensionless time, ωt , in
the time window ωt ∈ [0, 30]. The points are MD simulation
results, the (black) solid line is the nonlinear theoretical pre-
diction, while the (red) dashed line is the linear theoretical
prediction. It can be seen that the agreement between the
simulation results and the theoretical predictions is very good,
although a small shift is found in the linear theoretical predic-
tion for ωt > 20. This effect is amplified in Fig. 13, where
the same is plotted but for the time window ωt ∈ [70, 100].
Here, the linear theoretical prediction is clearly shifted with
respect to the simulation results, while the nonlinear one
still perfectly fits the simulation data. More quantitatively,
the values of the frequencies of the oscillations, �

ω
, in the

simulation results, nonlinear theoretical prediction and linear
theoretical predictions are 2.01963 ± 6 × 10−5, 2.02081, and
2.01002, respectively. We stress that the “correction” to the
Boltzmann prediction in the nonlinear case is of the order
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Linear theoretical prediction

FIG. 13. Same as in Fig. 12 but for a different time window.

of twice the correction in the linear case. Note also that, for
these times, the decay of the amplitude of the oscillations
cannot be observed. The same analysis has been performed
for different values of the relative amplitude, q, the results
being plotted in Fig. 14. The (black) circles are the simulation
results and the (red) squares are the results extracted from
the numerical solution of the nonlinear equations. It is seen
that the agreement between both is very good and that for
q = 0.2 the linear prediction is accurate. These results give
a strong support to the validity of the nonlinear equations, at
least in the time window where

∫
drTrP (c,0)(r, t ) dominates

the dynamics with respect
∫

drTrP (c,1)(r, t ).

V. DISCUSSION AND CONCLUSIONS

In this work, we have worked out the dynamics of a system
of hard particles that collide elastically and that are confined
by an isotropic harmonic potential: each particle of mass m
at point r is subject to a force −mω2r. The study has been
performed at two levels of description: at the low-density
limit where the Boltzmann equation describes the dynamics
of the system and beyond the low-density limit (although for
low densities). At the Boltzmann level, we have shown that,

0.2 0.4 0.6 0.8 1
q

2

2.005

2.01

2.015

2.02

2.025

Ω/ω

Simulation results
Non-linear equation results

FIG. 14. �

ω
as a function of the relative amplitude, q, for φ0 =

0.013. The (black) circles are the simulation results and the (red)
squares are the results extracted from the numerical solution of the
nonlinear equations.
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independent of the initial condition, the system reaches a
breather state in the long-time limit. Concretely, if the system
is studied in the frame of reference where total momentum
vanishes and assuming the total angular momentum also van-
ishes, then the breather is characterized by N (number of
particles), 〈r2〉0, 〈r · v〉0, where 〈...〉0 refers to an average
in the initial condition, and the total energy per particle e.
This is a consequence of the fact that 〈r2〉 verifies a closed
equation, independent of the initial distribution function, os-
cillating around the equilibrium value with frequency 2 ω (the
amplitude of the oscillations depends on 〈r2〉0 and 〈r · v〉0).
Equilibrium is only reached when 〈r2〉0 = ρ2 and 〈r · v〉0 van-
ishes. For low densities, MD simulation results are in excellent
agreement with the Boltzmann predictions. We have probed
the above-mentioned prediction for 〈r2〉 and we have shown
that, independent of the initial condition, after some collisions
per particle, the hydrodynamic fields reach the corresponding
profiles, oscillating with the corresponding frequency. Never-
theless, small corrections are reported, eroding the amplitude
of the oscillations very slowly. The frequency of the oscilla-
tions and the mean value of 〈r2〉 are also slightly renormalized.
All these effects are due to the fact that a system of N particles
of finite diameter, σ , does never, strictly speaking, comply
with the Boltzmann equation level of description.

The study of the dynamics of the system beyond the
Boltzmann equation is performed taking into account pre-
cisely this idea. By performing the approximation f2(r +
σ, v1, r, v, t ) ≈ f (r + σ, v1, t ) f (r, v, t ) in the first equa-
tion of the BBGKY hierarchy, a closed equation for the
distribution function is obtained that takes into account the fi-
nite size of the particles. Recall that the Boltzmann equation is
obtained with the additional approximation f (r + σ, v, t ) ≈
f (r, v, t ). By taking moments in the dynamical equation,
evolution equations for 〈r2〉 and 〈r · v〉 are obtained that,
in contrast to the Boltzmann ones, are not closed. A new
term arises that is proportional to the total collisional con-
tribution to the pressure,

∫
drTrP (c)(r, t ). Closed evolution

equations are obtained by assuming that the functional de-
pendence of the distribution function on 〈r2〉 and 〈r · v〉 is
the same as the one in the breather state at the Boltzmann
level (this approximation is supported by the previous MD
simulation results) and by expanding the distribution function
to first order in the gradients. By performing a linear analysis
of the resulting equations, one finds that 〈r2〉 oscillates around
the equilibrium value (that is renormalized with respect to the
Boltzmann value) with a given frequency (that is also renor-
malized with respect to the Boltzmann prediction), leading
to a decay of the amplitude of the oscillations with a given
relaxation time, τ . While the renormalizations are due to the
zeroth order in the gradients expansion of

∫
drTrP (c)(r, t ),

i.e., the excess pressure, the decay of the oscillations is due
to the first-order contribution. If a hydrodynamic description
of the system is valid, then this first-order contribution can be
understood as a fingerprint of the bulk viscosity [19]. In fact,
the measure of τ can be considered to be a direct probe of the
bulk viscosity. We are not aware of any other process in which
this transport coefficient appears in such a clear way.

The agreement between the theoretical predictions and
Molecular Dynamics simulation results is excellent for the

mean value and frequency of the oscillations. For τ , the
agreement is decent, but it is not as good as for the aforemen-
tioned quantities. This fact deserves some comments. First,
it must be mentioned that the mismatch is not caused by
the linearization process, as the numerical solution of the
complete nonlinear equations leads to similar results. To an-
alyze the problem, recall the main approximations made in
the theory: (a) Eq. (49), i.e., molecular chaos assumption;
(b) Eq. (50), which approximates the distribution function
to have the same functional form as in the breather state at
the Boltzmann level with the hydrodynamic fields written in
terms of 〈r2〉 and 〈r · v〉; (c) the expansion in the gradients
of the fields. Considering (a), position correlations between
the particles that are going to collide can be accounted for
by multiplying the collisional term by the pair correlation
function at contact. This is the idea behind the Enskog equa-
tion [22] that incorporates position correlations of the particles
at contact while neglecting velocity correlations. This would
actually increase the collision frequency and, hence, “ac-
celerate” the process, obtaining a faster decay, as desired.
However, for the considered densities, the corrections can-
not reach the 1.5 factor as the pair correlation function at
contact is of the order of 1.02, hence a 2% correction. Al-
though the density is very small, velocity correlations could
contribute to the corresponding order in the density. How-
ever, their computation are complex and the analysis would
require further investigations. Approximation (c) could be
improved by introducing more terms in the gradients expan-
sion but it can hardly explain the discrepancy: As TrP (c)(r, t )
is a scalar, the second order in the gradients contribution
is of the form TrP (c,2)(r, t ) = c1∇2n(r, t ) + c2[∇n(r, t )]2 +
c3

∑
i

∑
j[∇iu j (r, t )]2+c4

∑
i

∑
j ∇iu j (r, t )∇ jui(r, t ), where

ci with i = 1, . . . , 4 are Burnett coefficients, that do not con-
tribute to τ in the linear regime (in the nonlinear case, a term
of the form (ẋ)2 will appear that would not help, either). Per-
haps, the most plausible scenario to explain the discrepancies
is that approximation (b) is not accurate enough at this order
in the density. Within a hydrodynamic description, this could
be improved by considering the hydrodynamic equations at
the Enskog level. By linearizing them around the equilibrium
state, the relaxation time could be extracted, although it is
difficult to go beyond the approximation performed in Ref.
[19] as the state around which the linearization is performed
is position-dependent. Another possibility is to modify the
ansatz given by Eq. (50) by incorporating more moments in
the distribution function, e.g., all the possible position and
velocity fourth moments. Taking into account the symmetry
of the system, they are 〈r4〉, 〈r2(r · v)〉, 〈r2v2〉, 〈(r · v)2〉,
〈(r · v)v2〉, and 〈v4〉. Work along these lines is in progress.

The present work represents a first step in the study
of the dynamics of dense confined systems. A number of
interesting questions arise, pertaining to the behavior at
high densities or under anisotropic trapping. In the latter
case, the decay to equilibrium features two contributions,
one coming from the anisotropy of the potential and one
stemming from the finite density. It would be interesting
to clarify the region of the parameters where one effect
or the other dominates. Work along these lines is also in
progress.
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APPENDIX A: EVOLUTION EQUATIONS FOR 〈r2〉 and 〈r · v〉
We will proceed in two steps. We will first take velocity moments in Eq. (43) to obtain balance equations for n(r, t ) and u(r, t )

and, then, we will take spatial moments to obtain the desired equations.
By integrating in the velocity in Eq. (43) and taking into account that

∫
dvL[ f2] = 0 [25], the density equation is obtained:

∂

∂t
n(r, t ) + ∂

∂r
· [n(r, t )u(r, t )] = 0. (A1)

By multiplying by v in Eq. (43) and integrating in the velocity space, one obtains

∂

∂t
[n(r, t )u(r, t )] +

∫
dv vv · ∂

∂r
f (r, v, t ) + ω2n(r, t )r + 1

m

∂

∂r
· P (c)(r, t ) = 0, (A2)

where the collisional contribution to the pressure tensor has been introduced through

P (c)
i j (r, t ) = m

2
σ d

∫
dv1

∫
dv

∫ 1

0
dλ

∫
d σ̂θ (−g · σ̂ ) f2[r1(λ, σ̂ ), v1, r2(λ, σ̂), v, t](g · σ̂)2σ̂iσ̂ j, (A3)

with

r1(λ, σ̂) = r + λσ, r2(λ, σ̂ ) = r + (λ − 1)σ, (A4)

and we have taken into account (see Ref. [25]) that∫
dv vL[ f2] = − 1

m

∂

∂r
· P (c)(r, t ). (A5)

By multiplying by r2 in Eq. (A1) and integrating in space, Eq. (45) is obtained. By multiplying by r in Eq. (A2) and integrating
in space, one obtains

d

dt
〈r · v〉 − 〈v2〉 + ω2〈r2〉 = 1

mN

∫
drTrP (c)(r, t ). (A6)

Taking into account that the energy is a constant of the motion, e = m
2 〈r2〉 + m

2 ω2〈r2〉, Eq. (46) is obtained.

APPENDIX B: GRADIENT EXPANSION OF TrP (c)(r, t )

Taking into account molecular chaos, i.e., Eq. (49), into Eq. (47), the expression for TrP (c) is

TrP (c)(r, t ) = m

2
σ d

∫
dv1

∫
dv

∫
dλ

∫
d σ̂θ (g · σ̂ )(g · σ̂)2 f (r − λσ, v1, t ) f [r + (1 − λ)σ, v, t], (B1)

where we have also replaced σ̂ by −σ̂. By expanding the integrand to first order in the gradients, it is

f (r − λσ, v1, t ) f [r + (1 − λ)σ, v, t] ≈ f (r, v1, t ) f (r, v, t ) − λ f (r, v, t )σ · ∂

∂r
f (r, v1, t ) + (1 − λ) f (r, v1, t )σ · ∂

∂r
f (r, v, t ).

(B2)

And, by substituting Eq. (B2) into (B1), we have

TrP (c)(r, t ) = TrP (c,0)(r, t ) + TrP (c,1)(r, t ), (B3)

with

TrP (c,0)(r, t ) = m

2
σ d

∫
dv1

∫
dv

∫
d σ̂θ (g · σ̂ )(g · σ̂ )2 f (r, v1, t ) f (r, v, t ), (B4)

TrP (c,1)(r, t ) = m

2
σ d

∫
dv1

∫
dv

∫
d σ̂θ (g · σ̂)(g · σ̂)2 f (r, v1, t )σ · ∂

∂r
f (r, v, t ), (B5)

where the integral in λ has been performed.
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Taking into account that the distribution function has the form given by Eq. (50), the zeroth-order contribution is

TrP (c,0)(r, t ) = m

2
σ d n2(r, t )

[
β(t )

π

]d ∫
dv1

∫
dv

∫
d σ̂θ (g · σ̂ )(g · σ̂)2e−β(t )[v1−u(r,t )]2−β(t )[v−u(r,t )]2

= mn2(r, t )σ d

2πdβ(t )

∫
dx1

∫
dx2

∫
d σ̂θ (x12 · σ̂)(x12 · σ̂ )2e−x2

1−x2
2 , (B6)

where the new variables, x1 = β1/2(t )[v1 − u(r, t )] and x2 = β1/2(t )[v − u(r, t )], have been introduced. The notation x12 ≡
x1 − x2 is also used. Finally, taking into account that∫

d σ̂θ (y · σ̂ )(y · σ̂ )2 = π
d−1

2
�

(
3
2

)
�

(
d+2

2

)y2, (B7)

and performing the Gaussian velocity integrals, one obtains

TrP (c,0)(r, t ) = πd/2

�
(

d
2

)n2(r, t )σ d T (t ). (B8)

Taking into account that ∫
d σ̂θ (y · σ̂ )(y · σ̂ )2σ̂i = π

d−1
2

�
(

d+3
2

)yyi, (B9)

the first-order contribution is

TrP (c,1)(r, t ) = mπ
d−1

2 σ d+1

2�
(

d+3
2

) ∫
dv1

∫
dv f (r, v1, t )gg · ∂

∂r
f (r, v, t ). (B10)

In addition, the gradient of the distribution function can be explicitly written in the form

∂

∂xi
f (r, v, t ) = ∂

∂xi
n(r, t )

[
β(t )

π

]d/2

e−β(t )[v−u(r,t )]2

−β(t )n(r, t )

[
β(t )

π

]d/2

e−β(t )[v−u(r,t )]2

[
2u j (r, t )

∂

∂xi
u j (r, t ) − 2v j

∂

∂xi
u j (r, t )

]
, (B11)

where the summation over repeated indexes has been used. By substituting Eq. (B11) into Eq. (B10), taking into account
symmetry properties and performing the Gaussian velocity integrals, the expression for TrP (c,1) of the main text is obtained,
i.e.,

TrP (c,1)(r, t ) = −
√

2π
d−1

2

d�
(

d
2

) n2(r, t )σ d+1[2mT (t )]1/2∇ · u(r, t ). (B12)

APPENDIX C: EVALUATION OF 〈r2〉e IN THE FIRST VIRIAL APPROXIMATION

The objective of this Appendix is to calculate 〈r2〉e in the first virial approximation. Let us assume that the state of the system
is described, in equilibrium, by the canonical N-particle density

ρN (r1, v1, . . . , rN , vN ) ∝ e− m
2T

∑N
i=1(v2

i +ω2r2
i )�(R), (C1)

where the notation R ≡ (r1, . . . , rN ) has been introduced and

�(R) =
N−1∏
i=1

N∏
j>i

θ (ri j − σ ), (C2)

where ri j ≡ |ri − r j |. In equilibrium, we have

〈r2〉e =
∫

dR�(R)r2
1e−aR2∫

dR�(R)e−aR2 , (C3)

where a ≡ mω2

2T .
Let us first evaluate the denominator of Eq. (C3). It can be rewritten in the form∫

dR�(R)e−aR2 =
∫

dR[�(R) − 1]e−aR2 +
∫

dRe−aR2
. (C4)
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The second term can be calculated ∫
dRe−aR2 =

(π

a

) dN
2
. (C5)

To evaluate the first term, it is assumed that the main contribution comes from the volume in R for which only two particles
overlap ∫

dR[�(R) − 1]e−aR2 ≈ N (N − 1)

2

∫
dR[θ (r12 − σ ) − 1]e−aR2

= N (N − 1)

2

(π

a

) d
2 (N−2)

∫
dr1

∫
dr2[θ (r12 − σ ) − 1]e−a(r2

1 +r2
2 ). (C6)

Assuming that the exponential does not vary appreciably in distances of the order of σ , by standard manipulations, we have∫
dr1

∫
dr2[θ (r12 − σ ) − 1]e−a(r2

1 +r2
2 ) ≈ − πdσ d

�
(

d
2 + 1

)
(2a)d/2

, (C7)

and, by substituting it into Eq. (C6),∫
dR[�(R) − 1]e−aR2 ≈ −N (N − 1)

2

(π

a

) d
2 N(a

2

)d/2 σ d

�
(

d
2 + 1

) . (C8)

Finally, taking into account Eqs. (C5) and (C8), Eq. (C4) reads∫
dR�(R)e−aR2 ≈

(π

a

) d
2 N

[
1 − N (N − 1)

2�
(

d
2 + 1

)(a

2

)d/2
σ d

]
. (C9)

To calculate the numerator of Eq. (C3), we proceed in a similar fashion:∫
dR�(R)r2

1e−aR2 =
∫

dR[�(R) − 1]r2
1e−aR2 +

∫
dRr2

1e−aR2
. (C10)

The second term reads ∫
dRr2

1e−aR2 =
(π

a

) dN
2 d

2a
. (C11)

As above, to evaluate the first term, it is assumed that the main contribution comes from the volume in R for which only two
particles overlap ∫

dR[�(R) − 1]r2
1e−aR2 ≈ (N − 1)

∫
dR[θ (r12 − σ ) − 1]r2

1e−aR2
(C12)

+ (N − 1)(N − 2)

2

∫
dR[θ (r23 − σ ) − 1]r2

1e−aR2
. (C13)

Again, assuming that the exponential does not vary appreciably in distances of order σ ,∫
dr1

∫
dr2[θ (r12 − σ ) − 1]r2

1e−a(r2
1 +r2

2 ) ≈ − dπdσ d

4a(2a)d/2�
(

d
2 + 1

) . (C14)

Taking into account Eqs. (C7) and (C14) and performing the Gaussian integrals∫
dR[�(R) − 1]r2

1e−aR2 ≈ −(N − 1)2 dπd/2σ d

2
d
2 +2a�

(
d
2 + 1

)(π

a

) d
2 (N−1)

, (C15)

and, then, with the aid of Eqs. (C11) and (C15), Eq. (C10) reads∫
dR�(R)r2

1e−aR2 ≈
(π

a

) d
2 N d

2a

[
1 − (N − 1)2 ad/2σ d

2
d
2 +1�

(
d
2 + 1

)]
. (C16)

By substituting Eqs. (C9) and (C16) into Eq. (C3), one obtains

〈r2〉e ≈ d

2a

[
1 + N

ad/2σ d

2
d
2 +1�

(
d
2 + 1

)]
= dT

mω2

[
1 + N

σ d (mω2)d/2

d2d�(d/2)T d/2

]
, (C17)
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where used have been done of the definition of a. Let us remark that, here, T is the actual temperature. To obtain the expression
of the main text, it is necessary to express T as a function of e. Using e = m

2 〈v2〉e + m
2 ω2〈r2〉e and the relation between the actual

temperature and kinetic energy, i.e., dT = m〈v2〉e, one obtains (assuming that e is close to dT )

dT ≈ e

[
1 − Nσ d

d2
d
2 +1�(d/2)

(
d

2ρ2

)d/2
]
, (C18)

where ρ2 ≡ e
mω2 . By substituting Eq. (C18) into Eq. (C17), one finally obtains

〈r2〉e ≈ e

mω2

[
1 + Nσ d

d2
d
2 +1�(d/2)

(
d

2ρ2

)d/2
]
, (C19)

which coincides with Eq. (67).
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