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Colloidal ionic complexes on periodic substrates: Ground-state configurations and pattern switching
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We theoretically and numerically studied ordering of “colloidal ionic clusters” on periodic substrate potentials
such as those generated by optical trapping. Each cluster consists of three charged spherical colloids: two
negatively and one positively charged. The substrate is a square or rectangular array of traps, each confining
one such cluster. By varying the lattice constant from large to small, the observed clusters are first rodlike and
form ferro- and antiferrolike phases, then they bend into a bananalike shape, and finally they condense into a
percolated structure. Remarkably, in a broad parameter range between single-cluster and percolated structures,
we have found stable supercomplexes composed of six colloids forming grapelike or rocketlike structures. We
investigated the possibility of macroscopic pattern switching by applying external electrical fields.
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I. INTRODUCTION

It is generally considered that the study of colloidal systems
started with the work of Thomas Graham, around 1860,
although substances such as the “purple of Cassius,” which
turns out to be colloidal gold, were used by glassmakers and
porcelain manufacturers as early as the 17th century [1]. For
a long period, those systems were considered as “unmanage-
able” (see, e.g., the preface of Ref. [1]), due, in particular, to the
difficulty to characterize them precisely (size, shape, charge,
etc.) and also to the lack of theoretical tools to understand effec-
tive interactions. From this perspective, a decisive step forward
occurred in the 1940s with the work of Derjaguin, Landau,
Verwey, and Overbeek [2], which helped turn the initial em-
piricism into a more solid body of knowledge. More recently,
progress in experimental manipulation techniques promoted
colloids as interesting model systems to investigate a large
gamut of fundamental physical phenomena: phase ordering,
nucleation, effects of confinement and reduced dimensionality,
interfacial phenomena, and various nonequilibrium problems
including glass formation, to name but a few. Indeed, compared
to atomic systems, colloids offer four advantages: first, they
are characterized by small elastic constants and therefore they
are easy to manipulate (“soft matter”); second, they are more
easily visualized since their typical length scale is within the
range of visible light; third, the corresponding time scale is
no longer in the picosecond range, but of order 1 s; fourth,
their effective interaction potential may be easily tuned to
some extent by changing some control parameter such as the
concentration of a given solute [3]. Such features stem, directly
or indirectly, from the large size (on an atomic scale) of the
mesoscopic constituents. Hence, colloids can be considered as
“big atoms” [4], but with controllable interactions, and it is
noteworthy that they may furthermore exhibit new structures
that do not seem to have any atomic analog [5].

Of particular interest here is a class of charged colloidal
spheres in the presence of optical trap arrays, where a wide
variety of crystalline states has been reported [6–12]. On a two-
dimensional modulated substrate, multiple charged colloids
can be confined in sufficiently strong traps, and thereby form
n-mers that exhibit an orientational degree of freedom. It has
been established from experimental, numerical, and theoretical
approaches [6–12] that such systems may show remarkably
rich orientational ordering and lead to the formation of so
called colloidal molecular crystals.

Previous approaches considered situations in which the
colloids forming trapped n-mers are like-charged objects. On
the other hand, the “molecules” under study here are made up
of oppositely charged colloids, with equal charges in absolute
value. The focus will be on a square lattice of traps, including
also distorted geometries where all distances along one of
the principal axes of the square are scaled by a given factor
α, thereby producing a rectangular lattice. We will restrict our
attention to the ground state, leaving thermal effects for further
studies [13]. Under these circumstances, it has been shown
that in the dipolar case (with trapped clusters each formed
of two oppositely charged colloids) the resulting orientational
behavior is somehow trivial: the observed phase is made up of
ABAB-type stripes, where the dipoles in stripe A are aligned
along the stripe (up) while those in stripe B have opposite
orientation [12]. Furthermore, the stripe structure cannot
be tuned by modifying the lattice constant or salt content in
the solution. Here we consequently consider clusters with three
colloids, two negatively and one positively charged, which are
more amenable to an external control, and display a wealth of
ordering patterns, which is the focus of our interest. The paper
is organized as follows. The model and the methods are defined
in Sec. II, where the differences in modeling with previous
works are outlined. The behavior on square and rectangular
lattices with an isotropic parabolic confinement potential is
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studied in Sec. III, and in Sec. IV we discuss the relevance of
these results in the case of a more realistic cosine trap potential.
All these results pertain to equilibrium configurations, while
orientational pattern modifications induced by an external
electric field are finally addressed in Sec. V. In the conclusion,
we summarize our main findings and discuss perspectives and
unresolved problems.

II. MODEL AND METHODS

We consider a mixture of negatively and positively spherical
and homogeneously charged colloids, with stoichiometry 2:1
(twice as many negative than positive macroions, which is
equivalent to the situation in which all charges are reversed).
Those mesoscopic objects bear a total charge that is neutralized
by an ensemble of microions. We assume that counterions and
electrolyte microions do not differ. The colloids are confined
in a two-dimensional (2D) plane by the action of laser beams.
This plane is furthermore corrugated by additional preferential
confinement: the colloids, subject to gradient forces and light
pressure [6,14], tend to gather in the regions of highest
laser intensity. It is then experimentally possible to create
a 2D periodic substrate of traps, with variable geometry. It
should be emphasized that the microions are not sensitive to
confinement, so that our 2D colloidal system is immersed in a
standard electrolyte that mediates between the charged colloids
a screened Coulomb interaction of the form [2,15,16]

VC = K
∑

j �=i

sij

e−κrij

rij / l
. (1)

The energy scale K , which contains a geometric prefactor
together with the squared effective charge of the colloids [17],
is not relevant for our purposes, since we are interested in
ground-state configurations. In Eq. (1), the sum runs over
all colloidal pairs with interaction sign sij = ±1 distinguish-
ing like from oppositely charged colloids, and interparticle
distance rij between macroions i and j ; with l we denote
the intertrap distance, see Fig. 1. We therefore implicitly
assumed that oppositely charged colloids at contact also
interact through a screened Coulomb form, whereas such a
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FIG. 1. (Color online) Sketch of two clusters—each made up of
three colloids—in two different potential traps, with definition of the
relevant quantities. The center of a blue area denotes the confining
potential minimum and l is therefore the intertrap distance. The same
color code will be used throughout the rest of the paper: black (white)
dots for positively (negatively) charged colloids.

functional dependence is better suited to describe the far-field
behavior [18]. We note, however, that as long as we are
comparing phases with an equal number of doublet + − at
contact, such configurations contribute a constant to the total
energy, so that considering more exact forms of interaction
potential at short scale would not alter our conclusions. In
Eq. (1), 1/κ denotes the Debye length, which can be tuned
changing the electrolyte density. Strictly speaking, Eq. (1) is
not an energy but a free energy, since it includes an entropic
contribution from the microions [19].

In addition to interparticle forces (two-body and pairwise
additive), the colloids feel an external (one-body) potential
due to laser modulation, and it is the subtle interplay between
both kinds of forces that selects the type of ionic complexes
that are formed in each trap and their relative arrangement
from trap to trap. In [8,9], it was assumed that the colloidal
complexes in a given trap (dimers, trimers, etc.) form a rigid
object, with a single orientational degree of freedom, which
effectively allows us to omit the laser-induced potential in
the analysis. The situation with oppositely charged colloids,
however, differs: take an isolated triplet − + − in the
aligned geometry that minimizes its self-energy. Such an
object invariably bends under strong confinement, thereby
forming a “bananalike” object. The shape of the banana
depends on the parameters (salinity, intertrap distance, etc.),
and should be determined self-consistently. We therefore do
not lump substrate potential effects into a unique quantity
as in [8,9], but explicitly consider each colloidal degree of
freedom in the analysis. This rules out the discrete angle
approach invoked in [9], where only a restricted set of
possible orientations was considered. We also note that already
at the level of like-charged colloids, our recent work [10]
evidenced some subtle shortcomings of the rigid n-mer
approach.

The system obviously bears some resemblance to the
molecules on the atomic scale. However, in our model the
binding is the result of the attractive Yukawa interactions
and the confinement potentials and is therefore relatively
weak compared to the strong covalent bonds typical in real
molecules. We have consequently chosen to call the n-meric
colloidal structures “clusters” or “complexes” rather than
“molecules” as has been done elsewhere (see [7–10]). In spirit,
our study then belongs to a more general line of research
pertaining to colloidal clusters [20]. The previous references,
however, generally deal with large assemblies, whereas our
clusters are made up of a small number of colloids.

In all our considerations, the ratio of the total number of
colloids to the total number of traps is exactly three, therefore
under strong enough confinement, there are exactly three
colloids per trap and the ground state is paved with trimers
(− + −) of varying shapes and orientations. These mesoscopic
objects bear a net charge, which is neutralized by microions
in solution. It has been realized [8,10] that it is not necessary
to invoke local anisotropies of the confinement potential to
account for the observed ground states: there is an obvious
source of anisotropy in the lattice geometry itself; however, in
the vicinity of a trap minimum, the confined particles feel an
isotropic (2D) potential. In this case, the screened Coulomb
potential alone is able to select preferred orientations for
the clusters (whereas as alluded to above, the effective spin
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model considered in [9] restricted possible orientations to the
principal directions of the light lattice). Here we wish to avoid
introducing an orientational bias through the trap potential,
and therefore initially consider the parabolic confinement. The
total dimensionless energy of colloid i reads

ei = A(δi/ l)2 +
∑

j �=i

sij

e−κrij

rij / l
, (2)

where δi denotes the distance between the colloid i center
of mass and the center of the trap to which it belongs, and
A measures the relative importance of parabolic confinement
over Coulombic forces. Each triplet of colloids belongs to a
“native” trap, so the colloids are not allowed to hop from one
trap to another. Such a limitation precludes the sliding states
studied in [21] under the influence of an external electric
field. We note that the experimental situation is somehow
intermediate between the point of view adopted here—a priori
mostly relevant for strong confinement conditions—and that
used in [9], see the discussion in [10]. For completeness, we
have also performed simulations with a “realistic” potential in
the spirit of [7] to assess the validity of the isotropic approach.

At constant temperature, three parameters govern the be-
havior of the system: the relative magnitude of the confinement
with respect to the Yukawa interaction A, the ratio of the
colloid radius to the Debye screening length κd, and the ratio
of the lattice spacing to Debye length κl. In the rectangular
case, the lattice aspect ratio α should be included. A trimer
in two dimensions has six degrees of freedom, but only four
of them are independent assuming the colloids are in contact.
The arrangement of colloids in the vicinity of a trap center
can therefore be described by four quantities (see Fig. 1): the
position of the cluster’s center of mass relative to the trap
minimum is described by r and γ , the relative orientation of
its axis with respect to a fixed direction (say a line joining
the centers of two neighboring traps) by the angle ϑ , and the
amount of bending by φ (φ = π for rodlike and φ < π for
bent structures).

Ground-state configurations were obtained by the energy
minimization (EM) technique and tested by standard Monte
Carlo (MC) annealing simulations. To reduce the number of
minimizing parameters in EM, an assumption on the ground-
state structure was preset. For a given rectangular lattice, we
decided to partition the lattice to two (A-B) or four (A-B-C-D)
sublattices, which in general form a checkerboard or a stripe
(chain) pattern. Since each colloidal cluster is parametrized by
four quantities (see Fig. 1), a p-partite (p = 2,4) assumption
in EM would correspond to 4p minimizing parameters. We
used standard numerical routines (simplex and quasi-Newton
algorithm [22]) for finding the (local) minimum; by repeating
the EM procedure several (∼104) times over 4p different initial
estimates, we eventually converged to a global minimum.
However, in extreme parameter regimes (i.e., l/d � 1 or close
to phase transitions), the convergence became slower due to
many almost degenerate local minima and the ground state was
identified among selected candidates—by directly comparing
their energies.

The 2- and 4-partite constraint used in EM was further
assessed by standard MC annealing simulations. We checked
all interesting regions of the phase diagram by running several
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FIG. 2. Summary of the most frequent composite clusters en-
countered in our study (from left to right): straight trimer, banana B,
grape G, rocket R.

MC simulations starting from different initial configurations
(both minimal or close-to-minimal EM structures and random
configurations) and used the annealing method with an
exponentially decaying temperature profile. We tried several
system sizes with 2 × 2, 4 × 4, and 16 × 16 traps using
periodic boundary conditions. As a result, we identified and
confirmed all shapes obtained in EM. However, due to the
tiny energy differences and large energy barriers between
local minima, long relaxation times (i.e., 108 MC steps for
a 4 × 4 system array) were needed to obtain exactly the same
orientational orders as in EM. Hence, the system easily gets
trapped at low annealing temperature in some local metastable
phase composed of domains of various ground-state patterns
[23].

III. SQUARE AND RECTANGULAR LATTICE
CONFINEMENT

Before embarking on a detailed study, we first give an
overview (Fig. 2) of the various composite objects that we
have observed in our simulations. When the traps were well
separated, we observed isolated trimers, either straight or
banana-shaped B. For very small trap separation l, percolated
chainlike structures C rather than clusters are stable. In the
intermediate region, “superclusters” composed of six colloids
appear. They are formed by two neighboring trimers forming
the supercluster by minimizing their total energy (paying the
penalty due to the confinement while reducing the electrostatic
interaction energy) [24]. We observed two typical shapes and
coined them grapeG and rocketR. In Fig. 3, we further provide
a summary of different orientational orderings and propose a
nomenclature to classify them.

A. Square lattices

Figures 4 and 5 show the type of orderings that occur on
a square lattice (α = 1) at two different pinning amplitudes

FIG. 3. Sketch of the different ordering patterns that will be
reported (from left to right): antiferro A, chain C, ferro F , tilted ferro
F∗, and ladder L. Dashed lines represent a square (or rectangular)
lattice of traps.
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FIG. 4. (Color online) (a) Ground-state phase diagram at a
relatively strong substrate potential (A = 5) for colloidal trimers on
a square lattice. Typical snapshot configurations are calculated using
(l/d,κl) = (7,2) for the B phase, (15,4) for the A structure, and (5,2)
for the C phase. The lines between the different phases are shown as
a guide to the eye. (b) Values of the three quantities characterizing
the cluster shape [red dashed (upper), r; black solid, ϑ ; and green
dot-dashed (lower), ϕ] as a function of the ratio l/d at constant
κl = 7. (c) Values of the same three quantities as a function of κl at
constant l/d = 8.

(embodied in the parameter A). In panel (a) we show the phase
diagram separating the regions of stability of phases and the
corresponding snapshots of the typical cluster arrangements.
Panels (b) and (c) display the variation of three quantities char-
acterizing the cluster shape and their orientational ordering.
The transitions from straight to bent shapes are clearly seen on
bifurcating red curves. It should be stressed that φ and 2π − φ

represent the same shape, and the two branches do not indicate
two different structures. The black curves showing the cluster
orientation have two branches with ϑ1 and ϑ2. The special
case is the A (antiferro) phase, where (ϑ1,ϑ2) = (0,π/2). For
straight clusters, the angles ϑ and 2π − ϑ are equivalent, but
this is no longer true if they are bent. Therefore, the region with
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FIG. 5. (Color online) Same as Fig. 4 but for a relatively weak
substrate potential (A = 2). Typical snapshot configurations are
calculated using (l/d,κl) = (7,8) for B, (7,4) for R, (5,2) for C,
(20,8) for G, and (15,2) for A phase.

four distinct branches in Fig. 5 represents a 4-partite structure
with ϑ1, . . . ,ϑ4. The values of r (green curves) tell us whether
the clusters are displaced from the trap minima (r �= 0) or not
(r = 0). The values of the fourth defining quantity γ proved
rather uninformative and were not included in the figures for
clarity reasons.

At the stronger confinement (Fig. 4) we found three phases:
isolated triplets in the antiferrolike arrangement A, bent
(banana) triplets B whose angular arrangement varies con-
tinuously to antiferro A upon increasing l/d, and a percolated
chain pattern (C) at very low l/d and small screening [lower
left corner of Fig. 4(a)]. At weaker confinement (Fig. 5), two
additional phases appear: rocketR and grapeG, which are both
nonpercolating and made up of the repetition of two-triplet (six
colloids) objects.

In Fig. 4, all ground-state configurations have a 2-partite
lattice structure, which has also been confirmed by the
unconstrained MC annealing simulations. In the limit of
small macroions, l/d � 1, we find stable isolated triplet
configurations with quasidegenerate orientational preferences.
For example, the antiferro A phase is slightly more favorable
compared to the tilted ferro F* phase: at the (l/d,κl) = (15,4)
point in the phase diagram, the corresponding energies are
EA/K = −2.4250 and EF∗/K = −2.4247.

In Fig. 5, there are regions in the phase diagram where the
4-partite configurations appear to be favored over bipartite.
The energy difference between 2- and 4-partite ordering,
however, is extremely small. For example, in the represen-
tative rocket R and grape G phases shown in Fig. 5(a),
the energies are, respectively, E4p/K = −0.5888, E2p/K =
−0.5870, E4p/K = −2.723 145, and E2p/K = −2.723 143.
Such small differences, E4p − E2p, imply that these ground-
state configurations become unstable at small but finite
temperatures and the formation of domains is expected in
experiments and simulations. A similar effect is expected
also for the A ground state, which should interfere with
the nearest (in energy) F* phase, as in the previous A = 5
case in Fig. 5. On the other hand, the grape G phase in the
l/d � 1 limit is well separated from the competing A phase
(EA/K = −2.645 310 for the same κl and κd values).

1. Antiferrolike phase

The occurrence of the A phase on the right-hand side
of Figs. 4 and 5 can be rationalized along similar lines
to what was done in Ref. [8]. For large enough values
of κl and even larger l/d, it is legitimate to restrict the
summation in Eq. (2) to nearest-neighbor traps (see [10] for a
more complete discussion). It is also legitimate to assume
that triplets align in straight configurations. The question
is, therefore, to understand the relative orientation of triplets
from trap to trap. Elaborating on the remark put forward in
[25,26] that a nonisotropic charge distribution in an electrolyte
creates an electric potential that is anisotropic at all scales and
that does not have any simple “multipolar” symmetry, we write
the angular dependence of the far-field potential of a triplet
as [8]

Vtr = 2 cosh(2κd sin ψ) − 1, (3)
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FIG. 6. Definition of the notations used to compute triplet-triplet
interaction in the (aligned) straight case.

where the direction ψ is defined in Fig. 6(a). Consequently, the
relevant angular-dependent triplet-triplet interaction potential
may be written [see Fig. 6(b)]

Vtr/tr = [2 cosh(2κd sin ψ1) − 1][2 cosh(2κd sin ψ2) − 1].

(4)

On a square lattice, and assuming bipartite structure (which is
backed up by simulations), we then have to consider triplet-
triplet interactions along both principal axes of the lattice. This
leads to the following energy:

[2 cosh(2κd sin ψ1) − 1] [2 cosh(2κd sin ψ2) − 1]

+ [2 cosh(2κd cos ψ1) − 1] [2 cosh(2κd cos ψ2) − 1] . (5)

The minimum is reached for (ψ1,ψ2) = (0,π/2), irrespective
of κd, which coincides exactly with theA phase configuration.
The situation changes on a rectangular lattice, see below.
On the other hand, the A → B transition line observed
in Fig. 4 can be explained as a one-cluster effect: in the
absence of confinement, the trimers take on the straight shape
due to the repulsion between the two positively charged
colloids. However, by increasing the confinement or because of
enhanced screening, the relative importance of the electrostatic
repulsion decreases. We expect that for A and d fixed, there
exists a critical inverse screening length κ∗ beyond which
the straight trimer bends (and ultimately forms an equilateral
triangle if κ is very large). Since it is a one-triplet instability,
κ∗ should be independent of lattice spacing l, which translates
into a straight line with slope κ∗d in a (κl,l/d) plot such
as Fig. 4(a). This corroborates our numerical finding with a
straight separatrix between A and B phases. For A = 2, the
argument does not hold since no transition from straight to
bent shapes takes place.

2. Grape phase

The stability of the grape phase G can be rationalized by
comparing the self-energy per colloid

Eself = d

6

6∑

j �=i=1

sij

e−κrij

rij

(6)

of different composite complexes in the absence of any trap
potential. In Fig. 7, we have compared the self-energies of
the following six-colloid objects: grape, rocket (with various
angles ε, as defined in Fig. 2 ), and two distant trimers.
Among these, the two distant trimers are the most stable in the
bare Coulomb limit (κ → 0) with Eself → −1/4. However, as
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FIG. 7. (Color online) Coulombic self-energy of six colloids (two
positively and four negatively charged) forming various complexes.

soon as κd > 2.2 × 10−2, a fairly small number, the grape
geometry is found to be the optimal one. Therefore, in almost
the entire range of relevant values, the grape is energetically the
most stable isolated object consisting of six colloids. Of course,
on a corrugated substrate, the confining potential influences
the above scenario by penalizing extended structures, and the
intercluster interaction affects the picture as well, however
there is still a substantial region in Figs. 5 and 8 (see below)
where the grape phase remains stable.

B. Rectangular lattice of traps

Distorting lattice geometry by changing the aspect ratio
away from the square shape (α ≡ ly/ lx < 1) induces new
orderings to the list of ground-state configurations reported
above. Figure 8 shows ground-state phase diagrams for α =
0.8 and two pinning potentials, where three new phases emerge
with respect to the square (α = 1) case: a ferro F phase and
a tilted ferro F* phase, which evolves into a familiar banana
B phase at smaller l/d and A = 5, and a percolating ladder
L phase in a weaker confinement (A = 2). The latter consists
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FIG. 8. Ground-state phase diagram for colloidal trimers on a
rectangular lattice with α = 0.8 and (a) A = 5 or (b) A = 2. Typical
snapshot configurations in (a) are calculated using (l/d,κl) = (10,8)
for B, (7,4) for R, (7,2) for G, (15,6) for F*, and (20,2) for F phase;
in (b) (l/d,κl) = (7,8) for R, (5,6) for L, (7,2) for 2-partite G, and
(10,2) for 4-partite G phase.
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of complex subunits where each trimer touches three (out of
four) neighboring trimers. Both pinning regimes involve also
a distorted (or bent) rocket R phase, which we identify as a
variant of the existing (α = 1) phase rather than a new phase
itself, and a grape G phase with 2- and 4-partite structures.
Actually, in Fig. 8(b), almost the whole parameter space is
minimized by a 4-partite grape G configuration [27].

On a rectangular lattice, we can follow a similar line of
reasoning as above in Sec. III A, where the occurrence of
the A phase was justified. In contrast to the situation on the
square lattice, on the rectangular lattice the number of nearest-
neighbor traps decreases to two, and to assess the stability of
the F phase, it is sufficient to consider a single triplet-triplet
interaction of the form Eq. (4). In this case, the lowest energy
configuration corresponds to parallel triplets (ψ1 = ψ2 = 0)
forming a ferromagnetic-like arrangement along the longest
direction of the lattice unit cell. This is indeed what is observed
in Fig. 8(a) (see the F region on the right-hand side), but not
in Fig. 8(b), because in this latter case, confinement strength
is too weak to prevent neighboring traps from sharing their
macroions. We further note that the F∗ → B transition visible
in Fig. 8(a) falls in the same category as the A → B seen in
Fig. 4: it is a one-cluster instability due to the competition
between Coulomb and confinement forces. It is hence not
surprising to find that the slopes of both separatrices are close:
they are quantified by the same critical screening coefficient
κ∗ introduced above.

IV. TOWARD A MORE REALISTIC TRAP POTENTIAL

On a realistic trap, when allowing the particles to hop, we
can expect to significantly extend the stability of the grapes, at
least as soon as κd exceeds a small threshold. This is supported
by the evaluation of the self-energies in Fig. 7, and we
further analyzed the stability of the grape phase by explicitly
introducing a cosine potential, which provides a reasonable
approximation for a realistic optical confinement [7]:

V real
T = − Ar

2π2
[cos(2πx/l) + cos(2πy/αl)] . (7)

The prefactor 2π2 is chosen such that both realistic and
simplified potentials behave in the same way, as (δ/ l)2 =
(x2 + y2)/l2 close to the trap minimum, when one chooses
A = Ar .

In Figs. 9(b)–9(d), we show ground-state configurations
for various pinning strengths Ar using the same parameter
values (l/d,κl,α) as in Fig. 9(a), where we show the four
most representative parabolic-trap configurations. We choose
Ar such that both potentials become similar in amplitude at
the point of maximum V real

T (see the left panel of Fig. 9). As
Ar gets smaller [going from Fig. 9(b) to Fig. 9(d)], the optimal
configurations indeed evolve to the grape G geometry. In the
limit Ar → A, i.e., when the potentials share the same behavior
close to the trap center, the lowest configurations are always
grapeG phases. Although they have the same internal structure,
these grapes are formed in realistic trap minima rather than at
trap midpoints. In addition, the orientation of grapes is selected
by the symmetry of the underlying realistic potential V real

T ,
which is lowered with respect to the isotropic parabolic trap
(the inset in the left panel of Fig. 9 shows the equipotential
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FIG. 9. (Color online) Comparison of structures calculated within
an isotropic parabolic potential (a) and realistic cosine potential V real

T

(b)–(d) with three neighboring magnitudes Ar chosen to roughly
correspond to the parabolic potential at the trap midpoint x/l = 0.5
(left panel). In (a) the parameter values are, from left to right,
(l/d,κl,A,α) = (10,4,5,0.8) (F* phase), (7,2,2,0.8) (G phase),
(15,4,5,1) (A phase), and (7,4,2,1) (R phase). In (b)–(d) we use
the same parameters as in (a) except V real

T is used instead of parabolic
trapping with Ar = 20,15,10 for A = 5 and Ar = 8,6,4 for A = 2.

lines of V real
T ). In fact, the realistic trap square symmetry is

manifested in all configurations shown in Figs. 9(b)–9(d).
From Fig. 9, we see that switching to the realistic trap

potential (V real
T ) preserves some typical cluster shapes (e.g.,

straight trimer, grape G, rocket R) from the parabolic case,
while the positional or/and orientational order is generally
altered. In a simple picture, the full consistency of both
potentials (if any) would be found near the bottom of the
trap where the realistic potential becomes isotropic, i.e., for
l/d � 1. Since small Ar favor grape configurations that violate
both the positional and orientational orders of the parabolic
case, the consistency should be rather searched in the opposite
limit of strong Ar � 1, where each trap should host exactly
three colloids. In particular, the most promising phases are F
and A phases since they also obey the symmetry constraints of
V real

T . To avoid bending of extended trimers in these two phases,
we also anticipate small screening, i.e., κd � 1, otherwise a
banana B shape might become more favorable.

Following these criteria and using a single-trap approxi-
mation (which is justified for small clusters), we identified
regions in the (κl,l/d) parameter space (see the shaded areas
in Fig. 10) where one straight trimer is energetically favorable
against the banana B and grape G structures. In Fig. 10, we
show such regions for realistic and parabolic potentials for a
square and rectangular case (note that α has no effect in the
parabolic approximation). The overlap between them gives
an estimate where the consistency for F (in α = 0.8) and
A (in α = 1) should be searched within a proper calculation
including all neighboring traps. We have checked this at a
few points of the phase diagram (symbols in Fig. 10) and
indeed found consistency: the black circles in Fig. 10 denote
the results where the all-neighbour calculation predicts the
same phase [F in Fig. 10(a) and A in Fig. 10(b)] for both
potentials. These results agree with the single trap prediction.
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FIG. 10. (Color online) Single-trap calculations for parabolic
(para) and realistic (real) trap potentials using A = Ar = 50 and
α = 1 (left panel) and α = 0.8 (right panel). Shaded areas denote
regions in parameter space where the straight trimer has lower energy
then banana B and grape G clusters. The symbols are comparing full
energy-minimization calculations for both trap potentials considering
all neighboring traps: black disks denote exact consistency while
the other symbols indicate that different phases are found with the
“realistic” and parabolic confinement potentials.

To the left from the overlapping region (at smaller l/d), the
inclusion of the neighboring traps introduces bending of the
trimers and thus prefers the banana B phase over the F or A
(see the green triangles in Fig. 10). This effect is more visible
for the parabolic potential since it is stronger than realistic
when A = Ar . The above calculations were performed for a
rather strong pinning strength (A = Ar = 50); however, we
have checked and found F and A consistency also for weaker
trap potentials, with A = Ar � 10.

V. APPLYING AN EXTERNAL ELECTRIC FIELD

Since most of the observed phases are generally close in
energy, it is tempting to explore how an external perturbation
could change the phase behavior. We studied the response of

EE
0
= 0.5 2 5

*

FIG. 11. Application of the external electric field E on colloidal
cluster shapes in the parabolic pinning regime for three field strengths
E0 and directions depicted at the bottom of the figure. The other
parameters are (l/d,κl,A,α) = (10,4,5,0.8) in the first row, (7,4,2,1)
in the second row, and (7,2,2,0.8) in the third row. The asterisk
indicates that a cluster (when viewed periodically on a lattice) forms
a percolated structure along the field direction.

the system to a static uniform electric field E with the in-plane
direction. Our primary purpose was to numerically investigate
the possibility of external pattern switching [28] between the
known phases, which might be appealing for experimental
realizations. The ability to create and control colloidal crystal
structures indeed has a wide range of applications in photonic
and phononic materials, optical switches, photonic band-gap
materials, and self-assembly of nanostructures [11].

In addition to either parabolic or cosine confinement, we
use the following field potential at position (x,y):

VE = ±E0(x cos β + y sin β)/l, (8)

where E0 is a dimensionless field strength measuring the
relative importance of external drag forces over Coulombic
forces, and β is an angle between E and the longest lattice
principal axis. The “±” sign selects between positively and
negatively charged colloids, respectively. The amplitude E0

is considered small enough so that the system acquires an
equilibrated ground-state configuration. This requirement is
easily fulfilled in a parabolic trap approximation where, in
principle, we never reach stationary regimes with drifting
colloids [21] even for the largest values of E0. However,
the opposite may happen in a realistic trap confinement [21]
where at critical E0 either cluster hopping or its breaking
into smaller constituents takes place. We note that in the
latter case, the critical field can be expressed analytically by
Ec,2 = (1 + 2κd) exp(−2κd)/(2d/l)2, above which the two
oppositely charged colloids (a dimer) unbind. The breaking of
a trimer occurs at slightly lower fields that can be estimated
numerically by Ec,3 ∼ 0.8Ec,2.

We examined the influence of E on the selected phases
shown in Secs. III and IV using the EM and the gradient descent
method. In Fig. 11, we show the results (one-trap snapshots)
for parabolic trapping. Apart from rather trivial effects, such
as bending (formation of the B shape out of the straight trimer
or a rocket R deformation for E0 � 2), we identified also
more interesting effects at the strongest E0 = 5: a new shape
evolved from R as well as G structure, and an elongation of
the modified G complex along the field direction led to the
formation of the percolated chain structure (denoted by an
asterisk in Fig. 11).

In a similar manner, we demonstrate in Fig. 12 the influence
of E on a particular A phase, again within a parabolic trap
confinement; for E0 = 2 and an electric-field angle β = 0 or
π/4, we identify a pattern switching to a (quasi) F* phase.
Here, the transition A → F* appears to be on an orientational
basis, with more or less minor shape deformations. Since the
trimers of the field-induced F* phase are slightly shifted away
from the trap center, the expected bending due to the electric
field is (almost) compensated by the restoring trap forces, and
the clusters appear almost straight.

We have also explored the effect of the external field within
the real trap confinement. As found by Reichhardt et al. in
Ref. [21], the colloids start to flow as soon as the electric-field
force becomes larger than the real trap confinement, but here
we focused instead on static configurations at smaller field
strengths. In fact, in a large enough system, any constant
electric field would inevitably lead to ground states with
uneven population of the traps, i.e., the trimers would prefer
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E E E

EEE

FIG. 12. Influence of an external electric field E on the A
phase within the parabolic trap approximation for (l/d,κl,A,α) =
(15,4,5,1). The field directions and magnitudes are shown with
arrows in the inset of each plot; arrow lengths correspond to
magnitudes E0 = 0.5,2,5 of Eq. (8). For E0 = 2 and β = 0,π/4
(the middle column), we observe a pattern switching to the F* phase
(actually, its close approximation, since the trimers here are slightly
bent with ϕ1,2 ≈ 0.91π ).

to move in the direction of the field to reduce the total energy
of the system, leaving some of the traps at the opposite end
empty. However, even though such states might have the lowest
energy, they might not be accessible in the experiments and
simulations. If, for instance, the system is first allowed to
equilibrate at E = 0 and then a small enough electric field is
turned on, a local rather than global minimum is reached with
colloids unable to surmount the large energy barriers on the
way to the global minimum. This is the regime in which we
are interested here.

To search for the nearest local energy minimum with an
increasing electric field, we introduced a gradient descent
method (i.e., a method of steepest descent) on a 4-partite
lattice (16 model parameters; see Fig. 1) which brings a
system continuously from an initial zero-field ground state to
a finite-field metastable state using a finite step δE0 (at fixed
field direction β). Depending on the amplitude of the increment
δE0, the switching of the field may be interpreted as fast or
slow, something that can also be tuned in an experimental
setup and may affect the outcome. In our calculations, we
tried three step sizes, δE0 = 0.01,0.1,1, and found basically
no differences in the resulting configurations.

In Fig. 13, we show the evolution of A and F phases with
increasing E0 along two field directions using the highest field
resolution δE0 = 0.01. Focusing first on the A phase (upper
row in Fig. 13), we identify at E0 ≈ 3 (for both field directions)
a rapid phase transition from a 2- to a 1-partite phase, which
can also be viewed as a pattern switching to an approximateF*
phase (with the internal angle being ϕ ≈ 0.8π rather than π ),
similar to what we found in the parabolic confinement (middle
column in Fig. 12). This tendency of reducing the “partiteness”
of the phase by increasing the external uniform field seems
natural. However, the opposite situation is observed in the
evolution of the F phase, shown in Fig. 13(c), where in a short
interval, 3 � E0 � 4, the metastable phase adopts a higher,
2-partite B structure. This rather surprising effect reflects the
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FIG. 13. (Color online) Local energy minima configurations rep-
resented by trimer angles ϑi (solid line) and ϕi (dashed) as a function
of external electric field E0 using the cosine confinement potential
Eq. (7). The index i = 1, . . . ,4 represents the four different values for
a 4-partite lattice assumption. The upper row is calculated from initial
(E0 = 0) A phase with (l/d,κl,Ar/(2π 2),α) = (15,4,1.5,1) for two
field directions (a) β = 0 and (b) β = π/4. In the lower row, the
initial (E0 = 0) state is the F phase with (l/d,κl,Ar/(2π 2),α) =
(10,4,0.75,0.8) and field directions are again (c) β = 0 and (d)
β = π/4. In all the plots, we used a field resolution δE0 = 0.01.
A few representative snapshots are added for illustration (see the
supplemental material [29] for the animated cartoons).

richness of the system studied, where the observed phases
differ only slightly in energy and can therefore interchange
easily under external perturbation. At larger field strengths
again a uniform pattern takes place [28].

We note that a similar field-evolution study in cosine trap
confinement was done also for two representative G and R
phases with six colloids per trap, but we found no striking
effects apart from trivial bending of the clusters, which was
already observed in a parabolic confinement (see, e.g., Fig. 11).
These results are included in the form of animated cartoons
available in the online supplemental material [29].

VI. CONCLUSION

In summary, we have studied ordering of colloidal ionic
trimers on square lattices. We observed a rich variety of crystal
structures, including crystals made of complex six-colloid
subunits. We have discussed their stability and the possibility
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for pattern switching by external control, which might be
appealing for experimental realizations and applications.

In the case of the isotropic confinement potential, the
symmetry is broken by the Yukawa interactions only. The
orientational ordering is of an “intrinsic nature” and does
not stem from an anisotropy present in the confinement
potential itself. Three colloids can form a straight line or a
bent banana-shaped trimer. We have identified the parameter
range where both are stable and the types of their orientational
ordering. In the low κ and small l/d part of the phase dia-
grams, where the intercluster interactions typically outweigh
the confinement, the neighboring trimers cluster into larger
complexes consisting of six colloids, their typical shapes being
grape and rocket. At even smaller l/d and κ , the colloids
form percolated structures. Here, however, many-body effects
[30] are expected to become significant and our assumption
of the pairwise additivity of the colloid-colloid interaction
becomes questionable [31,32]. We have shown that most of
the phases observed in the isotropic confinement persist also
in the more realistic anisotropic external potential, provided
that the confinement strength is large enough. However, their
orientational ordering in the latter case is different due to
the additional symmetry breaking by the laser field. The rich
selection of the ground-state structures and the relatively small
energy differences between them enable efficient control over

the structures by applying external fields. We have analyzed
the effect of a small external electric field and have shown that
it can be used as a pattern-switching tool.

Not addressed here, but a subject for future work, is the
thermal behavior of the system. Another unresolved question
is the effect of the interaction potential on the stability of
the observed structures, and in the many-body interactions
among colloids that are expected to be important at high
densities. Finally, in addition to systems with oppositely
charged colloids, externally driven superparamagnetic colloids
[33] and colloids interacting via Casimir interaction in critical
binary mixtures [34] may offer instances in which the present
predictions—or adaptations thereof—could be realized.
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