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We present a new analytical approach to the strong electrostatic coupling regime (SC) that can be achieved
equivalently at low temperatures, high charges, low dielectric permittivity, etc. Two geometries are analyzed
in detail: one charged wall first, and then two parallel walls at small distances that can be likely or oppositely
charged. In all cases, only one type of mobile counterions is present, and ensures electroneutrality (salt-free
case). The method is based on a systematic expansion around the ground state formed by the two-dimensional
Wigner crystal(s) of counterions at the plate(s). The leading SC order stems from a single-particle theory, and
coincides with the virial SC approach that has been much studied in the last 10 years. The first correction has the
functional form of the virial SC prediction, but the prefactor is different. The present theory is free of divergences
and the obtained results, both for symmetrically and asymmetrically charged plates, are in excellent agreement
with available data of Monte Carlo simulations under strong and intermediate Coulombic couplings. All results
obtained represent relevant improvements over the virial SC estimates. The present SC theory starting from
the Wigner crystal and therefore coined Wigner SC, sheds light on anomalous phenomena like the counterion
mediated like-charge attraction, and the opposite-charge repulsion.
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I. INTRODUCTION

Understanding effective equilibrium interactions between
two charged mesoscopic bodies immersed in a solution is
essential in various fields of colloid science from physics
[1] to biochemistry [2]. References [3–9] offer a general
overview. A breakthrough in the field was achieved when
it was realized in the 1980s, from numerical evidences,
that equivalently charged surfaces may effectively attract
each other under strong enough Coulombic couplings. Such
couplings can be realized in practice by increasing the valency
of the counterions involved [10]. This “anomalous” like-charge
attraction explains the formation of DNA condensates [11]
or aggregates of colloidal particles [12]. A complementary
interesting although simpler to rationalize problem is the
possibility of an effective repulsion between two plates with
opposite uniform surface charges.

The weak-coupling limit is described by the Poisson-
Boltzmann (PB) mean-field approach. Formulating the
Coulomb problem as a field theory, the PB equation can be
viewed as the first-order term of a systematic expansion in
loops [13]. While the like-charge attraction is not predicted by
the PB theory [14–17], the opposite-charge repulsion can occur
already in the mean-field treatment [18,19], since it is merely
an entropic effect with a large cost for confining particles in a
small volume.

A remarkable theoretical progress has been made during
the past decade in the opposite strong-coupling (SC) limit,
formulated initially for a single wall or two parallel walls
at small separation. The topic was pioneered by Rouzina
and Bloomfield [20] and developed further by Shklovskii
and Levin with collaborators [6,21]. An essential aspect is
that counterions form two-dimensional (2D) highly correlated
layers at charged walls at temperature T = 0. For small
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but nonvanishing temperatures, the structure of interfacial
counterions remains close to its ground-state counterpart.

Within the field-theoretical formulation, which has been
put forward by Netz and collaborators in [22,23], the leading
SC behavior is a single-particle theory in the potential of
the charged wall(s). Next correction orders are obtained
as a virial or fugacity expansion in inverse powers of the
coupling constant �, defined below; we refer to this approach
as the virial strong-coupling (VSC) theory. The method
requires a renormalization of infrared divergences via the
electroneutrality condition. A comparison with Monte Carlo
(MC) simulations [22] indicated the adequacy of the VSC
approach to capture the leading large-� behavior of the density
profile, which was an important achievement in the field.
The first correction has the right functional form in space
but an incorrect prefactor, whose values even depart further
from the MC ones as the coupling constant � grows. This
deficiency was attributed by the authors to the existence of
an infinite sequence of higher-order logarithmic terms in the
fugacity which have to be resummed to recover the correct
value of the prefactor. The leading order of the VSC theory
was generalized to nonsymmetrically charges plates [19,24],
image charge effects [25], presence of salt [26], and to various
curved (spherical and cylindrical) geometries (for a review
see [27]). Beyond Ref. [22], several investigations assessed
numerically the adequacy of the leading order VSC approach
[22,24–26,28,29].

Since the coupling constant � ∝ 1/T 2, the zero tempera-
ture is contained in the VSC approach as the limit � → ∞.
This question requires some care though, since a natural
rescaled distance z̃ = z/μ in the direction perpendicular to
the plate(s) is set by the Gouy-Chapman length μ ∝ T , which
tends to zero as T → 0. From this point of view, the VSC
method can be seen as a low-temperature theory approaching
T = 0 under a special spatial scaling of particle coordinates.
One of the restrictions is the applicability of the theory to
small (rescaled) distances between the charged plates. There
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exist other possibilities to approach the zero temperature limit.
One of them is to construct an expansion in � around the
limit � → ∞, under the fixed ratio of the distance d (in the
two-plate problem) and the lattice spacing a of the Wigner
crystal formed at T = 0. The low-temperature theory proposed
by Lau et al. [30] can be considered in some respect as being
of this kind. The considered model consists of two staggered
hexagonal Wigner crystals of counterions condensed on the
plates; the particles are not allowed to move in the slab between
the plates. The attraction between the plates at zero and
nonzero temperatures, which results from the interaction of the
staggered Wigner crystals and from the particle fluctuations,
can be computed. Since the particles are not allowed to leave
their Wigner plane, the counterion profile between the two
plates is trivial and there is no need for a spatial scaling.
Such a model is interesting on its own, but has a restricted
applicability to realistic systems of counterions because the
particles are assumed to stick to the plates. This assumption
may be perhaps acceptable at large distances between plates,
but discards from the outset the excitations that are relevant
at small distances, where the counterions unbind from the
interfaces (see, e.g., [22,23] and the analysis below).

An interpolation between the Poisson-Boltzmann (low �)
and SC regimes (high �), based on the idea of a “correlation
hole,” was the subject of a series of works [31–33]. The
correlation hole was specified empirically in Ref. [32] and
self-consistently, as an optimization condition for the grand
partition function, in [33]. An interesting observation in [33],
corroborated by a comparison with the MC simulations, was
that the first correction in the SC expansion is proportional to
1/

√
�, and not to 1/� as suggested by the VSC theory. Our

exact expansion below shows that indeed the first correction
scales like 1/

√
�.

Recently, for the geometries of one plate and two equiv-
alently charged plates with counterions only, we proposed
another type of SC theory [34]. It is based on a low-temperature
expansion in particle deviations around the ground state
formed by the 2D Wigner crystal of counterions at the plate(s).
The approach points to the primary importance of the structure
of the ground state, a point emphasized by some authors
(see, e.g., [35]). Our starting point therefore resembles that
of Ref. [30], but in the subsequent analysis, the particles
vibrations around their Wigner lattice positions are allowed
along all directions, including the direction perpendicular to
the crystal plane along which the particle density varies in a
nontrivial way. The theory is formulated in the setup of the
original VSC approach: An SC expansion around the same
limit � → ∞ is made, together with the same scaling of
the coordinate in the direction perpendicular to the plate(s),
z̃ = z/μ. Since the formation of the Wigner crystal is the
basic ingredient from which the method starts, we shall refer
to it as the WSC theory. Its leading order stems from a
single-particle theory, and is identical to the leading order
obtained in the VSC approach. In the present planar geometry,
both WSC and VSC differ beyond the leading order, when
the first correction is considered. In this respect, in assessing
the physical relevance of WSC and VSC, comparison to
“exact” numerical data is essential. Remarkably, the first
WSC correction has the functional form in space of the VSC
prediction, but the prefactor is different: Its 1/

√
� dependence

on the coupling parameter and the value of the corresponding
prefactor are in excellent agreement with available data of MC
simulations, while the VSC prediction is off by several orders
of magnitude under strong Coulombic couplings [22]. Unlike
the VSC theory, the WSC expansion is free of divergences,
without any need for a renormalization of parameters. The
WSC expansion turns out to be in inverse powers of

√
�,

and not of � like in the case of the VSC expansion. Due
to its relatively simple derivation and algebraic structure, the
WSC method has a potential applicability to a large variety
of SC phenomena. In particular, the WSC can be worked out
beyond the leading order for asymmetric plates, which, to our
knowledge, was not done at the VSC level, possibly due to
the technical difficulty to overcome. The specific 2D Coulomb
systems with logarithmic pair interactions were treated at WSC
level in Ref. [36].

In this paper we aim at laying solid grounds for the WSC
method. We develop the mathematical formalism initiated in
Ref. [34], which is based on a cumulant expansion to capture
systematically vibrations of counterions around their Wigner-
crystal positions. This formalism enables us to deal in the
leading order plus the first correction, also with asymmetric,
likely or oppositely charged plates. The results obtained are
in remarkable agreement with MC data for large as well as
intermediate values of the coupling parameter �.

The paper is organized as follows. The one-plate geometry
is studied in Sec. II. An analysis is made of counterions
vibrations around their ground-state positions in the Wigner
crystal, along both transversal and longitudinal directions with
respect to the plate surface. The cumulant technique, providing
us with the WSC expansions of the particle density profile
in powers of 1/

√
�, is explained in detail. Section III deals

with the geometry of two parallel plates at small separation.
The cumulant technique is first implemented for equivalently
charged plates and afterward for asymmetrically charged
plates. In the case of the opposite-charged plates, the WSC
results for the pressure are in agreement with MC simulations
for small plate separations and lead to the correct (nonzero)
large-distance asymptotics. In the case of the like-charged
plates, the accurate WSC results for the pressure are limited
to small plate separations. All obtained results represent an
essential improvement over the VSC estimates. Concluding
remarks are given in Sec. IV.

Before we embark on our study, a semantic point is in
order. Some authors refer to the VSC approach as the “SC
theory.” Clearly the VSC route is not the only theory that
can be put forward to describe the strong coupling regime. In
what follows, the SC limit refers to � → ∞, and we carefully
discriminate between VSC and WSC predictions that will both
be tested against Monte Carlo data.

II. ONE-PLATE GEOMETRY

A. Definitions and notations

We start with the one-plate problem in the 3D Euclidean
space of points r = (x,y,z) pictured in Fig. 1(a). In the
half-space �′ = {r,z < 0} there is a hard wall of dielectric
constant ε which is impenetrable to particles. A uniform
surface-charge density σe, e being the elementary charge and
σ > 0, is fixed at the wall surface � localized at z = 0. The
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FIG. 1. The two geometries considered: (a) one plate and (b)
two parallel plates at distance d . The neutralizing counterions have
charge −qe.

q-valent counterions (classical point-like particles) of charge
−qe, immersed in a solution of dielectric constant ε, are
confined to the complementary half-space � = {r,z � 0}. In
this work we consider the homogeneous dielectric case only,
without electrostatic image forces. The system is in thermal
equilibrium at the inverse temperature β = 1/(kBT ).

The potential energy of an isolated counterion at distance z

from the wall is, up to an irrelevant constant, given by

E(z) = 2πqe2σ

ε
z. (1)

The system as a whole is electroneutral; denoting the (infinite)
number of counterions by N and the (infinite) area of the wall
surface by |�|, the electroneutrality condition reads

qN = σ |�|. (2)

There are two relevant length scales describing, in Gaussian
units, the interaction of counterions with each other and with
the charged surface. The Bjerrum length

	B = βe2

ε
(3)

is the distance at which two unit charges interact with thermal
energy kBT . The Gouy-Chapman length

μ = 1

2πq	Bσ
(4)

is the distance from the charged wall at which an isolated
counterion has potential energy (1) equal to thermal energy
kBT . The z coordinate of particles will be usually expressed
in units of μ,

z̃ = z

μ
. (5)

The dimensionless coupling parameter �, quantifying the
strength of electrostatic correlations, is defined as the ratio

� = q2	B

μ
= 2πq3	2

Bσ. (6)

The strong-coupling regime � � 1 corresponds to either low
temperatures or large valency q or surface charge σe.

The counterion averaged density profile ρ(z) depends on the
distance z from the wall. It will be considered in the rescaled
form

ρ̃ (̃z) ≡ ρ(μ̃z)

2π	Bσ 2
. (7)

The electroneutrality condition (2) then takes two equivalent
expressions

q

∫ ∞

0
dzρ(z) = σ,

∫ ∞

0
dz̃ρ̃ (̃z) = 1. (8)

The contact-value theorem for planar wall surfaces [37] relates
the total contact density of particles to the surface charge
density on the wall and the bulk pressure of the fluid P . For
3D systems of identical particles, it reads

βP = ρ(0) − 2π	Bσ 2. (9)

Since in the present case of a single isolated double layer, the
pressure vanishes,

ρ(0) = 2π	Bσ 2, ρ̃(0) = 1, (10)

that can be viewed as a constraint that any reasonable theory
should fulfill.

B. The virial strong coupling approach

With our choice of reduced units, the exact density profile
is a function of two variables only: ρ̃ (̃z,�). It is well behaved
when � → ∞, which is nevertheless a limit where in unscaled
variables, all counterions stick to the plate, forming the Wigner
crystal [ρ(z,�) ∝ δ(z) for � → ∞]. The purpose of the
present discussion is to resolve the structure of the double layer
at large but finite �. According to the VSC method [22,23],
the density profile of counterions can be formally expanded in
the SC regime as a power series in 1/�:

ρ̃ (̃z,�) = ρ̃0(̃z) + 1

�
ρ̃1(̃z) + O

(
1

�2

)
, (11)

where

ρ̃0(̃z) = e−̃z, ρ̃1(̃z) = e−̃z

(
z̃2

2
− z̃

)
. (12)

The leading term ρ̃0(̃z), which comes from the single-particle
picture of counterions in the linear surface-charge potential,
is in agreement with the MC simulations [22]. Indeed, for
large �, the particles’ excursion perpendicular to the plane,
which is always quantified by μ, is much smaller than the
lateral spacing between ions (denoted a below) [23]. As a
consequence, these ions experience the potential of the bare
plate, while the interactions with other ions become negligible
by symmetry. On the other hand, the MC simulations indicate
that the subleading term ρ̃1(̃z) has the expected functional form
(for sufficiently large coupling � > 10), but the prefactor 1/�

is incorrect. On the basis of the prediction (11), the MC data
were fitted in [22] by using the formula

ρ̃ (̃z,�) − ρ̃0(̃z) = 1

θ
ρ̃1(̃z), (13)

where ρ̃ (̃z,�) is the density profile obtained from MC
simulations and θ is treated as a fitting parameter. According
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FIG. 2. The fitting parameter θ , defined by Eq. (13), vs the
coupling constant � for one-plate geometry. The MC values reported
in Ref. [22] are shown with filled diamonds, the original prediction
θ = � of the VSC theory with the dashed line; the solid curve is for
our WSC prediction, given by Eq. (48).

to the VSC result (11), θ should be given by θ = � plus
next-leading corrections. As is seen in the log-log plot of Fig. 2,
the numerically obtained values of θ are much smaller than �,
and the difference between θ and � even grows with increasing
the coupling constant.

C. The Wigner strong coupling expansion

Our approach is based on the fact that in the asymptotic
ground-state limit � → ∞, all counterions collapse on the
charged surface z = 0, forming a 2D Wigner crystal [6,21]. It
is well known [38] that the lowest ground-state energy for the
2D Wigner crystal is provided by the hexagonal (equilateral
triangular) lattice. Each point of this lattice has six nearest
neighbors forming a hexagon (see Fig. 3). The 2D lattice points
are indexed by {j = (j1,j2)}, where j1 and j2 are any two
integers (positive, negative, or zero):

Rj = (
Rx

j ,R
y

j

) = j1a1 + j2a2, (14)

x
a1

2a

y

FIG. 3. Hexagonal structure of the 2D Wigner crystal: a1 and a2

are the primitive translation vectors.

where

a1 = a(1,0), a2 = a

(
1

2
,

√
3

2

)
(15)

are the primitive translation vectors of the Bravais lattice and
a is the lattice spacing. Since at each vertex there is just one
particle we can identify j with particle labels, j = 1, . . . ,N

(N → ∞). There are two triangles per vertex, so the condition
of global electroneutrality (2) requires that

q

σ
=

√
3

2
a2. (16)

Note that in the large-� limit, the lateral distance between the
nearest-neighbor counterions in the Wigner crystal a is much
larger than the characteristic length μ in the perpendicular
z-direction a/μ ∝ √

� � 1. As invoked above, this very
feature explains why a single particle picture provides the
leading order term in a SC expansion, so that the two different
approaches discussed here (VSC and WSC) coincide to leading
order. The same remark holds for the two-plates problem that
will be addressed in Sec. III. It should be emphasized though
that this coincidence of leading orders is specific to the planar
geometry. The z coordinate of each particle in the ground state
is zero, Zj = 0.

We denote the ground-state energy of the counterions on the
Wigner lattice plus the homogeneous surface-charge density
σe by E0. For � large but not infinite, the fluctuations of ions
around their lattice positions, in all three spatial directions,
begin to play a role. Let us first shift one of the particles,
say j = 1, from its Wigner lattice position (R1,Z1 = 0) by
a small vector δr = (x,y,z) (|δr| 	 a) and look for the
corresponding change in the total energy δE = E − E0 � 0.
The first contribution to δE comes from the interaction of
the shifted counterion with the potential induced by the
homogeneous surface charge density:

δE(1)(z) = 2πqe2σ

ε
z. (17)

The second contribution to δE comes from the interaction of
the shifted particle 1 with all other particles j 
= 1 on the 2D
hexagonal lattice:

δE(2)(x,y,z)

= (qe)2

ε

∑
j 
=1

[
1√(

Rx
1j + x

)2 + (
R

y

1j + y
)2 + z2

− 1

R1j

]
,

(18)

where R1j = (Rx
1j ,R

y

1j ) = R1 − Rj and R1j = |R1j |. Rescal-
ing the lattice positions by a and taking into account the in-
equalities x/a,y/a,z/a 	 1, this expression can be expanded
as an infinite series in powers of x/a, y/a and z/a by using
the formula

1√
1 + t

= 1 − 1

2
t + 3

8
t2 − 5

16
t3 + · · · , t 	 1. (19)

Up to harmonic terms, the expansion reads

δE(2)(x,y,z) = (qe)2

2εa3
C3

[
1

2
(x2 + y2) − z2

]
. (20)
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Here C3 is the special s = 3 case of dimensionless hexagonal
lattice sums

Cs =
∑
j 
=1

1

(R1j /a)s
, (21)

which can be expressed from the general theory [39] as

C3 =
∞∑

j,k = −∞
(j,k) 
= (0,0)

1

(j 2 + jk + k2)3/2

= 2√
3
ζ

(
3

2

)[
ζ

(
3

2
,
1

3

)
− ζ

(
3

2
,
2

3

)]
(22)

with ζ (z,q) = ∑∞
n=0 1/(q + n)z the generalized Riemann ζ

function and ζ (z) ≡ ζ (z,1) [this function should not be
confused with the parameter ζ , appearing without arguments
below Eq. (63), that will measure the asymmetry between two
charged plates]. Explicitly, C3 = 11.034 . . .. The absence of
the linear x, y terms and of the mixed xy term in (20) is caused
by the fact that every lattice point is at a center of inversion.
The invariance of the hexagonal lattice with respect to the
rotation around any point by the angle π/3 implies the lattice
sum equalities

∑
j 
=1

f (R1j )
(
Rx

1j

)2 =
∑
j 
=1

f (R1j )
(
R

y

1j

)2 = 1

2

∑
j 
=1

f (R1j )R2
1j ,

(23)

which were also used in the derivation of (20). Note that the
x2 and y2 harmonic terms in Eq. (20) have positive signs
which is consistent with the stability of the Wigner crystal
in the (x,y) plane. On the other hand, the minus sign of the
z2 term does not represent any stability problem due to the
presence of the positive linear contribution in (17), which is
dominant for small z distances. The total energy change is
given by δE(x,y,z) = δE(1)(z) + δE(2)(x,y,z). Finally, let us
write down the z-dependent part of the dimensionless energy
shift −βδE, with z expressed in units of μ:

−βδE(0,0,μ̃z) ∼ −̃z + α3

2

C3√
�

z̃2, α = 31/4

2
√

π
. (24)

We see that in the limit � → ∞, as advocated above, the
two-body interaction term of the shifted ion with all other ions
on the Wigner crystal is of order 1/

√
� and therefore negligible

in comparison with the one-body potential term −̃z due to the
surface charge density. This leading single-particle picture is
common to both VSC and WSC approaches. As concerns
the two-body interaction terms z̃p of higher orders (p =
3,4, . . .), their coefficients are proportional to q2	Bμp/ap+1 ∝
1/�(p−1)/2. The present scheme thus represents a systematic
basis for an expansion in powers of 1/

√
�.

The generalization of the above formalism to independent
shifts of all particles from their lattice positions is straightfor-
ward. Let us shift every particle j = 1,2, . . . ,N from its lattice
position (Rj ,Zj = 0) by a small vector δrj = (xj ,yj ,zj )

(|δrj | 	 a) and study the corresponding energy change δE.
As before, the first (one-body) contribution to δE is given by

−βδE(1)({μ̃zj }) = −
N∑

j=1

z̃j . (25)

The second (two-body) contribution to δE is expressible as

δE(2)({xj },{yj },{zj })

= (qe)2

2ε

N∑
j,k = 1
(j 
= k)

1

Rjk

[
1√

1 + μjk + νjk

− 1

]
, (26)

where the dimensionless μjk and νjk involve the particle
coordinates along and perpendicular to the Wigner crystal,
respectively:

μjk = 2(xj − xk)
Rx

jk

R2
jk

+ 2(yj − yk)
R

y

jk

R2
jk

+ 1

R2
jk

[(xj − xk)2 + (yj − yk)2], (27)

νjk = 1

R2
jk

(zj − zk)2. (28)

Performing the expansion of type (19) in small μjk and νjk ,
we end up with

−βδE(2)({xj },{yj },{zj }) = Sz + SW + Sz,W , (29)

where

Sz = q2	B

2

N∑
j,k = 1
(j 
= k)

1

Rjk

(
1

2
νjk − 3

8
ν2

jk + · · ·
)

(30)

contains particle shifts exclusively in the z direction,

SW = q2	B

2

N∑
j,k = 1
(j 
= k)

1

Rjk

(
1

2
μjk − 3

8
μ2

jk + · · ·
)

(31)

contains particle shifts exclusively in the (x,y) Wigner plane
and

Sz,W = q2	B

2

N∑
j,k = 1
(j 
= k)

1

Rjk

[
−3

4
μjkνjk

+15

16

(
μ2

jkνjk + μjkν
2
jk

) + · · ·
]

(32)

mixes particle shifts along the z direction with those along the
(x,y) plane.

We are interested in the particle density profile defined by
ρ(r) = 〈∑N

j=1 δ(r − rj )〉, where 〈· · ·〉 means thermal equilib-
rium average over the Boltzmann weight exp(−βδE) with

−βδE = −βδE(1) − βδE(2) = −
N∑

j=1

z̃j + Sz + SW + Sz,W .

(33)
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The ground-state energy E0 is a quantity which is independent
of the particle coordinate shifts and as such disappears for the
statistical averages. The system is translationally invariant in
the (x,y) plane, so that the particle density is only z dependent,
ρ(r) = ρ(z). We shall consider separately in (33) the terms
containing exclusively particle shifts in z direction, transversal
to the wall, and those which involve longitudinal particle shifts
along the Wigner (x,y) plane.

D. Contribution of transversal particle shifts

Let us forget for a while the terms SW and Sz,W in (33) and
consider only the particle z shifts in the “most relevant” Sz,

−βδE = −
N∑

j=1

z̃j + Sz. (34)

Expressing z in units of μ, Sz in Eq. (30) can be written as an
infinite series in powers of 1/

√
�, the first terms of which read

Sz = α3

4
√

�

N∑
j,k = 1
(j 
= k)

1

(Rjk/a)3
(̃zj − z̃k)2

− 3α5

16 �3/2

N∑
j,k = 1
(j 
= k)

1

(Rjk/a)5
(̃zj − z̃k)4 + · · · . (35)

In the limit � → ∞, Sz is a perturbation with respect to the
one-body part in (34).

To obtain the particle density, we add to the one-body
potential z̃ an auxiliary (generating or source) potential βu(r),
which will be set to 0 at the end of calculations. The partition
function of our N -particle system

ZN [w] = 1

N !

∫
�

N∏
i=1

[driw(ri)e
−̃zi ] exp(Sz) (36)

thereby becomes a functional of the generating Boltzmann
weight w(r) = exp[−βu(r)]. The particle density at point r is
obtained as the functional derivative

ρ(r) = δ

δw(r)
ln ZN [w]

∣∣∣∣
w(r)=1

, (37)

which is of course a function of �, in addition to r. To treat
Sz as the perturbation, we define the Sz = 0 counterpart of the
partition function (36)

Z
(0)
N [w]= 1

N !

∫
�

N∏
i=1

[driw(ri)e
−̃zi ]= 1

N !

[∫
�

drw(r)e−̃z

]N

,

(38)

which corresponds to noninteracting particles in an external
potential. It is clear that

ln

(
ZN [w]

Z
(0)
N [w]

)
= ln〈exp(Sz)〉0, (39)

where 〈· · ·〉0 denotes the averaging over the system of
noninteracting particles defined by Z

(0)
N . We are left with the

cumulant expansion of ln〈exp(Sz)〉0:

ln〈exp(Sz)〉0 =
∞∑

n=1

1

n!

〈
Sn

z

〉(c)
0

= 〈Sz〉0 + 1

2

(〈
S2

z

〉
0 − 〈Sz〉2

0

) + · · · . (40)

An important property of the cumulant expansion is that if
〈Sz〉0 is an extensive (proportional to N ) quantity, the higher-
order terms will also be. In other words, the contributions of
N2, N3, etc. orders will cancel with each other. We conclude
that

ln ZN [w] = ln Z
(0)
N [w] + 〈Sz〉0 + 1

2

(〈
S2

z

〉
0 − 〈Sz〉2

0

) + · · · .
(41)

The particle density results from the substitution of this
expansion into (37), and the subsequent application of the
functional derivative with respect to w(r), taken at w(r) = 1.

The leading SC behavior of the particle density stems from
ln Z

(0)
N [w]. Since

δ

δw(r)
ln Z

(0)
N [w]

∣∣∣∣
w(r)=1

= Ne−̃z∫
�

dre−̃z

= N

|�|μe−̃z = (2π	Bσ 2)e−̃z (42)

we have ρ̃0(̃z) ∼ e−̃z, which coincides with the leading VSC
term presented in (12).

The first correction to the density profile stems from
〈Sz〉0, namely from the first term in the series representation
of Sz (35):

〈Sz〉0 ∼ α3

4
√

�

N∑
j,k = 1
(j 
= k)

1

(Rjk/a)3

〈 (̃
z2
j + z̃2

k − 2̃zj z̃k

) 〉
0. (43)

A useful property of the averaging 〈· · ·〉0 is its independence on
the particle (lattice site) index, for example, for p = 1,2, . . .

we have 〈̃
z
p

j

〉
0 =

∫
�

∏N
i=1[driw(ri)e−̃zi ]̃zp

j∫
�

∏N
i=1[driw(ri)e−̃zi ]

=
∫
�

drw(r)e−̃zz̃p∫
�

drw(r)e−̃z
≡ [̃zp]0. (44)

Simultaneously, due to the absence of interactions in 〈· · ·〉0,
correlation functions of particles decouple themselves, for
example, 〈̃zj z̃k〉0 = [̃z]2

0 for j 
= k. Thus the relation (43)
becomes

〈Sz〉0 ∼ α3

2
√

�
NC3

(
[̃z2]0 − [̃z]2

0

)
. (45)

It is easy to show that

δ

δw(r)
[̃zp]0

∣∣∣∣
w(r)=1

= 1

|�|μe−̃z (̃zp − p!), (46)
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z 
~

-0.1
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(ρ∼ −ρ∼ 0) Ξ
1/
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Monte Carlo
WSC

FIG. 4. Single charged wall: Comparison between the rescaled
analytical first correction to the strong coupling profile from Eq. (47)
(solid curve) and the MC results of Ref. [22] (filled squares). Here
� = 103 and ρ̃0(z) denotes the leading order term exp(−̃z) that is
subtracted from the numerical data to probe the correction.

where we used the equality [̃zp]0|w(r)=1 = p!. The formula for
the density profile, in the leading order plus the first correction,
then reads

ρ̃ (̃z,�) = e−̃z + 33/4

8π3/2

C3√
�

e−̃z

(
z̃2

2
− z̃

)
+ O

(
1

�

)
. (47)

Note that the electroneutrality (8) and the contact theorem (10)
are satisfied by this density profile. In Fig. 4 we compare the
appropriately rescaled first correction to the leading SC profile
obtained in (47) (solid curve) with MC data [22] at � = 103

(filled squares). The agreement is excellent. On the other hand,
the VSC prediction is off by a factor 10001/2.

Comparing our WSC result (47) with the VSC Eqs. (11) and
(12) we see that the first corrections have the same functional
dependence in z̃, but different prefactors. In terms of the fitting
parameter θ introduced in (13), the VSC estimate θ = � is
compared with the present value

θ = 8π3/2

33/4

1

C3

√
� = 1.771 . . .

√
�. (48)

As is seen from Fig. 2, this formula (solid curve) is in full
agreement with the data of MC simulations (filled diamonds).

In the series representation of Sz (35), the first term is of
order �−1/2 and the second one is of order �−3/2. In view of
(41), the second correction to the density profile stems from
(〈S2

z 〉0 − 〈Sz〉2
0)/2 with Sz represented by its first term, and

not from 〈Sz〉0 with Sz represented by its second term. Let us
analyze in detail the average

〈
S2

z

〉
0 ∼

(
α3

4
√

�

)2 ∑
(j 
=k)

1

(Rjk/a)3

∑
(m
=n)

1

(Rmn/a)3

×
∫
�

∏N
i=1[driw(ri)e−̃zi ](̃zj − z̃k)2(̃zm − z̃n)2∫

�

∏N
i=1[driw(ri)e−̃zi ]

.

(49)

For a fixed pair of site indices (j 
= k), there exist seven
topologically different possibilities for the pair (m 
= n):

m = j, n = k;
n = j, m = k;

}
factor 2

m = j, n 
= j,k;
n = j, m 
= j,k;
m = k, n 
= j,k;
n = k, m 
= j,k;

⎫⎪⎬⎪⎭ factor 4

m 
= j,k, n 
= j,k,m} factor 1.

Here, respecting the properties of the averaging 〈· · ·〉0, those
possibilities which lead to the same result are grouped together.
After simple algebra, we find that〈

S2
z

〉
0 ∼ α6

4�

{
NC2

3

(
[̃z4]0 − 4[̃z3]0[̃z]0 + 3[̃z2]2

0

)
+ [

(NC3)2 − 4NC2
3 + 2NC6

] (
[̃z2]0 − [̃z]2

0

)2 }
.

(50)

The “undesirable” disconnected term of order N2 is canceled
by the subtraction of 〈Sz〉2

0. After performing the functional
derivatives with respect to w(r), taken at w(r) = 1, we end up
with the next correction to the profile (47) of the form

33/2

64π3

1

�
e−̃z

[
C2

3

(
z̃4

8
− z̃3

2
+ z̃2

2
− z̃

)
+ C6

(
z̃2

2
− z̃

)]
.

(51)

Note that this correction does not break the electroneutrality
condition (8) nor the contact theorem (10).

E. Contribution of longitudinal and mixed particle shifts

Now we also consider in (33) the term SW with purely
longitudinal particle shifts in the Wigner plane and the term
Sz,W with mixed transversal and longitudinal shifts. Denoting
particle shifts in the infinite Wigner plane as uj = (xj ,yj ),
these terms possess the important translational symmetry:

SW ({uj }) = SW ({uj + u}),
Sz,W ({uj ,zj }) = Sz,W ({uj + u,zj }), (52)

where u is any 2D vector. We first investigate the scaling
properties of SW and Sz,W .

Let us expand SW up to quadratic x,y deviations:

SW = q2	B

4a

N∑
j,k = 1
(j 
= k)

(
R

y

jk

/
a
)2 − 2

(
Rx

jk

/
a
)2

(Rjk/a)5

(
xj − xk

a

)2

+ q2	B

4a

N∑
j,k = 1
(j 
= k)

(
Rx

jk

/
a
)2 − 2

(
R

y

jk

/
a
)2

(Rjk/a)5

(
yj − yk

a

)2

− 3q2	B

2a

N∑
j,k = 1
(j 
= k)

(
Rx

jkR
y

jk

)/
a2

(Rjk/a)5

(xj − xk)(yj − yk)

a2
+ · · · .

(53)
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Terms linear in (xj − xk)/a and (yj − yk)/a vanish because
every point of the hexagonal Wigner crystal is a center of
inversion. We saw that in the z direction the relevant length
scale is determined by the Gouy-Chapman length μ: Rescaling
the z coordinates by μ, the (leading) linear potential term z̃ is
independent of the coupling constant � while the next terms
are proportional to inverse powers of

√
� and therefore vanish

in the SC limit. The natural length scale in the Wigner (x,y)
plane is the lattice spacing a, but this is not the relevant scale in
statistical averages. The relevant length λ is determined by the
requirement that the rescaling of coordinates xj = λXj and
yj = λYj in (53) leads to a dimensionless and �-independent
(leading) quadratic term. Since q2	B/a ∝ √

�, we have

λ

a
∝ 1

�1/4
,

λ

μ
∝ �1/4 (54)

(the numerical prefactors are unimportant), that is, the relevant
scale is “in between” μ and a. The higher-order terms in SW ,
which contain the deviations (xj − xk) and (yj − yk) in powers
p = 3,4, . . ., scale like 1/�(p−2)/4 and therefore vanish in the
limit � → ∞.

Let us now consider the leading expansion terms of the
mixed quantity Sz,W :

Sz,W = −3q2	B

4a

N∑
j,k = 1
(j 
= k)

[(zj − zk)/a]2

(Rjk/a)5

×
[
Rx

jk

a

(
xj − xk

a

)
+ R

y

jk

a

(
yj − yk

a

)]

+3q2	B

8a

N∑
j,k = 1
(j 
= k)

[(zj − zk)/a]2

(Rjk/a)7

×
{[

4

(
Rx

jk

a

)2

−
(

R
y

jk

a

)2](
xj − xk

a

)2

+
[

4

(
R

y

jk

a

)2

−
(

Rx
jk

a

)2 ](
yj − yk

a

)2

+10
Rx

jk

a

R
y

jk

a

(
xj − xk

a

)(
yj − yk

a

)}
+· · · . (55)

Rescaling the particle coordinates as follows zj = μ̃zj , xj =
λXj , yj = λYj , the first term is of order 1/�3/4 and the second
one is of order 1/�.

To obtain the density profile, one proceeds in analogy with
the previous case of transversal vibrations. We introduce the
partition function of our N -particle system

ZN [w] = 1

N !

∫
�

N∏
j=1

[driw(ri)e
−̃zi ]eSW eSz+Sz,W (56)

with the generating Boltzmann weight w(r). We take as the
unperturbed system the one with one-body potentials −̃zi in
z direction and SW in (x,y) plane, and treat Sz + Sz,W as the

perturbation. Using the cumulant method, we obtain

ln ZN [w] = ln Z
(0)
N [w] + 〈Sz〉0 + 〈Sz,W 〉0 + · · · , (57)

where 〈· · ·〉0 denotes the averaging over the unperturbed
system with the partition function

Z
(0)
N [w] = 1

N !

∫
�

N∏
i=1

[driw(ri)e
−̃zi ] exp(SW ). (58)

The particle density is given by Eq. (37).
The additional appearance of exp(SW ) in the averaging

over the unperturbed system is a complication which can
be sometimes removed trivially by using the translational
invariance of SW (52). We shall document this fact on the
leading SC behavior of the particle density at point r = (u,z)
which stems from ln Z

(0)
N [w]:

δ

δw(r)
ln Z

(0)
N [w]

∣∣∣∣
w(r)=1

= Ne−̃z

μ

∫
�

∏N
i=2 d2uie

SW (u1=u)∫
�

∏N
i=1 d2uieSW

. (59)

Since the surface of the plate � is infinite, we shift in the
denominator the integral variables i 
= 1 as follows ui → ui +
u1 − u which transforms SW → SW (u1 = u). Integrating over
u1, the ratio of integrals in (59) is u independent, and reads
1/|�|. By this simple technique, it can be shown that the
contribution to the density profile coming from the functional
derivative of 〈Sz〉0 is not affected by SW , which decouples
from the z variables. We remember from the previous part
about transversal deviations that 〈Sz〉0 is of order 1/

√
�.

The description is a bit more complicated in the case of

〈Sz,W 〉0 =
∫
�

∏N
i=1[driw(ri)e−̃zi ] exp(SW )Sz,W∫

�

∏N
i=1[driw(ri)e−̃zi ] exp(SW )

. (60)

In the corresponding contribution to the density profile,
obtained as the functional derivative with respect to w(r)
at w(r) = 1, the z and (x,y) subspaces decouple from one
another. The z variables are considered in the rescaled form
z̃ = z/μ. To perform the integration over the Wigner plane, we
rescale the (x,y) variables to the ones λ(X,Y ); this ensures that
the quadratic part of SW is � independent and all higher-order
terms p = 3,4, . . ., proportional to 1/�(p−2)/4, vanish in the
SC limit � → ∞. Thus the leading dependence on � is
given by the scaling factor of Sz,W under the coordinate
transformations z = μ̃z and (x,y) = λ(X,Y ), which was found
to be of order 1/�3/4. This contribution does not alter the
first correction ∝ 1/

√
�. To calculate explicitly the second

correction is a complicated task, because the quadratic part
of SW in the exponential exp(SW ) involves all interactions of
particles on the Wigner crystal. The explicit diagonalization
of SW can be done, for example, in the small wave vector
limit [38].

The fact that the longitudinal vibrations in the plane of the
Wigner crystal have no effect on the leading term and the first
correction of the particle density profile is a general feature of
the WSC theory. In what follows, we shall ignore these degrees
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of freedom, restricting ourselves to the leading term and the
first correction, proportional to 1/

√
�.

III. PARALLEL PLATES AT SMALL SEPARATION

Next we study the geometry of two parallel plates �1 ≡ 1
and �2 ≡ 2 of the same (infinite) surface |�1| = |�2| = |�|,
separated by a distance d [see Fig. 1(b)]. The z = 0 plate
1 carries the constant surface charge density σ1e, while the
other plate 2 at z = d is charged by σ2e. The electric potential
between the plates is, up to an irrelevant constant, given by

φ(z) = −2π (σ1 − σ2)e

ε
z. (61)

N mobile counterions of charge −qe (the valency q > 0),
which are in the region between the walls � = {r,0 � z � d},
compensate exactly the fixed charge on the plates:

qN = (σ1 + σ2)|�|. (62)

Without any loss of generality we can assume σ1 > 0, so that
the asymmetry parameter

ζ = σ2

σ1
� −1. (63)

This parameter should not be confused with the Riemann
function introduced in Eq. (22). By rescaling appropriately
the model’s parameters, it is sufficient to consider the interval
−1 � ζ � 1. The limiting value ζ = −1 corresponds to the
trivial case σ2 = −σ1 with no counterions between the plates.
The symmetric case ζ = 1 corresponds to equivalently charged
plates σ2 = σ1. Note that in all cases considered, there is only
one type of mobile ion in the interstitial space 0 � z � d.

Because of the asymmetry between the surface charges,
there exist two Gouy-Chapman lengths

μ1 = 1

2π	Bqσ1
≡ μ, μ2 = 1

2π	Bq|σ2| = μ

|ζ | . (64)

Similarly, we can define two different coupling parameters

�1 = q2	B

μ1
≡ �, �2 = q2	B

μ2
= |ζ |�. (65)

Here, for the ease of comparison, we follow the convention
of Ref. [24]: all quantities will be rescaled by their plate 1
counterparts i.e., z̃ = z/μ1 and

ρ̃ (̃z) = ρ(μ̃z)

2π	Bσ 2
1

, P̃ = βP

2π	Bσ 2
1

. (66)

The reduced density is a function of three arguments: z̃, d̃ , and
� while the reduced pressure depends on two: d̃ and �. For
notational simplicity, the dependence on d̃ and � will often be
implicit in what follows. Note also that P̃ = εP/(2πe2σ 2

1 ), so
that the rescaling factor required to define the dimensionless
pressure is temperature independent. This is not the case of the
rescaling factor applied to distances, since the Gouy-Chapman
lengths scale as T . The electroneutrality condition (62) can be
written in two equivalent ways:∫ d

0
dzρ(z) = σ1 + σ2

q
,

∫ d̃

0
dz̃ ρ̃ (̃z) = 1 + ζ. (67)

The contact-value theorem (9), considered at z = 0 and z = d

boundaries, takes two equivalent forms:

P̃ = ρ̃(0) − 1 = ρ̃(d̃) − ζ 2, (68)

which provides a strong d and � independent constraint for
ρ̃(0) − ρ̃(d).

In the case of oppositely charged surfaces −1 < ζ � 0, the
ground state of the counterion system is the same as for the iso-
lated plate 1, that is, all N counterions collapse on the surface,
and create the hexagonal Wigner crystal. For this region of
ζ values, one can easily adapt the WSC technique from the
one-plate geometry for a priori any distance d between the
plates.

The case of like-charged plates 0 < ζ � 1 is more subtle.
The ground state of the counterion system corresponds to a
bilayer Wigner crystal, as a consequence of Earnshaw theorem
[40]. The lattice spacings of each layer are denoted b1 and b2;
they are the direct counterpart of the length scale a introduced
in Sec. II. The bilayer structure is, in general, complicated
and depends on the distance d [41–43]. For this region of ζ

values, the WSC technique cannot be adapted directly from
the one-plate geometry, except for small distances between
the plates such that d 	 b, where b = min{b1,b2}. The point
is that each particle experiences, besides the direct linear one-
body potential (61) induced by homogeneously charged plates,
an additional perturbation due to the repulsive interactions with
other q-valent ions. This additional potential is, for d 	 b,
small compared to (61). This opens the way to a perturbative
treatment along similar lines as in Sec. II, in which the leading
one-body description is then fully equivalent to the one derived
within the VSC method.

First we shall address the symmetric ζ = 1 case which
ground state was studied extensively in the past. The symmetric
configuration is of special importance in the VSC method:
Although the leading SC result for the density profile and the
pressure was derived for all values of the asymmetry parameter
−1 � ζ � 1 [24], the first SC correction (inconsistent with
MC simulations) is available up to now only for ζ = 1 [22,23].
After solving the SC limit for the symmetric case, we shall
pass to asymmetric, oppositely and likely charged, surfaces
and solve the problem in the leading SC order plus the first
correction.

A. Equivalently charged plates

For σ1 = σ2 = σ , the electric field between the walls
vanishes. At T = 0, the classical system is defined furthermore
by the dimensionless separation

η = d

√
σ

q
= 1√

2π

d̃√
�

. (69)

A complication comes from the fact that counterions form, on
the opposite surfaces, a bilayer Wigner crystal, the structure
of which depends on η [41–43]. Two limiting cases are clear.
At the smallest separation η = 0, a single hexagonal Wigner
crystal is formed. Due to global neutrality, its lattice spacing
b is given by

q

2σ
=

√
3

2
b2. (70)
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b Structure I

Structure III

Structure V

FIG. 5. Rigid ground-state structures I, III, and V of counterions
on two parallel charged plates; open and filled symbols correspond
to particle positions on the opposite surfaces.

The lattice spacing is simply related to that of the one plate
problem by b = a/

√
2. At large separations η → ∞, each of

the plates has its own Wigner hexagonal structure and these
structures are shifted with respect to one another. The transition
between these limiting phases corresponds to the following
sequence of structures (in the order of increasing η [41]):
a monolayer hexagonal lattice (I, 0 � η � η0), a staggered
rectangular lattice (II, η0 < η � 0.26), a staggered square
lattice (III, 0.26 < η � 0.62), a staggered rhombic lattice
(IV, 0.62 < η � 0.73), and a staggered hexagonal lattice
(V, 0.73 < η). The three “rigid” structures I, III, and V, which
do not change within their stability regions, are shown in
Fig. 5. The primary cells of intermediate “soft” II and IV
lattices are changing with η within their stability regions. The
existence of phase I in a small, but finite interval of η, is a
controversial issue [41–43], and therefore, so is the case of
the precise value of the threshold η0. Whether η0 is vanishing
or is a very small number remains an open problem. Here we
perform expansions of thermodynamic quantities in powers of
d/b 	 1 (or, equivalently, η ∝ d̃/

√
� 	 1 since the scale d̃

is fixed while � becomes large). We therefore need to know
the ground state structure for d/b ∝ η = 0, which is clearly
structure I, irrespective of the “η0 controversy,” with a lattice
spacing given by (70). We shall thus document our WSC
expansion on structure I.

Let Rj = (Rx
j ,R

y

j ) be the position vector of the particle
localized on the shared hexagonal Wigner lattice of type I;
Zj = 0 if the particle j = 1, . . . ,N/2 belongs to the plate �1

(say filled symbols of structure I in Fig. 5) and Zj = d if the
particle j = N/2 + 1, . . . ,N belongs to the plate �2 (open
symbols of structure I in Fig. 5). Let us shift all particles
from their lattice positions {Rj ,Zj = 0 ∨ d} to {(xj ,yj ,zj )}
and look for the corresponding energy change δE from the
ground state. Since the potential induced by the surface charge
on the walls is constant between the walls and the linear in
z contribution of Wigner crystals is negligible if d/b 	 1,
the corresponding δE(1) = 0. The z coordinates of particles,

constrained by the distance d between the plates, are much
smaller than the Wigner lattice spacing b, that is, both d2 and
(zj − zk)2 are much smaller than |Rj − Rk|2 for j 
= k. The
harmonic in z part of the energy change thus reads

δE(2)
z = − (qe)2

4ε

N∑
j,k = 1
(j 
= k)

(zj − zk)2

|Rj − Rk|3

+ (qe)2

2ε

∑
j∈�1

∑
k∈�2

d2

|Rj − Rk|3 . (71)

Note that the first (quadratic in z) term carries only the
information about the single Wigner crystal of lattice spacing
b. The information on how the lattice sites are distributed
between the two plates within structure I is contained in
the second constant (from the point of view of thermal
averages irrelevant) term which compensates the first one if
the counterions are in their ground-state configuration. The
harmonic terms in the (x,y) plane prove immaterial for the
sake of our purposes. The total energy change is given, as far
as the z-dependent contribution is concerned, by −βδE = Sz

with

Sz ∼ (
√

2α)3

4
√

�

N∑
j,k = 1
(j 
= k)

(̃zj − z̃k)2

(Rjk/b)3
. (72)

The only difference between this two-plate Sz and the one-plate
Sz (35) consists in the factor 23/2 due to the different lattice
spacing of the corresponding Wigner crystals, b = a/

√
2.

To derive the density profile, we use the cumulant technique
with the one-body Boltzmann factor equal to 1 (no external
potential). The leading SC behavior stems from Z

(0)
N [w] =

[
∫
�

drw(r)]N/N !. Since

δ

δw(r)
ln Z

(0)
N [w]

∣∣∣∣
w(r)=1

= N

|�|d = (2π	Bσ 2)
2

d̃
(73)

we have in the leading SC order the constant density ρ̃0(̃z) ∼
2/d̃ . This is the one-particle result in zero potential, respecting
the electroneutrality condition (67) with ζ = 1. The same
leading form was obtained by the VSC method [22,23].
The physical meaning is simple: due to their strong mutual
repulsion, the counterions form a strongly modulated structure
along the plate and consequently decouple in the transverse
direction, where they only experience the electric field due
to the two plates. In the symmetric case ζ = 1, this field
vanishes and the resulting ionic density is uniform along
z: from electroneutrality, it reads ρ̃0 = 2/d̃ . The situation
changes in the asymmetric case, where one can anticipate ρ̃0,
again driven by the nonvanishing but uniform bare plates field,
to be exponential in z.

The first correction to the density profile stems from

〈Sz〉0 ∼
√

2α3

√
�

NC3
(
[̃z2]0 − [̃z]2

0

)
, (74)

where

[̃zp]0 ≡
∫
�

drw(r)̃zp∫
�

drw(r)
, p = 1,2, . . . . (75)
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Simple algebra yields

δ

δw(r)
[̃zp]0

∣∣∣∣
w(r)=1

= 1

|�|d
(̃

zp − d̃p

p + 1

)
, (76)

where we used that [̃zp]0|w(r)=1 = d̃p/(p + 1). The density
profile ρ̃ (̃z) is thus obtained in the form

ρ̃ (̃z) = 2

d̃
+ 1

θ

2

d̃

[ (̃
z − d̃

2

)2

− d̃2

12

]
+ O

(
1

�

)
, (77)

where

θ (ζ = 1) = (4π )3/2

33/4

1

C3

1√
2

√
� = 1.252 . . .

√
�. (78)

This density profile respects the electroneutrality condition
(67) with ζ = 1. The functional form of (77) coincides with
that of Moreira and Netz [22,23]. For (not yet asymptotic)
� = 100, the previous VSC result θ = � is far away from the
MC estimate θ � 11.2 [22], while our formula (78) gives a
reasonable value θ � 12.5.

In the evaluation of the θ factor in Eq. (78), we use the exact
result (22) for the lattice sum C3 of the monolayer hexagonal
structure I, which was the starting point of our expansion. It is
instructive to compare (78) with the corresponding θ factors
calculated for the structures III and V presented in Fig. 5.
Using a representation of the lattice sums in terms of quickly
convergent integrals over products of Jacobi � functions,
we find that θ = 1.232 . . .

√
� for the structure III and θ =

1.143 . . .
√

� for the structure V. These values show only a
slight dependence of θ on the structure of the ground state.

Applying the contact-value theorem (68) to the density
profile (77), the pressure P between the plates is given by

P̃ = −1 + 2

d̃
+ d̃

3θ
+ O

(
1

�

)
. (79)

A similar result was obtained within the approximate approach
of Ref. [33], with the underestimated ratio θ/

√
� = 3

√
3/2 =

0.866 . . ..
Equation (79) provides insight into the like charge attraction

phenomenon. The attractive (P < 0) and repulsive (P > 0)
regimes are shown in Fig. 6. Although our results hold for
d̃ 	 √

� and for large �, the shape of the phase boundary
where P = 0 (solid curve) shows striking similarity with its
counterpart obtained numerically [22,32]. For instance, the
terminal point of the attraction region, shown by the filled
circle in Fig. 6, is located at d̃ = 4, a value close to that
which can be extracted from [22,32]. However, for � < 20,
our results depart from the MC data, and in particular, WSC
underestimates the value of � at the terminal point: we find
�term � 4.53 (corresponding to a critical value θterm = 8/3),
whereas the numerical data reported in [22] yields �term � 12.
The previous results apply to the VSC approach as well, where
the functional form of the equation of state is the same as
in WSC. Since we have θ = � in VSC, we conclude that
�term = 8/3 � 2.66 within VSC, which is indeed the value
that can be seen in Fig. 6. Clearly, accounting correctly for
the behavior of the counterion mediated pressure for � � 20
requires us to go beyond the strong-coupling analysis. In
addition, one has to be cautious as far as the location of
the upper branch of the attraction and repulsion boundary is

1 10 100 1000 10000
Ξ

1

10

d~

WSC
Monte Carlo
VSC

Repulsion

Repulsion

Attraction

?

FIG. 6. Phase diagram following from the WSC equation of state
(79) for symmetric like-charged plates (ζ = 1). The solid curve,
which shows the points where P = 0, divides the (�,d̃) plane onto
its attractive (P < 0) and repulsive (P > 0) parts. The dashed line is
the original VSC prediction [23]. The filled squares are the MC data
from Ref. [22] with � > 20. The filled circle indicates the terminal
point of the attraction/repulsion separatrix, obtained within WSC.
The question mark is a reminder that the upper branch of the isobaric
curve P = 0 is such that d̃ ∝ √

�, whereas our results are meaningful
under the proviso that d̃ 	 √

�.

concerned: It is such that d̃/
√

� is of order unity and hence
lies at the border of validity of our expansion.

There is another feature of the equation of state under strong
coupling that can be captured by our analysis: The distance
of maximal attraction, where the pressure is most negative.
We predict the maximum attraction, following from ∂P̃ /∂d̃ =
0, to be reached at d̃max = √

6θ ∝ �1/4. Since d̃max/
√

� ∝
�−1/4 → 0 in the asymptotic limit � → ∞, we can consider
the latter prediction, shown by the dashed line in Fig. 7, as
asymptotically exact. We note that it is fully corroborated by
the scaling laws reported in [32], while VSC yields the scaling
behavior d̃max ∝ �1/2.

We now analyze in more details the short distance behavior
of the pressure. The difference P̃ − 2/d̃ , which is equal to

10 100 1000 10000
Ξ

0

10

20

30

d~ Repulsion

d
~*

Attraction

d
~

 max

ζ = 1

FIG. 7. The symmetric case ζ = 1: The maximum attraction
distance d̃max (dashed line) is defined by ∂P̃ /∂d̃ = 0. The solid curve
d̃∗ is the boundary between attractive and repulsive regimes.
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FIG. 8. The dependence of P̃ − 2/d̃ on the plate separation d̃ for
three values of the coupling constant � = 100, 10, and 0.5. Here
ζ = 1 (symmetric case). The plots yielded by the WSC equation of
state (79) are represented by dashed lines. Monte Carlo data [22]
are shown with symbols: open circles for � = 100, filled diamonds
for � = 10, and open diamonds for � = 0.5. For completeness, the
Poisson-Boltzmann prediction is provided (dotted line in the upper
part of the graph).

−1 in the leading SC order and is linear in d̃ as concerns
the first correction, is plotted in Fig. 8 as a function of
the (dimensionless) plate separation d̃. Three values of the
coupling constant were considered: � = 100, 10, and 0.5. The
plots obtained from the equation of state (79) are shown by
dashed lines and the MC data [22] are represented by symbols.
The accuracy of the WSC method is good, surprisingly also
for small values of � = 10 and 0.5, where the approach is not
supposed to hold. As concerns the (leading term plus the first
correction) VSC equation of state [23], corresponding to our
Eq. (79) with θ = �, the plots for � = 10 and 100 are close to
the d̃ axis and far from the Monte Carlo data; we consequently
do not present them in the figure. For � = 0.5, the VSC
prediction is in good agreement with the MC simulations [22].
It is interesting to note that in the distance range d̃ < 2, the
� = 0.5 data depart from the mean-field (Poisson-Boltzmann)
results [22] (see Fig. 8): there, the interplate distance becomes
comparable or smaller to b, which means that the discrete
nature of the particles can no longer be ignored; At larger
distances only does the continuum mean-field description hold.
For small interplate distances we expect the single particle
picture to take over, no matter how small � is. This explains
that P̃ − 2/d̃ → −1, but there is then no reason that WSC or
VSC would provide the relevant d̃ correction at small �. The
fact that WSC and VSC agree with each other here at � = 0.5
is a hint that such a correspondence with MC is incidental (and
indeed, in this range of couplings, � and �1/2 are of the same
order). It would be interesting to have MC results at very small
� values, and to concomitantly develop a theory for the first
pressure correction to the leading term 2/d̃ − 1.

B. Asymmetrically charged plates

The sequence of ground states for asymmetric like-charged
plates (0 < ζ � 1) may be even more complex than the one for
the symmetric ζ = 1 case; in dependence on the distance d, the

bilayer Wigner crystal can involve commensurate as well as
incommensurate structures of counterions. In addition, related
work in spherical geometry [8,44] has shown that the ground
state in general breaks local neutrality (the two partners acquire
an electrical charge, necessarily opposite). The possibility of,
in principle, an infinite number of irregular structures might
complicate numerical calculations; we are not aware about a
work dealing with this subject.

Fortunately, the same simplification as for the equivalently
charged plates arises at small separations between the plates
d/b 	 1, where the lateral lattice spacing b of the single
Wigner crystal is now given by the requirement of the global
electroneutrality, as follows:

q

σ1 + σ2
=

√
3

2
b2. (80)

Since the z coordinates of particles between the plates are
much smaller than b, we can use the harmonic z expansion of
the interaction energy of type (71), where only the (irrelevant)
constant term reflects the formation of some nontrivial bilayer
structure. Our task is to derive the particle density profile for
the energy change from the ground state of the form

−βδE = −κ

N∑
j=1

z̃j + Sz, (81)

where κ = 1 − ζ = 1 − σ2/σ1 and

Sz ∼ q2	B

4

N∑
j,k = 1
(j 
= k)

(zj − zk)2

|Rj − Rk|3

= (
√

1 + ζα)3

4
√

�

N∑
j,k = 1
(j 
= k)

(̃zj − z̃k)2

(Rjk/b)3
. (82)

We use the cumulant technique with the one-body Boltzmann
factor exp(−κz̃). The final result for the density profile reads

ρ̃ (̃z) = (1 − ζ 2)
e−κz̃

1 − e−κd̃

{
1 + (

√
1 + ζα)3C3

2
√

�

× [̃z2 − t2 − 2t1(̃z − t1)] + O

(
1

�

)}
, (83)

where

t1(κ) =
∫ d̃

0 dz̃̃ze−κz̃∫ d̃

0 dz̃e−κz̃
= 1

κ
− d̃

eκd̃ − 1
, (84)

t2(κ) =
∫ d̃

0 dz̃̃z2e−κz̃∫ d̃

0 dz̃e−κz̃

= 2

κ2
− 1

eκd̃ − 1

(
2d̃

κ
+ d̃2

)
. (85)

For example, the density profile ρ̃ for ζ = 0.5, � = 86 and
d̃ = 2.68 is depicted in Fig. 9. The dashed curve corresponds
to the leading SC profile

ρ̃0(̃z) = (1 − ζ 2)
e−κz̃

1 − e−κd̃
, (86)
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FIG. 9. The density profile ρ̃ for ζ = 0.5, � = 86, and d̃ = 2.68.
The dashed curve corresponds to the leading SC profile ρ̃0 (86), the
solid curve also involves the first correction in (83). MC data (filled
circles) come from Ref. [24]. The inset shows the ratio ρ̃/ρ̃0 for a
finer test of the correction to leading order ρ̃0.

which is the same in both VSC and WSC theories. For the
parameters of Fig. 9, the leading order profile reads

ρ̃0(̃z) = 3

4

e−̃z/2

1 − e−1.34
. (87)

The WSC profile (83), involving also the first SC correction,
is represented by the solid curve. The filled circles are the
MC data of Ref. [24]. The ratio ρ̃/ρ̃0, which is trivially equal
to 1 in the leading SC order, is presented in the inset of the
figure; we see that the first correction improves substantially
the agreement with MC data. A similar conclusion is reached
in the case where one plate is uncharged (ζ = 0) (see Fig. 10):
for the highest coupling investigated numerically in Ref. [24]
(� = 86), the agreement between the WSC approach and
Monte Carlo data for the density profile is excellent, and subtle
deviations from the leading order term ρ0 are fully captured.
It can be seen in the inset of Fig. 10 that the agreement is no
longer quantitative when the coupling parameter is decreased

0 0.5 1 1.5 2 2.5

z
~

0.95

1

1.05

1.1

ρ∼  / 
ρ∼ 0

MC
VSC 0 ( = WSC 0)
WSC 1

0 0.5 1 1.5 2 2.5
z
~

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

ρ∼  / 
ρ∼ 0

Ξ = 86

Ξ = 8.6

FIG. 10. Same as in the inset of Fig. 9 for ζ = 0, and two different
values of the coupling parameter �. The two plates are located at
z̃ = 0 and z̃ = 2.68. Here ζ = 0 means that the plate at z̃ = 2.68 is
uncharged. The symbols are for the Monte Carlo data of Ref. [24].

by a factor of 10. As may have been anticipated, the density
profile close to the highly charged plate located at z̃ = 0 is well
accounted for by our treatment, while the agreement with MC
deteriorates when approaching the uncharged plate located at
z̃ = d̃ . We may anticipate that the WSC approach would fare
better against Monte Carlo at smaller interplate separations.

Either of the contact-value relations (68) implies the same
pressure:

P̃ = P̃0 + 1√
�

P̃1 + O

(
1

�

)
, (88)

where

P̃0 = −1

2
(1 + ζ 2) + 1

2
(1 − ζ 2) coth

(
1 − ζ

2
d̃

)
(89)

is the leading SC contribution, already obtained within the
VSC method in [24], and

P̃1 = 33/4(1 + ζ )5/2C3

4(4π )3/2

d̃

sinh2
( 1−ζ

2 d̃
)

×
[(

1 − ζ

2
d̃

)
coth

(
1 − ζ

2
d̃

)
− 1

]
(90)

is the coefficient of the first 1/
√

� correction.
While the first correction to the pressure P̃1 vanishes in

both limits d̃ → 0 and d̃ → ∞, P̃0 is in general nonzero and
therefore dominates in these asymptotic regions. Let us first
consider the large-d̃ limit:

lim
d̃→∞

P̃ = lim
d̃→∞

P̃0 = −ζ 2. (91)

Such a result is correct for oppositely charged plates −1 <

ζ � 0. In that case indeed, for sufficiently distant plates,
all counterions stay in the neighborhood of plate 1 and
compensate partially its surface charge that is reduced from
the bare value σ1e to |σ2|e. We are left with a capacitor of
opposite surface charges ±σ2e whose dimensionless pressure
is attractive and just equal to −ζ 2. In other words, again for
large distances, the negative counterions are expelled from
the vicinity of the negatively charged plate 2, with a resulting
vanishing charge density ρ̃(d̃). From the contact theorem, this
implies that the pressure reads P̃ = −ζ 2. Hence, the leading
SC order (common to VSC and WSC), a priori valid at short
distances, yields the correct result at large distances also. This
points to the adequacy of the WSC result (88)–(90) in the
whole range of d̃ values for oppositely charged plates, which is
consistent with our previous analysis about the simple nature
of the ground state (independent on the interplate distance,
at variance with the ζ > 0 case). In addition, we emphasize
that the effect of the first correction coefficient (90) is very
weak. This fact is documented in Fig. 11: Each solid curve
with a fixed asymmetry parameter ζ < 0 represents a phase
boundary between the anomalous repulsion of oppositely
charged plates at small distances and their “natural” attraction
at large distances. At � → ∞, using the condition P̃0 = 0 in
(89) implies the phase boundary at [24]

d̃∗ = −2
ln |ζ |
1 − ζ

, � → ∞ (−1 < ζ < 1). (92)
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FIG. 11. Oppositely charged plates: The phase boundary where
P̃ = 0, which discriminates the attractive regime (at large distances)
from the repulsive one (at small distances). The MC data for ζ = −0.5
(filled squares) come from Ref. [24].

Considering also the first correction (90) in (88) we see in
Fig. 11 that the phase boundary P̃ = 0 is almost independent
of �, except for very small negative values of ζ . Consequently,
the first correction to the leading SC behavior is generically
negligible for oppositely charged plates.

On the other hand, the asymptotic result (91) is apparently
physically irrelevant for like-charged plates (0 < ζ � 1). For
sufficiently large distances d, the counterions stay in the
neighborhood of both plates 1 and 2 and a priori neutralize
their surface charges, so that the asymptotic pressure should
vanish. Therefore, for ζ > 0, we cannot expect the same bonus
as for ζ < 0, and our WSC results (88)–(90) hold provided that
d̃ 	 √

� as was already the case for ζ = 1. In addition, the
small-d̃ expansion of the pressure reads

P̃ = −1 + ζ 2

2
+ 1 + ζ

d̃
+

[
(1 − ζ )2(1 + ζ )

12

+ 1

3θ (ζ )
+ O

(
1

�

)]
d̃ + O(d̃2), (93)

where

θ (ζ ) = (4π )3/2

33/4

1

C3

4

(1 + ζ )5/2

√
�. (94)

As it should, this is the generalization of the special ζ = 1
result (78) to all positive asymmetries.

The plot of the rescaled pressure versus the plate distance
for likely charged plates with the asymmetry parameter ζ =
0.5 is presented in Fig. 12. The dashed curve corresponds
to the leading term of the VSC theory, which is equivalent
to the leading WSC one (89). The small-d̃ expansion of
the WSC pressure (93) is represented by solid curves.
The comparison with filled symbols of the MC data [24]
shows a good agreement for the coupling constants � =
86 (squares), � = 8.6 (diamonds), and even for relatively
small � = 0.32 (circles in the inset). The agreement goes
somewhat beyond the expected distance range of the validity
of the expansion (93), but is restricted to the small d̃

range.
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FIG. 12. Rescaled pressure vs the plate distance for likely charged
plates with the asymmetry parameter ζ = 0.5: The dashed curve
corresponds to the leading term of the VSC theory, which is equivalent
to the WSC one (89). The small-d̃ expansion of the WSC pressure
(93) is represented by solid curves. Filled symbols represent the MC
data [24] for the couplings � = 86 (squares), � = 8.6 (diamonds),
and � = 0.32 (circles in the inset). In the inset, which is a zoom on
the small distance region, the mean-field Poisson-Boltzmann (PB)
prediction is also displayed.

The phase diagram for ζ = 0.5 is pictured in Fig. 13. The
phase boundary given by the leading � → ∞ order of the VSC
method [24] is represented by the dashed line. As repeatedly
emphasized above, it corresponds to the leading WSC order as
well. The phase boundary following from our leading plus first
correction WSC result (93) and (94) is represented by the solid
curve; the agreement with MC data of Ref. [24] (filled squares)
is very good. The phase boundaries for like-charged plates with
various values of the asymmetry parameter ζ , following from
our WSC result (93) and (94), are drawn in the (�,d̃) plane in

0 50 100 150 200
Ξ

0

10

d~

leading VSC = leading WSC
WSC (first correction)
Monte Carlo

ζ = 0.5

repulsion

attraction

FIG. 13. Phase diagram for like-charged plates with asymmetry
parameter ζ = 0.5. The phase boundary given by the leading VSC
and WSC order [24] is represented by the dashed line. The phase
boundary following from our WSC result (93) and (94) is represented
by the solid curve; for comparison, the filled squares are MC data from
Ref. [24].
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FIG. 14. The WSC phase boundaries for like-charged plates, in
the (�,d̃) plane and for various values of the asymmetry parameter ζ .

Fig. 14. It is seen that by decreasing ζ the anomalous attraction
region becomes smaller.

The WSC phase boundaries for like-charged plates, in the
(ζ,d̃) plane and for various values of the coupling constant
�, are drawn in Fig. 15. For small values of the asymmetry
parameter ζ , for example, below ζ ∼ 0.29 for � = 103, we
see that the attractive “pocket” disappears. This phenomenon is
entirely driven by the first correction, as in revealed by Fig. 16,
which further shows the phase diagram in the whole range of
the asymmetry parameter ζ for the coupling constant � = 103.
For comparison, the phase boundaries between the repulsion
and attractive regions in the leading SC order, given by (92),
are pictured by dashed curves. With the corresponding leading
contribution to the pressure, the attractive region always
exists.

IV. CONCLUSION

In this paper we have established the mathematical grounds
for the Wigner strong coupling (WSC) theory which de-
scribes the strong-coupling regime of counterions at charged
interfaces, starting from the Wigner structure formed at zero
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Ξ = 50

attraction

repulsion

FIG. 15. The WSC phase boundaries for like-charged plates, in
the (ζ,d̃) plane and for various values of the coupling constant �.
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Ξ = 103

FIG. 16. The WSC phase diagram (solid curves) in the whole
range of the asymmetry parameter ζ for the coupling constant
� = 103. For comparison, the phase diagram in the leading SC order
(92) is represented by dashed curves; for oppositely charged plates
−1 < ζ � 0, the difference between the solid and dashed curves
is invisible, due to the already pointed out smallness of the first
correction for ζ < 0.

temperature. The results for both likely and oppositely charged
plates are in excellent agreement with Monte Carlo data, which
represents an improvement over the previously proposed virial
SC approach. By construction, our expansion should be more
reliable the larger the coupling parameter �, but we found that
it remains trustworthy for intermediate values of the coupling
constant (say � = 100), and in some cases down to � = 10
or 20.

The geometries studied are those of one or two planar
interfaces. An important remark is that the leading results
in the SC expansion follow from a single counterion picture
because the dominant (linear) electric potential stems from
the plate only; the contribution due to the interaction with
other counterions on the same plate is harmonic and therefore
subdominant. As a consequence, the leading terms of the VSC
and WSC theories coincide. This fact has been outlined on
several occasions, but can nevertheless not be considered as a
general statement. Indeed, the situation changes for a curved
(say, cylindrical or spherical) wall surfaces since then the
interactions of an ion with other counterions contribute to the
dominant field, no matter how close to the interface this ion
can be. This is why the leading ion profile around a charged
cylinder or sphere will in general differ from that obtained
within the original VSC approach [27]. Inclusion of curvature
effects in the WSC treatment is a task for the future. In the
present work we have also assumed that the charges on
the plates are uniformly smeared, which opens the way to
the powerful use of the contact theorem to obtain the pressure.
As a consequence, the interesting case of discrete fixed charges
on the plates [45–48] is beyond the scope of the present
analysis.

A generalization of the formalism to quantum statistical
systems of counterions is straightforward: Vibrations of
counterions around their Wigner-lattice positions possess
energy spectrum of quantized harmonic oscillators. Another
perspective is to formulate a strong-coupling theory valid for
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an arbitrary distance between the plates. Indeed, both the
original virial SC and the present Wigner SC theories are
so far limited, in the two-plate case, to the regime d̃ 	 �1/2,
which means that the interplate distance should be smaller
than the lattice spacing a in the underlying Wigner crystal (up
to an irrelevant prefactor, the quantities a and b introduced
in this article refer to the same length). It is important to
emphasize here that the limitation d̃ 	 �1/2 is not intrinsic to
the strong coupling limit, but is a technical requirement that
should be enforced to allow for the validity of the single particle
picture, and subsequent higher order corrections as worked out
here. Performing the SC expansion for distances d̃ � �1/2

requires to bypass the single particle picture, which is a

challenging goal. Finally, in view of possible applications to
real colloidal systems, it seems important to account for the low
dielectric constant of colloidal particles, taking due account of
image charge effects [25,49]. Work along these lines is in
progress.
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