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Screening like charges in one-dimensional Coulomb systems: Exact results
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The possibility that like charges can attract each other under the mediation of mobile counterions is by now well
documented experimentally, numerically, and analytically. Yet, obtaining exact results is in general impossible, or
restricted to some limiting cases. We work out here in detail a one-dimensional model that retains the essence of
the phenomena present in higher-dimensional systems. The partition function is obtained explicitly, from which
a wealth of relevant quantities follow, such as the effective force between the charges or the counterion profile in
their vicinity. Isobaric and canonical ensembles are distinguished. The case of two equal charges screened by an
arbitrary number N of counterions is first studied, before the more general asymmetric situation is addressed. It
is shown that the parity of N plays a key role in the long-range physics.

DOI: 10.1103/PhysRevE.92.042134 PACS number(s): 05.20.Jj, 05.70.Ce, 82.70.Dd

I. INTRODUCTION

Coulombic effects are often paramount in soft-matter
systems, where the large dielectric constant of the solvent
(say water) invites ionizable groups at the surface of macro-
molecules to dissociate [1–3]. While a realistic treatment
requires considering three-dimensional systems, interesting
progress has been achieved for lower-dimensional problems
where the key mechanisms can be studied in greater analytical
detail [4–6]. In particular, a one-dimensional model was
introduced in the 1960s by Lenard and Prager independently,
for which a complete thermodynamic solution was provided
[7–9]. This model has been further studied in Ref. [10], but it
turns out that some interesting features have been overlooked
in relation with the like-charge attraction phenomenon [2,11].
This striking non-mean-field effect, relevant for strongly
coupled charged matter [11,12], is the theme of our study.

The paper is organized as follows. The model is first defined
in Sec. II. It mimics the screening of charged colloids. The
Coulomb potential in one dimension between two charges q

and q ′ located along a line with coordinates x̃ and x̃ ′ is

v(̃x,̃x ′) = −qq ′ |̃x − x̃ ′|. (1)

Therefore, the electric field created by one particle is of
constant magnitude. This fact simplifies the study of the
equilibrium statistical mechanics of such systems, and allows
us to obtain some of its properties by simple arguments.
Furthermore, it also allows for an explicit computation of
the partition function [7,8]. The system under scrutiny can
be envisioned as a collection of parallel charged plates, able to
move along a perpendicular axis. The salient properties of this
system can be obtained by simple arguments, which we present
in Sec. II, followed by a more technical analysis where the
explicit calculation of the partition function is performed, first
in the isobaric and then in the canonical ensemble. After having
presented the symmetric case, Sec. III will generalize the
investigation to the situations where the two screened charges
are different. Noteworthy is that parity of the particle number
considerations will play an important role in the remainder.

II. SCREENING OF TWO EQUAL CHARGES BY
COUNTERIONS ONLY

Consider two charges q along a line located at x̃ = 0 and
x̃ = L̃. Between the charges there are N counterions of charge
e = −2q/N between them. Consider the equilibrium thermal
properties of this system at a temperature T , and as usual define
β = 1/(kBT ) with kB the Boltzmann constant. This simple
model mimics the screening and effective interaction between
two charged colloids in a counterion solution, without added
salt. In one dimension, βe2 has dimensions of inverse length,
therefore it is convenient to use rescaled units in which all
distances are measured in units of 1/(βe2): x = βe2x̃. It is also
convenient to work with a dimensionless pressure P = P̃ /e2

where P̃ is the pressure (equal to the force, in one-dimensional
systems).

The potential energy (dimensionless, measured in units of
kBT ) of the system is

U = −
∑

1�i<j�N

|xi − xj | +
(

N

2

)2

L. (2)

Before presenting the technical analysis, we start by simple
and more quantitative considerations.

A. Possibility of attraction between like charges

1. Heuristic argument

The possibility of attraction between the two +q charges
at 0 and L is related to the parity of N . If N is odd, N =
2p + 1, then p counterions will form a double layer around
each charge q. This will form two compound objects with
charge q(1 − 2p/N ) = q/N , each one located around 0 and
L. There will be in addition one counterion between these two
objects, which is essentially free, as the electric field created
by the charges located on each side around 0 and L cancel each
other. When L is large enough, consider Fig. 1. The right side
of the system composed of one-charge q and p counterions has
charge q/N . The left side, which, for the sake of the argument,
has the free counterion plus the compound charge, exhibits a
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FIG. 1. (Color online) An odd number of mobile counterions
screening two like charges. The N mobile ions (counterions) have
charge −2q/N and the confining objects have charge q, so that the
whole system is electroneutral. Here, N = 2p + 1 is odd, so that
a single ion (referred to as the misfit since the net electric force
acting on it vanishes) floats in between the two screened boundaries,
which attract, each, p ions in their vicinity (see also Fig. 4). This
single free counterion provides the binding mechanism responsible
for long-range attraction. In the canonical treatment, L is held fixed,
while in the isobaric situation, it is a fluctuating quantity.

total charge −q/N . Thus the force exerted by the left side on
the right side is P̃ → −q2/N2 = −e2/4, an attractive force.
Thus one expects that P → −1/4, for L → ∞.

On the other hand, if N is even, there will not be a free
counterion between the layers, which will be completely
neutral, thus one expects that P → 0+ when L → ∞, as
shown in Fig. 2.

2. Beyond heuristics

The previous intuition, providing a large distance attraction
for odd N , can be substantiated by a simple calculation.
Use will be made here of the contact theorem [10,13–16],
an exact relation between the force exerted on the charge q,
and the ionic density at contact (stemming from the mobile
charges −2q/N ). Such a relation is particularly useful for
discussing the like-charge attraction phenomenon [12,17,18].
The argument allowing us to get the contact density is twofold,
and goes as follows.

First, we argue that at large L, the p counterions that are
closest to each boundary remain in their vicinity, while the
middle free counterion (the misfit in Figs. 1 and 4), which
does not experience any electric field by symmetry, tends
to be unbounded and no longer contributes to the pressure
(discarding 1/L terms). In a second step, we thus compute the
contact density in a system of an isolated charge +q, with a
double layer of p ions in the vicinity (the total charge of this
composite object, shown on the right-hand side of Fig. 1 is
q/N ). The solution to this problem is not immediate, but can

FIG. 2. (Color online) An even number of counterions screening
two like charges (N = 2p). At large distance, the two double layers
(made up of an ion q and p counterions) decouple since they are
neutral. No misfit ion is present to mediate attraction, and the pressure
is repulsive at all distances.

FIG. 3. (Color online) Upon regrouping the p + 1 leftmost coun-
terions in Fig. 1, one obtains an ion with charge −q − q/N . This
newly defined system has the same large distance pressure as that of
Fig. 1.

be found by a convenient mapping onto a more convenient
problem, shown in Fig. 3. As illustrated in the figure, we
regroup the p + 1 leftmost counterions in a single ion, having
charge −q(1 + 1/N). At large distances, this regroupment
does not influence the distribution of counterions around
the rightmost ion +q, and thus leaves the large L pressure
unaffected. The next important argument is that the pressure
can be equivalently computed from the contact density at
the rightmost, or leftmost charge +q. It is thus simpler
to perform the calculation in the newly defined regrouped
system (left-hand side of Fig. 3). The regrouped ion with
charge −q(1 + 1/N ) is in the electric field of the charge q

on its left, and of the composite system on its right having
charge q/N . This amounts to a field q(1 − 1/N). Hence,
the electric potential energy reads q2(1 − 1/N )x̃(1 + 1/N ).
The corresponding Boltzmann weight gives the density of the
regrouped ion

ρ(x̃) = βq2

(
1 − 1

N2

)
exp

[
−βq2x̃

(
1 − 1

N2

)]
, (3)

where due account was taken of normalization (
∫

ρ dx̃ = 1).
The contact density ρ(0) = βq2(1 − 1/N2) finally yields the
pressure through the contact theorem βP̃ = ρ(0) − βq2. We
get here P̃ = −q2/N2 (or equivalently P = −1/4), a result,
which by construction holds in the large L limit. The reason
for a nonvanishing pressure at large distance is that the p

counterions cannot exactly screen the charge of an ion q. It
is no longer the case when N is even, in which case P → 0
for L → ∞. The present results will be fully corroborated by
direct partition function calculations.

3. Correction to large distance asymptotics and crossover pressure

Returning to the case when N = 2p + 1 is odd, we can
also estimate the first correction to the pressure for large L.
Consider that L is fixed (canonical ensemble) and large. Since
the system is somehow equivalent to two double layers with a
free counterion in between, this counterion will contribute to
the pressure (denoted as Pc in the canonical, fixed-L ensemble)
with a correction 1/L. This estimate can be made more

FIG. 4. (Color online) An odd number of counterions screening
two like charges. The free misfit ion is singled out.
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quantitative. The available space for the free counterion is not
L, but it is rather L minus the space occupied by the diffuse
counterion layers, given by 〈xp〉∞ the thermal average position
of the pth counterion if they have been ordered x1 < x2 <

· · · < xp < xp+1 < · · · < x2p+1, in the limit L → ∞. Thus

Pc = −1

4
+ 1

L − 2〈xp〉∞ + o

(
1

L

)
. (4)

This is illustrated in Fig. 4. In the following section, we
evaluate explicitly 〈xp〉∞ and find

〈xp〉∞ = p

p + 1
= N − 1

N + 1
. (5)

Then, for large L, we expect

Pc = −1

4
+ 1

L − 2 N−1
N+1

+ o

(
1

L

)
. (6)

In the other limiting case L → 0, the result is [10] Pc =
N/L, that can be understood as all the N counterions are
squeezed in a small distance L. Thus we see that the pressure
is positive (repulsive force) for small separations L → 0 then
changes to negative pressure (attractive force) for large L.

We will show in the following section that the o(1/L)
corrections in (6) are actually exponentially small, in the
canonical ensemble, therefore equation (6) gives a fairly good
approximation for the pressure for a large set of values of the
separation L. From this, one can estimate the distance L∗, at
which the effective force between the two charges becomes
attractive

L∗ � 4 + 2〈xp〉∞ = 4 + 2
N − 1

N + 1
. (7)

Figure 5 shows pressure Pc as a function of L, for N = 25 and
for N = 26 particles. For N = 25 (odd) the pressure changes
its sign at L∗ = 4 + 2 ∗ 24/26 � 5.85, while for N = 26 the
pressure is always positive.

Summarizing, in the case of odd N , the possibility of having
an effective attraction for large separations L is due to the
sharing of the free ion, which leads to the creation of opposite
charged objects (ions q plus their counterion clouds). Although
the analytical results presented here are valid only for this
one-dimensional model, the same physical mechanism has
also been observed in three-dimensional systems [19,20]. It

4 6 8 10 12 L
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FIG. 5. The (canonical) pressure Pc as a function of the separation
L, for N = 25 (continuous bottom line) and N = 26 (dashed top line).
For N odd the pressure becomes negative at large distances.

can also be surmised that in situation of odd N where the
free counterion has a varying charge, attraction will be all
the stronger as the charge will increase in absolute value. In
addition, the very mechanism brought to the fore here indicates
that at mean-field level, where the discrete nature of ions is
discarded, attraction should be suppressed, which indeed is
the case [21–23].

B. Explicit exact calculation of the partition function

1. Preliminary observations

The equilibrium thermodynamics of the one-dimensional
two-component Coulomb gas was solved simultaneously but
independently by Lenard [7] and Prager [8]. In the present
model, only one type of identical particles (the counterions)
are present. It is convenient to order the particles as 0 � x1 �
· · · � xN � L. Then, rearranging the terms in (2), the potential
energy of the system can be written as

U = N2L

4
− 2

p−1∑
j=0

(p − j )(x2p+1−j − x1+j )

(8)
for N = 2p + 1 odd,

and

U = N2L

4
−

p−1∑
j=0

(2p − 2j − 1)(x2p−j − x1+j )

(9)
for N = 2p even.

Notice that in the case N = 2p + 1, the particle with position
xp+1 does not appear in the potential energy. It is the free
counterion (misfit) discussed in the previous section, whose
role is crucial for the possibility of like-charge attraction.

The canonical configuration integral is

Zc(N,L) =
∫ L

0
dxN

∫ xN

0
dxN−1 · · ·

∫ x3

0
dx2

∫ x2

0
dx1 e−U .

(10)
As mentioned by Lenard in his seminal paper [7] “the
(configuration) integral is elementary (because) the class of
functions consisting of exponential of linear functions is closed
under the operation of indefinite integral (...) however the task
of evaluating (it) is not trivial.” For small N one can compute
by hand Zc, and for larger given values of N it can be obtained
numerically with the aid of a computer algebra system software
program. By inspection of the integral (10), one can deduce
that Zc is a linear combination of products of exponentials of L

and linear functions of L. One can also deduce the argument of
each exponential function of L by keeping track of the factor
that multiplies each xk in the integral (10). These come from
the explicit term in U (for instance, for xj+1 it is 2(p − j )
in the case N odd), but after each successive integration, the
factor of xk will be added to the one of xk+1 due to the upper
limit of integration. Taking that into account, one realizes that
the exponentials of L in Zc are of the form exp[−(j + 1

2 )2L]
in the case N odd, and exp(−j 2L) in the case N even. Thus,
the configuration canonical integral is expected to be of the
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form

Zc(N,L) =
p∑

j=0

e−(j+ 1
2 )2L(AjL + Bj ) for N = 2p + 1 odd,

(11)
and

Zc(N,L) =
p∑

j=0

e−j 2L(CjL + Dj ) for N = 2p even. (12)

The nontrivial task is to evaluate explicitly the coefficients Aj ,
Bj , Cj , and Dj . This is done in Sec. II B 5.

2. Previous results

In Ref. [10], the present system was studied, but an exact
analytical explicit evaluation of the partition function for
an arbitrary number of particles was not achieved. Rather,
an interesting reformulation of this model was proposed by
mapping it into a quantum mechanical problem, following
a technique put forward by Edwards and Lenard [9]. It was
shown in Ref. [10] that the configuration integral is given by

Zc(N,L) = b(N/2,N/2,L), (13)

where b(n,N/2,x) is the solution of a set of N coupled
elementary linear differential equations

db(n,N/2,x)

dx
= −(n2/2) b(n,N/2,x) + b(n − 1,N/2,x)

(14)
with the initial condition b(n,N/2,0) = δn,−N/2. Integrating
this equation one has

b(n,N/2,xn) =
∫ xn

0
e−(n2/2)(xn−xn−1)b(n − 1,N/2,xn−1)

× dxn−1. (15)

Then, starting from the known b(−N/2,N/2,x1) one
has to perform successively N integrals (15) to obtain
b(N/2,N/2,L) and the configuration integral. This task is
equivalent to performing directly the N integrals of the
configuration integral (10). Thus, unfortunately, the method
proposed in Ref. [10] does not provide any computational
advantage over a direct numerical evaluation of the partition
function.

Here, our goal is to obtain an explicit analytical expression
for the configuration integral for an arbitrary number of
particles N . Using Lenard [7] and Prager [8] method, we will
first compute the partition function of the constant pressure
ensemble

ZP (N,P ) =
∫ ∞

0
e−PLZc(N,L) dL, (16)

which is the Laplace transform of the canonical configuration
integral Zc. This is a straightforward application of the
technique of Lenard and Prager, and it is actually much simpler
than the complete work presented in Refs. [7,8], since all
particles are identical and we will not have to deal with the
combinatorial problem of studying the different configurations
of charges.

Then, we shall invert the Laplace transform to obtain the
canonical, constant volume L, configuration integral Zc(N,L).

Since we are interested in finite systems, the results from the
canonical ensemble and the constant pressure ensemble will
differ, and it is of interest to compare them.

3. Evaluation of the diffuse layer size 〈xp〉∞

To introduce the technique used to compute the partition
function, we undertake in this section a preliminary, simpler
task, based on the same technique: the exact evaluation of
the diffuse layer size 〈xp〉∞. This quantity appeared in the
discussion of Sec. II A. Consider here that L → ∞ and N =
2p + 1. The double layer composed by the charge q at L and its
corresponding p counterions are thereby sent to infinity. The
remaining p + 1 counterions, however, still feel the electric
field created by this far charged double layer. The potential
energy part, which depends on the position of the remaining
counterions is

U∞ = 2
p−1∑
j=0

(p − j )x1+j . (17)

We wish to evaluate

〈xp〉∞ =
∫

0<x1<x2<···<xp
xp e−U∞

∏p

k=1 dxk∫
0<x1<x2<···<xp

e−U∞
∏p

k=1 dxk

. (18)

Let

F (s) =
∫

0<x1<x2<···<xp

e−U∞−sxp/2 dx1 . . . dxp. (19)

Then 〈xp〉∞ = −2 d ln F (s)/ds|s=0. Following Lenard [7] and
Prager [8] it is convenient to rewrite the potential energy as

U∞ = 1

2

[ p∑
j=1

((p − j + 1)2 + (p − j + 2)2)

× (xj − xj−1) − xp

]
(20)

with the convention that x0 = 0. Let us define

fj (x) = e−[(p−j+1)2+(p−j+2)2]x/2 H (x), (21)

where H (x) is the Heaviside step function. Then

F (s) =
∫ ∞

0
dx1 · · ·

∫ ∞

0
dxp

p∏
j=1

fj (xj − xj−1) e−(s−1)xp/2.

(22)
We notice that F (s) is the Laplace transform [evaluated at (s −
1)/2] of the p-fold convolution product f1 ∗ f2 ∗ · · · ∗ fp. The
Laplace transform Lfj of fj is elementary

Lfj

(
s − 1

2

)
= 2

(p − j + 1)2 + (p − j + 2)2 + s − 1

= 2

2(p − j + 1)(p − j + 2) + s
. (23)

Then

F (s) =
p∏

j=1

2

2(p − j + 1)(p − j + 2) + s

=
p∏

k=1

2

2k(k + 1) + s
. (24)
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Computing the derivative of ln F (s) we obtain

〈xp〉∞ = −2
d ln F (s)

ds

∣∣∣∣
s=0

=
p∑

j=1

1

(p − j + 1)(p − j + 2)

=
p∑

k=1

1

k(k + 1)
=

p∑
k=1

(
1

k
− 1

k + 1

)

=
(

1 − 1

p + 1

)
= p

p + 1
. (25)

Thus proving (5).

4. Isobaric ensemble

Consider now the finite system with L < ∞. We will detail
the calculations in the case N = 2p + 1 odd, the case N even
can be obtained by a simple adaptation of the same technique.
As it was done in the previous section, it is convenient to
rewrite the potential energy (8) as

U = −L

4
+ 1

2

p+1∑
j=1

[(p − j + 1)2 + (p − j + 2)2]

× (x2p−j+3 − x2p−j+2 + xj − xj−1
)
, (26)

where, by convention, we defined x0 = 0 and x2p+2 = L. With
fj defined in (21), we notice again that the canonical partition
function is a convolution product of 2p + 2 functions fj

Zc(2p + 1,L) = eL/4
(

p+1

j=1
∗ fj ∗ fj

)
(L). (27)

The isobaric partition function ZP is the Laplace transform of
Zc, and we have

ZP (2p + 1,P ) =
p+1∏
j=1

[
Lfj

(
P − 1

4

)]2

=
p∏

k=0

4

[2k(k + 1) + s]2

=
p∏

k=0

1[(
k + 1

2

)2 + P
]2 , (28)

where s = (4P + 1)/2. Factoring (k + 1
2 )

2 + P = (k + 1
2 −

i
√

P )(k + 1
2 + i

√
P ) = |k + 1

2 + i
√

P |2, the above product

can be expressed in terms of gamma functions

ZP (2p + 1,P ) =
(

1

P + 1
4

)2∣∣∣∣∣ �
(

3
2 + i

√
P
)

�
(
p + 3

2 + i
√

P
) ∣∣∣∣∣

4

. (29)

The average length of the system is given by the usual
thermodynamic relation

〈L〉 = −∂ ln ZP

∂P
= 2

P + 1
4

+
p∑

k=1

2(
k + 1

2

)2 + P
(30)

= 2

P+ 1
4

+ 2√
P


m

[
ψ

(
p + 3

2
+ i

√
P

)
−ψ

(
3

2
+ i

√
P

)]
, (31)

where ψ(z) = d ln �(z)/dz is the digamma function. We can
notice that this expression has a pole for P = −1/4, from
which we obtain the behavior when 〈L〉 → ∞, P → −1/4,
in agreement with the general discussion of Sec. II A. When
N is even this pole is absent (see below).

If N = 2p is even, similar calculations lead to

Zc(2p,L) = eL/4fp+ 3
2
∗
(

p

j=1
∗ fj+ 1

2
∗ fj+ 1

2

)
(L) (32)

and

ZP (2p,P ) = 1

P

p∏
k=1

1

(k2 + P )2
= 1

P

∣∣∣∣∣ �(1 + i
√

P )

�(p + 1 + i
√

P )

∣∣∣∣∣
4

.

(33)

Notice an important difference in the analytic structure of the
partition function in the case N odd (27)–(28) and N even
(32)–(33): for N even, there is a single function fp+3/2 in the
convolution product, leading to a pole of order one for P = 0,
in contrast to the case N odd, where the functions fp+1 appear
twice in the convolution product and the pole for the smallest
value of |P | is of order two and it is for P = −1/4, rather than
P = 0. In the case N even, the term fp+1 ∗ fp+1 corresponds
to the coupling of the left diffuse layer with the free counterion
and the coupling of this same free counterion with the right
diffuse layer. On the other hand in the case N odd, the term
fp+3/2 corresponds to the direct coupling of the left and right
diffuse layers.

The average length, for N = 2p even, is

〈L〉 = 1

P
+

p∑
k=1

2

k2 + P
. (34)

We note that 〈L〉 → ∞ when P → 0+, in contrast to what
happens when N is odd, where 〈L〉 → ∞ when P → −1/4.

5. Canonical ensemble

We return to the case N = 2p + 1 odd. To compute the canonical partition function, we need to invert the Laplace transform
computed in the previous section

Zc(2p + 1,L) = L−1

(
p∏

k=0

1[(
k + 1

2

)2 + P
]2
)

(L). (35)
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This rather technical part of the analysis is presented in Appendix A, where it is shown that

Zc(2p + 1,L) =
p∑

j=0

[
2j + 1

(p − j )!(p + j + 1)!

]2

e−(j+ 1
2 )2L

⎡⎣L + 2

2j + 1

⎛⎝ p+j+1∑
k=p−j+1

1

k
− 1

2j + 1

⎞⎠⎤⎦. (36)

From this expression, we obtain the canonical pressure Pc = d ln Zc

dL
,

Pc = −
∑p

j=0
4(j+ 1

2 )4

[(p−j )!(p+j+1)!]2

[
L + 2

2j+1

(∑p+j+1
k=p−j+1

1
k

− 3
2j+1

)]
e−(j+ 1

2 )2L∑p

j=0

[ 2j+1
(p−j )!(p+j+1)!

]2[
L + 2

2j+1

(∑p+j+1
k=p−j+1

1
k

− 1
2j+1

)]
e−(j+ 1

2 )2L
. (37)

For N = 2p even, the results are

Zc(2p,L) = 1

(p!)4
−

p∑
j=1

(2j )2e−j 2L

[(p + j )!(p − j )!]2

⎡⎣L + 1

j

⎛⎝ p+j∑
k=p−j+1

1

k
− 1

2j

⎞⎠⎤⎦, (38)

and

Pc =
∑p

j=1
4j 4e−j2L

[(p+j )!(p−j )!]2

[
L + 1

j

(∑p+j

k=p−j+1
1
k

− 3
2j

)]
1

(p!)4 −∑p

j=1
(2j )2e−j2L

[(p+j )!(p−j )!]2

[
L + 1

j

(∑p+j

k=p−j+1
1
k

− 1
2j

)] . (39)

6. Limiting cases and comparison between the ensembles

With the exact expressions obtained above, we can prove
rigorously the limiting behavior of the pressure when L → ∞
and L → 0 discussed in Sec. II A.

Let us consider first the case N = 2p + 1 odd. In the
canonical ensemble, the behavior of the pressure Pc when
L → ∞, is obtained from the term j = 0 of (36), confirming
the prediction (6) of Sec. II A. Furthermore, we realize that the
next to next to leading order correction is exponentially small

Pc = −1

4
+ 1

L − 2 p

p+1

− 2

(
3p

p + 2

)2

e−2L[1 + O(L−1)]

+O(e−6L). (40)

In contrast, when N = 2p, the pressure tends to 0 exponen-
tially fast when L → ∞

Pc = 4p2e−L

(p + 1)2

(
L + 2p + 1

p(p + 1)
− 3

2

)
+ O(e−2L). (41)

The behavior of the pressure is different in the isobaric
ensemble. Consider again first the case N = 2p + 1. From
(30), we already know that when P = −1/4, 〈L〉 → ∞.
Denoting s = (4P + 1)/2, one can expand (30) for small s

and invert the relation to obtain P as a function of 〈L〉 when
〈L〉 → ∞. For instance, to order O(s), Eq. (30) is

〈L〉 = 4

s
+ 2p

p + 1
− sS(p) + o(s), (42)

where

S(p) =
p∑

k=1

1

[k(k + 1)]2
= 2H(2)

p − p(3p + 4)

(p + 1)2
, (43)

with H(r)
p =∑p

k=1 k−r the harmonic numbers. Inverting that
relation, up to order O(〈L〉−3), gives

P = −1

4
+ 2

〈L〉 − 2 p

p+1

− 8S(p)(〈L〉 − 2 p

p+1

)3
+o

⎛⎝ 1(〈L〉 − 2 p

p+1

)3
⎞⎠. (44)

Notice a factor 2 of difference in the next to leading order
correction [the O(〈L〉−1) term] in the pressure in the isobaric
ensemble and the canonical ensemble. Furthermore, in the
isobaric ensemble the next to next to leading order corrections
are algebraic and not exponential as in the canonical ensemble.

For N = 2p, the behavior of the pressure, in the isobaric
ensemble, when 〈L〉 → ∞, is

P = 1

〈L〉 − 2H(2)
p

− 2H(4)
p[〈L〉 − 2H(2)

p

]3 + O(〈L〉−4). (45)

Notice again the different behavior with respect to the canon-
ical ensemble. Here in the isobaric ensemble, the pressure
vanishes as 1/〈L〉, whereas in the canonical ensemble it
vanishes exponentially fast, as e−L.

Let us study the other limiting behavior of the pressure, for
small separations L. Let us focus on the case N = 2p + 1 first.
It is not completely straightforward to obtain the behavior of
the pressure in the canonical ensemble when L → 0 directly
from expression (37). Rather, it is better to return to (27), and
notice that if L → 0, then the convolution product fj ∗ fj

behaves as

fj ∗ fj (x) = xH (x) + O(x2), (46)

which is independent of j . Then,(
p+1

j=1
∗ fj ∗ fj

)
(x) = x2p+1

(2p + 1)!
+ O(x2p+2) (47)
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and

Zc(2p + 1,L) = LN

N !
+ O(LN+1). (48)

We deduce that the pressure behaves as

Pc ∼ N

L
when L → 0, (49)

a result already noticed in Ref. [10]. Eq. (49) also holds when
N = 2p.

In the isobaric ensemble, when N = 2p + 1, if 〈L〉 → 0,
then, necessarily, s = (4P + 1)/2 → ∞ in (30). Expanding
that equation to order O(s−2), one obtains

P = N + 1

〈L〉 − N (N + 2)

12
+ O(〈L〉) when 〈L〉 → 0. (50)

This result also holds true for N = 2p. Notice again the
difference between the canonical (49) and isobaric ensemble
(50), where the leading term changes from N/L to (N + 1)/L.

When N = 2p + 1 is odd, the pressure changes of sign
when L varies. It is positive for L → 0 and negative for L →
∞. We already obtained an approximation of the value L∗ of
L when this occurs in the canonical ensemble, see (7), up to
exponentially small corrections. In the isobaric ensemble, one
just has to put P = 0 in (30) to obtain the exact value

〈L∗〉 = 8

(
1 +

p∑
k=1

1

(2k + 1)2

)
= π2 − 2ψ ′(p + 3/2). (51)

For this quantity, the predictions from the canonical en-
semble (7) and the isobaric ensemble (51) are again
different.

Figure 6 shows the pressure as a function of the separation,
for N = 15, in the isobaric ensemble and the canonical ensem-
ble. Notice that the pressure from the canonical ensemble is
smaller that the one in the isobaric ensemble for the same
separation. Figure 7 shows the value of L∗ for which the
pressure changes of sign as a function of N , when N is
odd, in both ensembles. Notice again that in the canonical
ensemble, the change of sign of the pressure occurs for
smaller values L∗ of the separation than in the isobaric
ensemble.

5 10 15 20L

0.2

0.0

0.2

0.4

0.6

0.8

1.0
P

canonical Pc
isobaric P

FIG. 6. The pressure P as a function of the separation L, for
N = 15. The top continuous line represents the result from the
isobaric ensemble, and the dotted bottom line those from the canonical
ensemble.

0 10 20 30 40 N

2

4

6

8

10
L

canonical
isobaric

FIG. 7. (Color online) The value of the separation L∗ for which
the pressure vanishes and changes sign as a function of N for N odd.
The (purple) disks represent the results from the isobaric ensemble,
and the (black) squares, their canonical counterpart.

The nonequivalence between the two ensembles studied
here is due to the fact the system is finite (L < ∞). In the
thermodynamic limit only should both ensembles present the
same results.

III. SCREENING OF TWO UNEQUAL CHARGES

In this section we consider a generalization of the previous
model, where the two charges located at x = 0 and at x = L

are q1 and q2, respectively, which can be eventually different.
The overall system should be neutral, therefore q1 + q2 =
−Ne, e being charge of one counterion. It is convenient to
introduce the notation Q1 and Q2 such that q1 = −eQ1 and
q2 = −eQ2. The electroneutrality relation is Q1 + Q2 = N .
The charge asymmetry can be characterized by the quantity
a = Q1 − Q2, which allows to write Q1 = (N + a)/2 and
Q2 = (N − a)/2. The potential energy of the system is
now

U (N,L,Q1,Q2) = −
∑

1�i<j�N

|xi − xj | + a

N∑
i=1

xi + (Q2)2L.

(52)

The overall effect of the charge asymmetry is to introduce a
global electric field proportional to a (the term in

∑
i xi).

A. Isobaric ensemble

Adapting the ideas of Sec. II B 4 to the present case, we can
obtain the isobaric partition function. Once again, the results
differ depending on the parity of the number of counterions
N . For N = 2p + 1 odd,

ZP (2p + 1,P ,Q1,Q2)

=
p∏

k=0

1[(
k + 1−a

2

)2 + P
][(

k + 1+a
2

)2 + P
] , (53)
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while for N = 2p even,

ZP (2p,P,Q1,Q2) = 1(
a
2

)2 + P

p∏
k=1

1[(
k − a

2

)2 + P
][(

k + a
2

)2 + P
] . (54)

The above formulas highlight the difference between the two cases, depending on the parity of N . However, both formulas can
be summarized in a single one as

ZP (N,P,Q1,Q2) =
N∏

	=0

1(
	 − N−|a|

2

)2 + P
=

N∏
l=0

1

(	 − Q<)2 + P
=

∏
y∈{−Q<,−Q<+1,...,Q>−1,Q>}

1

y2 + P
. (55)

where we defined

Q< = N − |a|
2

= min (Q1,Q2) and Q> = N + |a|
2

= max (Q1,Q2). (56)

Taking the derivative of (55) with respect to P , we obtain the relation between the average length 〈L〉 of the system and the
pressure P in the isobaric ensemble

〈L〉 =
N∑

	=0

1

(	 − Q<)2 + P
. (57)

If a 
∈ Z is not an integer (q1 and q2 are not integer multiples of −e/2), or |a| > N (q1 and q2 have opposite signs), then ZP

has simple poles. But when a ∈ Z is an integer and |a| � N , the partition function ZP turns out to have some double poles. This
corresponds to the case when 2Q1 and 2Q2 are both positive integers. In that case it is best to reorder the products in (55) to
make those double poles more apparent. The result depends on the parity of 2Q1 and 2Q2 (both have the same parity). If 2Q1

and 2Q2 are odd, then Q1 and Q2 are half integers: Q1 = �Q1� + 1
2 and Q2 = �Q2� + 1

2 . The notation �x� denotes the floor
function of x (largest integer less or equal than x). The isobaric partition function (55) becomes

ZP (N,P,Q1,Q2) =
�Q<�∏
	=0

1[(
	 + 1

2

)2 + P
]2 �Q>�∏

	=�Q<�+1

1(
	 + 1

2

)2 + P
, (58)

and the corresponding equation of state is

〈L〉 =
�Q<�∑
	=0

2(
	 + 1

2

)2 + P
+

�Q>�∑
	=�Q<�+1

1(
	 + 1

2

)2 + P
. (59)

When Q1 and Q2 are positive integers, these expressions become

ZP (N,P,Q1,Q2) = 1

P

Q<∏
	=1

1

(	2 + P )2

Q>∏
	=Q<+1

1

	2 + P
, (60)

and

〈L〉 = 1

P
+

Q<∑
	=1

2

	2 + P
+

Q>∑
	=Q<+1

1

	2 + P
. (61)

B. Canonical ensemble: Partition function

To compute the canonical partition function, one has to perform the inverse Laplace transform of the expressions obtained in
the preceding section. From the above discussion, it is clear that the results will have a different analytical structure depending
on whether the isobaric partition function has simple or double poles, that is, depending on whether a is an integer or not. If a is
not an integer, or |a| > N , all poles of ZP are simple poles, and we obtain from (55):

Zc(N,L,Q1,Q2) =
N∑

j=0

(−1)j e−(j− N−|a|
2 )2L (2j − N + |a|) �(j − N + |a|)

j ! (N − j )! �(j + |a| + 1)

=
N∑

j=0

(−1)j e−(j−Q<)2L 2(j − Q<) �(j − 2Q<)

j ! (N − j )! �(j + |Q1 − Q2| + 1)
. (62)

This formula is valid whenever 2Q1 and 2Q2 are not integers, or if Q1 and Q2 have opposite signs (Q< < 0 and Q> > 0).
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If a is an integer, with |a| � N , then using (58), we obtain, when Q1 and Q2 are half integers,

Zc(N,L,Q1,Q2) =
�Q<�∑
j=0

(2j + 1)2 e−(j+ 1
2 )2L

(�Q1� + 1 + j )!(�Q1� − j )!(�Q2� + 1 + j )!(�Q2� − j )!

×
[
L − 1

2j + 1

(
ψ(�Q1� − j ) − ψ(�Q1� + 1 + j ) + ψ(�Q2� − j ) − ψ(�Q2� + 1 + j ) + 2

2j + 1

)]

+
�Q>�∑

j=�Q<�+1

e−(j+ 1
2 )2L/4(j − �Q<� − 1)! (2j + 1)(−1)j−�Q<�−1

(�Q<� + 1 + j )!(�Q>� + 1 + j )!(�Q>� − j )!
, (63)

and when Q1 and Q2 are integers,

Zc(N,L,Q1,Q2) =
Q<∑
j=1

−(2j )2 e−j 2L

(Q1 + j )!(Q1 − j )!(Q2 + j )!(Q2 − j )!

×
[
L − 1

2j

(
ψ(Q1 + 1 − j ) − ψ(Q1 + 1 + j ) + ψ(Q2 + 1 − j ) − ψ(Q2 + 1 + j ) + 1

j

)]

+
Q>∑

j=Q<+1

e−j 2L(j − Q< − 1)! (2j )(−1)j−Q<

(Q< + j )!(Q> + j )!(Q> − j )!
+ 1

(Q1!Q2!)2 . (64)

The two previous results (63) and (64) show the different analytical structure of the two cases, which depend on the parity of
2Q1 and 2Q2, in particular the existence of a term independent of L in the case 2Q1 and 2Q2 even, and the form of the argument
of the exponentials e−j 2L (for 2Q1 even), as opposed to e−(j+ 1

2 )2L (for 2Q1 odd). However, both results (63) and (64) can be
subsumed in a single formula as follows. Let us define

Aj (N,L,Q1,Q2) = [2(Q< − j )]2(−1)2Q>+1

(2Q< − j )!j !(N − j )!(|Q1 − Q2| + j )!

×
[
L − ψ(j+1) − ψ(2Q<−j+1) + ψ(j+|Q1−Q2|+1) − ψ(N−j+1) + 1

Q<−j

2(Q< − j )

]
, (65)

for j 
= Q<, and, when Q< is an integer, define

AQ<
(N,L,Q1,Q2) = 1

(Q1!Q2!)2 . (66)

Also, let

Dj (N,Q1,Q2) = j ! 2(j + Q< + 1)(−1)j+2Q>+1

(2Q< + j + 1)!(N + j + 1)!(|Q1 − Q2| − j − 1)!
. (67)

Then, both results (63) and (64) are equivalent to

Zc(N,L,Q1,Q2) =
�Q<�∑
j=0

Aj (N,L,a) e−(Q<−j )2L +
|Q1−Q2|−1∑

j=0

Dj (N,a) e−(j+Q<+1)2L. (68)

C. Canonical ensemble: Asymptotic behavior of the pressure

For small separations L, the results (49), Pc ∼ N/L

(canonical) and (50), P ∼ (N + 1)/〈L〉 (isobaric), still hold
independently of the charge asymmetry a. Thus, the effective
interaction is always repulsive at short distance, irrespective
of the charges q1 and q2, even in the case where these charges
are opposite. Indeed, the pressure is dominated here by the
entropy cost for confining the ions in a narrow domain.

The behavior for large separations L will depend on whether
the charges q1 and q2 are multiples of e or not, and their relative
signs. There are four cases to consider.

Opposite charges. First, suppose that q1q2 < 0, the charges
at the edges have opposite signs. This corresponds to the case

|a| > N , and the canonical partition function is obtained with
Eq. (62). From that expression, we deduce that for L large, the
leading order is given by the term j = 0 of that sum. Therefore,
the effective force is attractive and given by

Pc ∼ −(Q<)2, L → ∞, (69)

where here Q< = (N − |a|)/2 < 0 corresponds to the charge
of the edge particle, which has the same sign as the small ions.
This result can actually be obtained by simple arguments. The
small ions will be repelled by the particle with charge corre-
sponding to Q< and attracted to the other edge where there is
a particle with charge −eQ> with Q> = (N + |a|)/2 > 0. By
electroneutrality, the charge of the compound object formed
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by the small ions and −eQ> will be eQ<. The effective force
between this object and the other opposite charge −eQ< is
repulsive, equal to −(eQ<)2, thus recovering (69). Application
of the contact theorem of course yields the same result, since
the density of counterions vanishes at contact with Q< (a
similar effect was reported in Refs. [24,25]).

Like charges that are not integer multiples of −e. To discuss
this situation, we keep in mind that Q1 > 0 and Q2 > 0 are
not integers. The small ions of charge e will be divided into
two parts that will try to screen the charges q1 and q2. A
number �Q1� of counterions will partially screen q1 and �Q2�
ions will partially screen the other charge q2. Each edge,
with its screening cloud of counterions, will have a charge
−e(Q1 − �Q1�) = −e{Q1} and −e(Q2 − �Q2�) = −e{Q2}
respectively, where {x} := x − �x� denotes the fractional part
of x. However, since Q1 and Q2 are not integers, we have
�Q1� + �Q2� = N − 1: there is still one counterion to take
into consideration. This counterion experiences the electric
field created by the charge difference −e({Q1} − {Q2}),
therefore it will be attracted to the edge that has the largest
remaining charge (in the sense of the largest between {Q1} and
{Q2}). To fix the ideas suppose {Q1} > {Q2}. The remaining
ion will become part of the screening cloud of q1, and
the charge of that compound object will be −e({Q1} − 1).
Then the effective force between the two edges will be
e2({Q1} − 1){Q2} = −e2{Q2}2, the last equality coming from
the fact that {Q1} + {Q2} = 1. Summarizing, in general we
expect an attractive force at large separations given by

Pc ∼ −( min({Q1},{Q2}))2, L → ∞. (70)

This can be verified by identifying the largest argument
of the exponentials in the canonical partition function (62)
or, equivalently, the largest pole of the isobaric partition
function (55). The poles of the isobaric partition function
are −(	 − Q<)2, with 	 going from 0 to N . Then, one can
notice that 	 − Q< varies from −Q< < 0 up to Q> > 0 by
integer steps of 1. From this one-dimensional array of points,
we are interested in the one that is the closest to 0. That is
precisely min ({Q1},{Q2}), in agreement with (70). One can
also notice from (62) that in the canonical ensemble, the next
to leading order correction to (70) is exponentially small of
order O(e−|{Q1}−{Q2}|L).

Like charges that are half-integer multiples of −e. A
degenerate case of the previous situation is when Q1 and
Q2 are half integers, that is {Q1} = {Q2} = 1

2 . In this case
the canonical partition function is given by (63) instead of

(62). The leading order is still given by (70), specifically Pc ∼
−1/4. But the correction to leading order is not exponentially
small, it can be read from the term j = 0 of (63)

Pc = −1

4
+ 1

L − L1 − L2
+ O(e−2L), (71)

with

Lm = 1 − ψ

(
Qm + 1

2
+ 1

)
+ ψ

(
Qm + 1

2

)
= Qm − 1

2

Qm + 1
2

= �Qm�
�Qm� + 1

, m = 1, 2. (72)

We find here the generalization of the charge-symmetric case
(Q1 = Q2 = p + 1

2 ) discussed in Sec. II. Each charge q1

and q2 is screened by �Q1� and �Q2� ions. The remaining
counterion is free to roam in a region of size L − L1 − L2,
and with zero electric field. This ion contributes to the pressure
with a term 1

L−L1−L2
. Here L1 = 〈x�Q1�〉∞ is the size of the

screening layer of �Q1� counterions formed around q1 and
L2 = limL→∞(L − 〈xN+1−�Q2�〉) the size of the layer of �Q2�
counterions formed around q2 [compare (72) to (5), when
�Q1� = �Q2� = p].

Like charges that are natural integer multiples of −e. In
this case, the screening is not frustrated as in all the previous
situations. Simply Q1 counterions will screen the charge q1

forming a neutral object, and similarly around q2 there will be
a screening cloud of Q2 counterions. Since both objects with
their screening clouds are neutral, the effective force between
them is expected to be Pc → 0+. This can be verified from the
expression for the partition function applicable here, Eq. (64).
If L → ∞, we have

Zc = 1

Q1!2Q2!2
− 4e−L

Q1!2Q2!2

Q1

Q1 + 1

Q2

Q2 + 1

×
[
L + 1

2

(
2Q1 + 1

Q1(Q1 + 1)
+ 2Q2 + 1

Q2(Q2 + 1)
− 1

)]
+O(e−4L). (73)

Therefore,

Pc = 4e−L Q1

Q1 + 1

Q2

Q2 + 1

×
[
L + 1

2

(
2Q1 + 1

Q1(Q1 + 1)
+ 2Q2 + 1

Q2(Q2 + 1)
− 3

)]
+O(e−2L). (74)

D. Density profile

With the above results, we can obtain an explicit expression for the density profile of counterions

n(x) =
∑N

k=1

∫
x1<···<xk−1<xk=x<xk+1<···<xN

e−U (N,L,Q1,Q2) ∏N
j=1,j 
=k dxj

Zc(N,L,Q1,Q2)
. (75)

Notice that due to the fact that each particle only feels a constant electric field proportional to the difference between the number
of charges, which are at its left and right sides, the potential energy has the following property

U (N,L,Q1,Q2) = U [k − 1,xk,Q1,Q2 − (N − k + 1)] + U (N − k,L − xk,Q1 − k,Q2). (76)
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This can be interpreted as follows. If the particle at position xk is fixed, the system decouples into two independent systems,
one of size xk with k − 1 particles, and the other one of size L − xk with N − k particles, with the appropriate charges at each
boundary (obtained by summing the charges at the left side and right sides of xk of the original system). Then, the computation
of the integrals in (75) simply yields the product of the two partition functions of each subsystem,

n(x) =
∑N

k=1 Zc(k − 1,x,Q1,Q2 − N + k − 1)Zc(N − k,L − x,Q1 − k,Q2)

Zc(N,L,Q1,Q2)
, (77)

where each Zc should be replaced by its appropriate corresponding expression from (62) or (68).

1. Contact density and pressure

From this expression we can verify the known relation between the contact density at x = 0 (or x = L) and the pressure [13].
Indeed, notice that

n(0) = Zc(N − 1,L,Q1 − 1,Q2)

Zc(N,L,Q1,Q2)
. (78)

On the other hand, from Eq. (62) we can verify that

∂Zc(N,L,Q1,Q2)

∂L
= Zc(N − 1,L,Q1 − 1,Q2) − (Q1)2, (79)

where this last relation was obtained by writing −(j − N−a
2 )2 = (N − j )(j + a) − [(N + a)/2]2 in (62), and recalling that

Q1 = (N + a)/2. Therefore, we find

Pc = n(0) − (Q1)2 = n(L) − (Q2)2. (80)

The last equality is obtained using the same argument on x = L in n(x).

2. Asymptotic behavior of the density

Let us consider the case a = 0, i.e., Q1 = Q2 = N/2. Figure 8 shows a plot of the density profile for N = 25 and N = 26.
Notice that in the case N = 26 even, the density falls off quickly to zero far from the boundaries x = 0 and x = L. On the other
hand, when N = 25 is odd, the density does not fall to zero, but goes to a nonvanishing value shown by the horizontal line. This
corresponds to the density of the free counterion, responsible for the effective attraction between the two charges q1 and q2 as
discussed earlier.

To quantify this behavior, consider expression (77) for the density in the case N = 2p + 1, and Q1 = Q2 = p + 1
2 ,

n(x) =
∑N

k=1 Zc

(
k − 1,x,p + 1

2 ,k − p − 3
2

)
Zc

(
2p + 1 − k,L − x,p − k + 1

2 ,p + 1
2

)
Zc

(
2p + 1,L,p + 1

2 ,p + 1
2

) . (81)

In this sum, the partition function Zc(k − 1,x,p + 1
2 ,k − p − 3

2 ) corresponds to a system with charges −e(p + 1
2 ) and −e(k −

p − 3
2 ) at its boundaries. If k � p, these two charges carry opposite signs, therefore, Zc(k − 1,x,p + 1

2 ,k − p − 3
2 ) is given by

Eq. (62). Then, if 1 � x � L, Zc(k − 1,x,p + 1
2 ,k − p − 3

2 ) = O[e−(p−k+ 3
2 )2x]. On the other hand, the second partition function,

Zc(2p + 1 − k,L − x,p − k + 1
2 ,p + 1

2 ), corresponds to a system with charges −e(p − k + 1
2 ) and −e(p + 1

2 ) at its edges. If k �
p, these two charges carry the same sign and are half-integer multiples of e, therefore Zc(2p + 1 − k,L − x,p − k + 1

2 ,p + 1
2 )

should be obtained by using Eq. (64). In particular one can notice that if 1 � x � L, then Zc(2p + 1 − k,L − x,p − k +
1
2 ,p + 1

2 ) = O[e−(L−x)/4]. Therefore, in the sum (81) all terms with k � p decay exponentially fast when x is far from the

boundaries: they are of order O(e−[(p−k+ 3
2 )2− 1

4 ]x). The same argument could be applied to all the terms with k � p + 2, with the
roles of Zc(k − 1,x,p + 1

2 ,k − p − 3
2 ) and Zc(2p + 1 − k,L − x,p − k + 1

2 ,p + 1
2 ) interchanged. Then, only one term in the

sum (81) survives, it corresponds to k = p + 1, which is precisely the index of the position of the free counterion. In this term,
both Zc(k − 1,x,p + 1

2 ,k − p − 3
2 ) and Zc(2p + 1 − k,L − x,p − k + 1

2 ,p + 1
2 ) with k = p + 1, correspond to a system with

charges −e(p + 1
2 ) and e/2 at its edges (notice the opposite signs), and those partition functions should both be computed using

(62). The leading order of these partition functions, when 1 � x � L, is

Zc

(
p,x,p + 1

2
, − 1

2

)
∼ e−x/4

p!(p + 1)!
and Zc

(
p,L − x, − 1

2
,p + 1

2

)
∼ e−(L−x)/4

p!(p + 1)!
(82)

while the leading order of the denominator of (81) is

Zc

(
2p + 1,L,p + 1

2
,p + 1

2

)
∼ e−L/4

(p!(p + 1)!)2

(
L − 2

p

p + 1

)
. (83)
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GABRIEL TÉLLEZ AND EMMANUEL TRIZAC PHYSICAL REVIEW E 92, 042134 (2015)

This gives

n(x) ∼ 1

L − 2 p

p+1

= 1

L − 2〈xp〉∞ , for 1 � x � L. (84)

This is the analytical confirmation of the intuitive analysis of Sec. II A where it was explained that when N is odd, there is one
free ion roaming between the two charges with an available space equal to L − 2〈xp〉∞, as shown in Fig. 4.

In the case where N is even, a similar analysis shows that all terms of the sum (77) fall of exponentially fast when x is far
from the boundaries.

E. Large N limit

It is interesting to consider the limit N → ∞. Due to the
electroneutrality condition q1 + q2 + eN = 0, one needs to
consider different situations: whether q1 and q2 are kept finite,
then necessarily the charge of the counterions e should vanish
as 1/N . Then we notice that this is also a mean-field regime.
The other possible limit is to consider that e has a nonvanishing
finite value, then q1 and/or q2 should go to infinity as N .

1. Mean-field limit, N → ∞ and e → 0.

Momentarily, it is best to return to dimensional units L̃ and
P̃ : the rescaling by e2 is not appropriate here, because e → 0.
Consider the equation of state (57) derived in the isobaric
ensemble, which now reads

β〈L̃〉 =
N∑

	=0

1

(e	 + q<)2 + P̃
∼ 1

e

∫ −q>

q<

dy

y2 + P
, (85)

where q< = −eQ< and q> = −eQ>. Since e → 0, one can
recognize a Riemann sum and replace it by an integral. This
finally leads to

βe〈L̃〉
√

P̃ = arctan
q1√
P̃

+ arctan
q2√
P̃

. (86)

We recover here the implicit relation between 〈L̃〉 and P̃ from
the mean-field theory as described by the Poisson-Boltzmann
equation [26,27]. Indeed, referring for instance to Ref. [27],
where the mean-field regime of the present problem was
considered, Eq. (86) can be directly obtained from a simple
linear combination of Eqs. (16) and (17) of Ref. [27]. Notice
that the interesting effects, such as like-charge attraction,
stemming from the discrete nature of the charges, are lost in

0 2 4 6 8 10 x

0.5

1.0

1.5

2.0
n x

1
L 2 x12

N 26

N 25

FIG. 8. The density profile for N = 25 and N = 26 counterions
and L = 10. Notice that in the case where the number of counterions
is odd, N = 25, the density far from the edges converges to a nonzero
value 1/(L − 2〈x12〉∞), here close to 0.124.

this mean-field limit. Like charges will always have a repulsive
effective interaction in the mean-field regime [21–23]. A
related comment is that the asymptotic negative pressure
reported for odd N in Sec. II, P̃ = −q2/N2, vanishes in the
limiting process addressed here.

It should be noted that the present limit is also the
thermodynamic limit, since we have to remember that e is of
order 1/N , therefore in the left-hand side of (86) 〈L̃〉 should be
of order N . To make this more apparent, introduce the average
distance per ion 〈	̃〉 = 〈L̃〉/N (inverse of the density), then
(86) becomes

β(q1 + q2)〈	̃〉
√

P̃ = arctan
q1√
P̃

+ arctan
q2√
P̃

. (87)

2. Limit N → ∞ and e fixed.

In this situation, the charges at the edges q1 and q2 should
be of order N , or at least one of them. Consider the case when
both Q1 > 0 and Q2 > 0 are of order N . Then, when N → ∞,
Eq. (57) can be put in the following form by shifting the index
of the summation by �Q<�,

〈L〉 =
∞∑

	=−∞

1

(	 − {Q<})2 + P
. (88)

Notice that by shifting the index 	 by one, we can replace {Q<}
by {Q>} if necessary. One can then write

〈L〉 =
∞∑

	=−∞

1

[	 − min({Q1},{Q2})]2 + P
. (89)

Notice that in this analysis, the limit depends on how Q1 and
Q2 are taken to infinity, and assumes that the fractional part of
them is kept fixed as N is increased.

To cover the whole range of values for 〈L〉 from 0 to +∞, it
is necessary that P covers the range from − min({Q1},{Q2})2

to +∞. We recover the same phenomenology as in the case
N finite, when 〈L〉 → ∞, P → − min({Q1},{Q2})2. So, the
pressure can become attractive, except in the case where Q1

and Q2 are integers. Eq. (89) can be made more explicit in two
particular cases. When Q1 and Q2 are integers,

〈L〉 =
∞∑

	=−∞

1

	2 + P
= π coth(π

√
P )√

P
, (90)

and when Q1 and Q2 are half integers,

〈L〉 =
∞∑

	=−∞

1(
	 + 1

2

)2 + P
= π tanh(π

√
P )√

P
. (91)
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When Q1 and Q2 are not integers, the value of 〈L〉 for which
the pressure changes of sign is given by putting P = 0 in (89)

〈L∗〉 =
∞∑

	=−∞

1

[	 − min({Q1},{Q2})]2

= ψ ′({Q1}) + ψ ′({Q2}). (92)

When Q1 and Q2 are half-integers this reduces to 〈L∗〉 = π2.

IV. CONCLUSION

We have studied a simple one-dimensional system as a
model to understand the effective interaction between charged
particles that are screened by counterions only. This model
evidences the possibility of attraction between two like charges
at large separation. The physical phenomenon behind this
attraction is a frustration of the screening process due to the
discrete nature of the electric charges. More specifically, if
the two like charges are not integer multiples of the charge
of the counterions, a perfect screening of the charges is not
possible, and there will be a misfit counterion, responsible for
the overscreening of one of the like charges, leading to an
effective attractive force. A byproduct is that in the mean-field

limit where discreteness effects are washed out, no like-charge
attraction is possible, a well-known phenomenon.

The present model is in addition interesting from a purely
theoretical perspective, since it is exactly solvable: it is possible
to compute explicitly its partition functions (isobaric and
canonical), the pressure (effective force), and the density
profile of the counterions. Although the specific exact results
and expression for the effective force are particular to this
one-dimensional model, the physical mechanism responsible
for the attraction between like charges could also be applicable
for three-dimensional situations [19]. In particular the case
N = 1 leads to an equation of state that is equivalent to
that found under strong coupling for three-dimensional planar
interfaces, screened by point counterions interacting through
the standard 1/r Coulomb potential [11,12,17].
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APPENDIX: TWO EQUAL CHARGES: CANONICAL EXPRESSIONS

The inverse Laplace transform can be computed with integral inversion formula, which can be evaluated using the residue
theorem

L−1

(
p∏

k=0

1[(
k + 1

2

)2 + P
]2
)

(L) =
p∑

j=0

Res
P=−(j+ 1

2 )2

ePL∏p

k=0

[(
k + 1

2

)2 + P
]2 . (A1)

Each residue is straightforward to compute

Res
P=−(j+ 1

2 )2

ePL∏p

k=0

[(
k + 1

2

)2 + P
]2 = e−(j+ 1

2 )2
L∏p

k=0,k 
=j

[(
k + 1

2

)2 − (j + 1
2

)2]2
⎛⎝L −

p∑
l=0,l 
=j

2(
l + 1

2

)2 − (j + 1
2

)2
⎞⎠. (A2)

Writing

1(
k + 1

2

)2 − (j + 1
2

)2 = 1

(k − j )(k + j + 1)
= 1

2j + 1

(
1

k − j
− 1

k + j + 1

)
, (A3)

the above product and sum can be simplified

1∏p

k=0,k 
=j

[(
k + 1

2

)2 − (j + 1
2

)2] = (−1)j (2j + 1)

(p − j )!(p + j + 1)!
, (A4)

and

p∑
l=0,l 
=j

1(
l + 1

2

)2 − (j + 1
2

)2 = 2

2j + 1

⎛⎝ 1

2j + 1
−

p+j+1∑
k=p−j+1

1

k

⎞⎠ = 2

2j + 1

(
1

2j + 1
+ ψ(p − j + 1) − ψ(p + j + 2)

)
. (A5)

Gathering all results, the exact explicit result for the canonical partition function is found in the form of Eq. (36).
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