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We consider a set of identical mobile pointlike charges (counterions) confined to a domain with curved
hard walls carrying a uniform fixed surface charge density, the system as a whole being electroneutral. Three
domain geometries are considered: a pair of parallel plates, the cylinder, and the sphere. The particle system in
thermal equilibrium is assumed to be described by the nonlinear Poisson-Boltzmann theory. While the effectively
one-dimensional plates and the two-dimensional cylinder have already been solved, the three-dimensional sphere
problem is not integrable. It is shown that the contact density of particles at the charged surface is determined by
a first-order Abel differential equation of the second kind which is a counterpart of Enig’s equation in the critical
theory of gravitation and combustion or explosion. This equation enables us to construct the exact series solutions
of the contact density in the regions of small and large surface charge densities. The formalism provides, within
the mean-field Poisson-Boltzmann framework, the complete thermodynamics of counterions inside a charged
sphere (salt-free system).
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I. INTRODUCTION

In the 1920s, Debye and Hückel (DH) [1] proposed a
linearized mean-field description of the bulk thermodynamics
of Coulomb fluids, which works in the high-temperature
region. A few years earlier, Gouy [2] and Chapman [3] had
introduced the nonlinear Poisson-Boltzmann (PB) mean-field
treatment of the electric double layer. It paved the way toward
the celebrated DVLO theory of colloidal interactions [4].
When it comes to studying colloidal suspensions at finite
density, an efficient tool is furthermore provided by the cell
model [5–8] in which the space around a large charged colloid
is modelled by a spherical domain confining the mobile
counterions of opposite charge. In the context of the PB cell
model, the concept of (effective) charge renormalization was
introduced by Alexander et al. [9].

In the high-temperature region, the PB theory describes
adequately many equilibrium and electrokinetic phenomena
in Coulomb theory of neutral systems with repulsive and
attractive forces among the charged objects. Rigorous results
on the existence and uniqueness of the solutions of the PB
equation were derived by mathematicians [10,11]. Two basic
kinds of Coulomb systems are studied: the two-component
electrolyte of ± charges and the one-component systems of
identical charges with a neutralizing uniform background,
distributed either in the domain’s volume (jellium models)
or on the domain’s boundary (models with “counterions
only”). In the case of one-component systems, the PB
equation belongs to Liouville’s type of nonlinear differential
equations. Exact solutions are available for the effectively
one-dimensional (1D) geometry of parallel plates [12] and for
the two-dimensional (2D) cylinder geometry [13]. The latter
solution is important in the Manning theory of counterion
condensation [14,15] which assumes that counterions can
condense onto the polyion (a chain of monomer charges, often
represented as an idealized line charge) up to a certain critical
value. The number density of counterions at the charged planar

surface fulfills the so-called contact theorem [16–21]. An
attempt to generalize the contact theorem to curved boundaries
was made recently in Ref. [22].

In the case of purely attractive forces, the second-order
Liouville equation plays a fundamental role in the gravitational
theory of stellar structure [23], in diffusion in chemical
kinetics [24] and in the theory of combustion and thermal
explosion [25]. In contrast to Coulomb fluids, the Liouville
equation of such systems exhibits minus sign ahead of the
exponential (see below). For both Dirichlet and Neumann
boundary conditions in the spherical geometry, it exhibits
multiplicity of solutions [26]. The Liouville equation can be
reduced to the first-order Abel’s differential equation of the
second kind, the so-called Enig’s equation [27,28].

Developments of the Liouville equation in the theory of
gravitational matter and related combustion systems were
generally ignored by the Coulomb community because of
its different layout and fundamental properties. Only in a
very recent study of the relaxation and the steady state
with an initial injection of ions into a ball described by the
Poisson-Nernst-Planck equations [29], was the PB equation
with a specific initial value problem studied, predominantly
numerically, by using equations of Enig’s type.

In this work, we study a system of identical mobile
pointlike charges (counterions) confined to a domain with
curved hard walls carrying a uniform fixed surface charge
density, with the condition of overall electroneutrality. Three
domain geometries are considered: a pair of parallel plates,
the cylinder, and the sphere. The particles are in thermal
equilibrium, and the nonlinear Poisson-Boltzmann theory rules
the mean potential, with appropriate boundary conditions.
While the effectively 1D parallel plates and the 2D cylinder
have already been solved, the three-dimensional (3D) sphere
problem has not. The contact density of particles at the charged
surface is shown to be determined by a first-order Abel
differential equation of the second kind, which is a counterpart
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of Enig’s equation. This equation enables us to construct the
exact series expansions of the contact density in the regions
of small and large surface charge densities. The formalism
provides the complete thermodynamics of counterions inside
the sphere with charged boundaries, within the PB framework.

We emphasize that the geometries considered here for
the cylindrical and spherical cases are somewhat simplified
as compared to the widely used cell model for colloids.
In the latter case indeed, a rodlike or spherical charged
macromolecule is placed at the center of a concentric Wigner-
Seitz cell [8,13], assumed to bear a vanishing charge. The PB
problem should thus be solved between two concentric bodies.
Here, the inner body is absent. The present case thus applies
to confined situations, such as ions in a charged nanotube or
pore [30,31] or in a charged spherical capsule [32].

The article is organized as follows. In Sec. II, we introduce
the models studied and the PB formalism. Section III brings
an analysis of the solvable 1D parallel plates and the 2D
cylindrical geometry. Section IV is devoted to the derivation of
the Abel differential equation for a function which determines
the contact density of counterions at the charged wall.
Section V deals with the application of the formalism to
the spherical geometry, which is not integrable. The Abel
equation enables us to construct the exact series expansions of
the contact density in the regions of small and large surface
charge densities. Specific algebraic operations with the PB
equation imply the corresponding series expansions for the
internal energy and the free energy. A brief recapitulation and
concluding remarks are given in Sec. VI.

II. POISSON-BOLTZMANN FORMALISM

A. Studied models

We consider a system of N identical pointlike particles of
charge −e (say e is the elementary charge) immersed in a
solvent which is considered as a medium of uniform dielectric
permittivity ε (in Gauss units). The particles are confined
to a 3D domain by hard walls. For simplicity, the dielectric
permittivity of the walls ε′ is the same as that of the solvent,
ε′ = ε, so the electrostatic image charges are absent. The 2D
domain surface carries a uniform surface charge density σe,
σ > 0 having dimension [length]−2. The system as a whole is
electroneutral. Since the charge of particles is opposite to the
surface charge density, they are coined as “counterions.” We
consider three types of confining domain: two parallel plates
forming a slab, the cylinder, and the sphere.

The particles interact pair-wisely via the 3D Coulomb
potential v(r) = 1/(εr) (r ≡ |r|). It is the solution of the 3D
Poisson equation,

�v(r) = −4π

ε
δ(r), (1)

where δ is the Dirac delta function. The particle system is in
thermal equilibrium at the inverse temperature β = 1/(kBT ),
where kB is the Boltzmann constant. It is useful to introduce
the so-called Bjerrum length,

�B ≡ βe2

ε
, (2)

i.e., the distance at which two elementary charges in a solvent
of dielectric permittivity ε interact with thermal energy kT .
Denoting by 〈· · · 〉 the statistical average over the canonical
ensemble, the particle number density n(r) and the charge
density ρ(r) at point r are defined by

n(r) =
〈

N∑
i=1

δ(r − ri)

〉
, ρ(r) = −en(r). (3)

For a given profile of the charge density ρ(r), the averaged
electric potential ψ(r) is given by the Poisson equation,

�ψ(r) = −4π

ε
ρ(r). (4)

For every geometry, the condition of overall electroneutrality
is equivalent to specific Neumann boundary conditions (BCs)
for the derivatives of ψ(r).

Parallel plates. We consider that particles are confined to
the space between two infinite parallel plates at distance R.
The 2D surface at r = 0 is not charged, the other one at r = R

is charged by the uniform surface charge density σe. For this
effectively 1D geometry, the Laplacian � → d2/dr2 and the
Poisson equation takes the form,

d2ψ(r)

dr2
= −4π

ε
ρ(r). (5)

Integrating this equation over r from 0 to R, we obtain

ψ ′(R) − ψ ′(0) = −4π

ε

∫ R

0
dr ρ(r). (6)

The surface at r = 0 is not charged which implies ψ ′(0) = 0.
The derivative of the electric potential at the charged surface
is determined by the electroneutrality condition

∫ R

0 dr ρ(r) +
σe = 0. We conclude that

ψ ′(0) = 0, ψ ′(R) = 4πσe

ε
. (7)

Cylindrical geometry. The next geometry corresponds to an
infinitely long cylinder with radius R, whose surface carries the
linear charge density λe (dimension of λ is [length]−1) along
the cylinder axis; λe is expressible in terms of the surface
charge density σe as follows:

λe = 2πR σe. (8)

Let us consider a plane perpendicular to the cylinder axis
and denote by r (0 � r � R) the radial distance from this
axis. Because of the circular symmetry of the problem, the
Laplacian takes the form,

� → 1

r

d

dr

(
r

d

dr

)
= d2

dr2
+ 1

r

d

dr
. (9)

The electroneutrality condition
∫ R

0 dr 2πrρ(r) + λe = 0,
when combined with the Poisson equation,

1

r

d

dr

(
r
dψ(r)

dr

)
= −4π

ε
ρ(r), (10)

is equivalent to the BCs,

lim
r→0

rψ ′(r) = 0, Rψ ′(R) = 2λe

ε
. (11)
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With regard to the relation (8) between λ and σ , the previous
planar BC (7) for ψ ′(R) is recovered.

Spherical geometry. We consider a sphere of radius R whose
center is localized at the origin 0. The sphere surface carries
uniformly distributed charge Ze (the valence Z has dimension
[length]0) where

Z = 4πσR2. (12)

Because of the radial symmetry of the problem, the Laplacian
reads as

� → 1

r2

d

dr

(
r2 d

dr

)
= d2

dr2
+ 2

r

d

dr
. (13)

The electroneutrality condition
∫ R

0 dr 4πr2ρ(r) + Ze = 0,
when combined with the Poisson equation,

1

r2

d

dr

(
r2 dψ(r)

dr

)
= −4π

ε
ρ(r), (14)

is equivalent to the BCs,

lim
r→0

r2ψ ′(r) = 0, R2ψ ′(R) = Ze

ε
. (15)

The relation between Z and σ (12) implies again the previous
planar BC (7) for ψ ′(R).

B. The PB equation

In the high-temperature limit and/or in the regions where the
electrostatic potential is small, the statistical mechanics of our
model is reasonably described by the PB approximation based
on the mean-field assumption that the density of particles at
point r is proportional to the Boltzmann factor taken with the
energy −eψ(r) of the charge −e in the mean electric potential
ψ(r), i.e.,

n(r) = n0 exp[βeψ(r)], (16)

where n0 is a normalization factor. Inserting this assumption
into the Poisson equation (4) with ρ(r) = −en(r), we get in
terms of the reduced (dimensionless) potential φ(r) ≡ βeψ(r),

�φ(r) = 4π�Bn0 eφ(r). (17)

Instead of the normalization factor n0, we make use of
the dimensionless quantity z via 4π�Bn0 = z/R2. We also
introduce the geometry parameter α, which is equal to 0 for
the planar case, 1 for the cylindrical geometry, and 2 for the
spherical geometry. Then Eq. (17) can be written as

d2φ(r)

dr2
+ α

r

dφ(r)

dr
= z

R2
eφ(r). (18)

The BCs for the reduced electric potential read

lim
r→0

rαφ′(r) = 0, Rφ′(R) = η, (19)

where we introduced the dimensionless charge,

η = 4π�BσR. (20)

The profile of the particle number density is expressible as

n(r) = z

4π�BR2
eφ(r). (21)

There is a gauge freedom in the PB equation (18): The
potential φ(r) is determined up to a constant, which trivially
renormalizes z. We make the choice,

φ(R) = 0, (22)

which is merely dictated by convenience. All choices lead
to equivalent descriptions (i.e., identical observables such as
densities). Once a gauge has been chosen, for all three α =
0,1,2 geometries, the relation z(η) between the dimensionless
parameters z and η is fixed uniquely. Note that to simplify the
notation, we omit the dependence of z(η) on the geometry
parameter α. Having this relation available explicitly, the
contact number density at the charged wall is given by

n(R) = z(η)

4π�BR2
. (23)

It will be shown later that for the spherical α = 2 geometry, the
crucial function z(η) determines not only the contact particle
number density, but also the complete thermodynamics of
the counterion system. We finally emphasize that the relation
z(η) is not gauge invariant, but that upon replacing z by its
expression (23), then the relations n(R) as a function of η to
be reported, are fully gauge invariant.

The special case η = 0 corresponds to σ = 0, i.e., there are
no particles in the domain. Consequently, we must have

z(η = 0) = 0. (24)

III. EXACT SOLUTIONS

We now present the exact solutions of the PB equation for
counterions between parallel plates (see also [12]) and in the
cylinder (see also [13]). The way in which these exact solutions
are formulated and derived will impinge on the treatment of
the spherical geometry.

A. Parallel plates

For two parallel plates at r = 0 and r = R, the α = 0 PB
equation,

d2φ(r)

dr2
= z

R2
eφ(r), (25)

multiplied by φ′(r), can be integrated:

1

2
[φ′(r)]2 = z

R2
[eφ(r) − c]. (26)

The integration constant c is determined by the BC (19) at r =
0: c = exp[φ(0)]. Taking into account that φ′(r) � 0, Eq. (26)
is solved by the method of the separation of variables, with the
result,

φ(r) = ln c − 2 ln cos

(√
cz

2

r

R

)
. (27)

The BC (19) at r = R implies that

η = √
2cz tan

(√
cz

2

)
. (28)

Fixing the gauge φ(R) = 0 leads to the condition,

c = cos2

(√
cz

2

)
= 1 − η2

2z
. (29)
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Finally, we arrive at the implicit relation between z and η:

η = √
2z sin

(√
z

2
− η2

4

)
. (30)

Equation (30) provides the explicit forms of the series
expansions of z(η) for small values of η (small surface charge
density and/or distance between the plates) and large η (large
surface charge density and/or distance between the plates).

The small-η series expansion turns out to be analytic and
reads

z = η + η2

3
+ η3

45
− 2η4

945
+ η5

14 175

+ 2η6

93 555
− 1082η7

212 837 625
+ · · · . (31)

This expansion holds in the case of weak potentials for which
the exponential exp[φ(r)] in the PB equation (25) can be
systematically expanded in powers of φ(r). The leading term
in η corresponds to the Debye-Hückel (DH) approximation
which arises from the lowest-order expansion exp[φ(r)] ∼ 1.
The next term η2/3 has its origin in the series expansion of the
exponential up to the term φ(r)/1!, and so on. In the Appendix,
we derive the first two terms of the small-η expansion of z

for all three α = 0,1,2 geometries. For α = 0, the obtained
result (A8) agrees with the expansion (31).

The large-η series expansion is more delicate. In the limit
η → ∞, we find that cz = π2/2. Since cz = z − η2/2, the
first two expansion terms read as z = η2/2 + π2/2. We can
proceed further to obtain the nonanalytic expansion,

z = η2

2
+ π2

2
− 2π2

η
+ 6π2

η2
− 2π2(24 − π2)

3η3

− 20π2(π2 − 6)

3η4
+ · · · . (32)

This expansion was derived using the fact that cz goes to its
asymptotic value π2/2 from below. The leading term η2/2 is
expected because, for asymptotically large distances between
the plates, the density of particles at the single charged planar
wall is fixed by the contact theorem [16–21] to the value,

lim
R→∞

n(R) = 2π�Bσ 2 = η2/2

4π�BR2
. (33)

In view of the formula for the contact density (23), this means
that z ∼ η2/2. As we shall see, the same leading term z ∼ η2/2
is present for all three α = 0,1,2 geometries. Indeed, η → ∞
can be envisioned as the planar limit of zero surface curvature,
where furthermore the interplate distance is divergent.

Differentiating both sides of (30) with respect to η, it is
straightforward to derive the first-order nonlinear differential
equation for the function z(η):

dz

dη
= (2 + η)z

z + η
, z(η = 0) = 0. (34)

This equation is of Abel’s type and belongs to integrable
differential equations (see, e.g., [33]). The small-η series
expansion of z (31) can be derived trivially from (34). On
the other hand, the large-η expansion of z (32) is determined
by (34), up to the constant term π2/2. The point is that the BC

z(η = 0) = 0 complements the differential equation (34) in the
region of small η’s, while for large η’s, an integration constant
is missing. Would the analytical solution not be available,
the missing constant term π2/2 could be deduced with a
high precision, e.g., by solving the differential equation (34)
numerically, going from small to large η’s, and then subtracting
the known leading large-η term η2/2.

The contact theorem for the particle densities at planar
plates, when applied to our model, states that

n(0) = βP, n(R) − n(0) = 2π�Bσ 2, (35)

where P is the pressure. The explicit results

n(0) = 1

4π�BR2

(
z − η2

2

)
, n(R) = z

4π�BR2
, (36)

agree with the value of the density difference and set

βP = 1

4π�BR2

(
z − η2

2

)
. (37)

For small η, βP admits the series expansion,

βP = 1

4π�BR2

(
η − η2

6
+ η3

45
− 2η4

945
+ · · ·

)
. (38)

For R → 0, βP diverges as σ/R. In addition, the large-η
expansion of the pressure reads as

βP = 1

4π�BR2

(
π2

2
− 2π2

η
+ 6π2

η2
+ · · ·

)
. (39)

In the limit R → ∞, βP goes to 0 like π/(8�BR2), a universal
expression independent of the bare surface charge density. This
is an illustration of the saturation phenomenon [34], central to
the physics of effective charges in colloidal suspensions [35].

The internal energy U of the interacting charges is con-
tained in the electric field as follows:

βU

�
= βε

8π

∫ R

0
dr [ψ ′(r)]2 = 1

8π�B

∫ R

0
dr [φ′(r)]2, (40)

where � is the (infinite) surface of either of the walls.
Analogously, we have [36]

βU

�
= 1

2

∫ R

0
dr [σeδ(r − R) − en(r)]βψ(r)

= −1

2

∫ R

0
dr n(r)φ(r). (41)

Using the result (27) and the fact that the particle number
N = σ�, we obtain

βU

N
= 1 − 1

η

(
z − η2

2

)
. (42)

To obtain the free energy F = U − T S with S being the
entropy, we use the PB expression [36]:

S

�
= −kB

∫ R

0
dr n(r){ln[�3n(r)] − 1}, (43)

where � is the thermal de Broglie wavelength. Simple algebra
leads to

−β(T S)

N
= −2

βU

N
+ ln �3 − 1 + ln

(
z

4π�BR2

)
. (44)
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This formula implies that within the PB approximation,

βF

N
= −βU

N
+ ln �3 − 1 + ln

(
z

4π�BR2

)
. (45)

For the ideal noninteracting gas system of volume �R, the
free energy F id is given by

βF id = ln(N !�3N ) − N ln(�R). (46)

The excess (i.e., over ideal) free energy is defined as F ex ≡
F − F id. Using Stirling’s formula for ln(N !) and taking the
thermodynamic limit N → ∞, we arrive at

βF ex

N
= 1

η

(
z − η2

2

)
− 1 + ln

(
z

η

)
. (47)

It is easy to verify that the thermodynamic relation,

βP = − ∂

∂R

(
βF

�

)
, (48)

holds. For small η, the excess free energy exhibits the analytic
expansion,

βF ex

N
= η

6
− η2

90
+ 2η3

2835
− η4

56 700
− 2η5

467 775
+ · · · .

(49)
Note that F ex vanishes in the noninteracting limit η → 0, as
it should be. In the large-η region, the expansion of the excess
free energy reads as

βF ex

N
= ln η − (1 + ln 2) + π2

2η
− π2

η2
+ 2π2

η3
+ · · · . (50)

B. Cylindrical geometry

The PB equation for the α = 1 cylindrical geometry,

d2φ(r)

dr2
+ 1

r

dφ(r)

dr
= z

R2
eφ(r), (51)

complemented by the BC limr→0 rφ′(r) = 0, provides the
solution,

φ(r) = −2 ln(b2 − r2) + ln(8b2) − ln

(
z

R2

)
. (52)

The parameter b is determined by the BC Rφ′(R) = η as
follows:

b2 = R2

(
1 + 4

η

)
. (53)

The gauge φ(R) = 0 implies the relation between z and η of
the simple form,

z = η2

2
+ 2η. (54)

Both terms are reproduced in the expansion around the DH
limit; see Eq. (A8) in the Appendix. The particle number
density is given by

n(r) = 2b2

π�B

1

(b2 − r2)2
. (55)

It is interesting that the function z(η) can be deduced
directly from the PB equation, written in the form,

d

dr
[rφ′(r)] = zr

R2
eφ(r). (56)

Multiplying this equation by rφ′(r) and integrating over r from
0 to R, we get

1

2
[Rφ′(R)]2 = z

R2

∫ R

0
dr r2 d

dr
eφ(r)

= z

R2

[
R2 − 2

∫ R

0
dr reφ(r)

]
. (57)

Using once more the PB equation (56), we arrive at (54).
The first-order differential equation following from (54)

reads

dz

dη
= 2 + η, z(η = 0) = 0. (58)

It is trivially integrated, and there is thus a single expression
z(η) to cover both the regimes of small and large η.

The present geometry is convenient for deriving ther-
modynamic relations. To obtain the internal energy, we
invoke a detour, which relies on the fact that the PB mean-
field treatment is actually space-dimension independent. This
means that the PB formulation for two-dimensional charges
or for three-dimensional charges in cylindrical confinement
coincide. We thus address momentarily the 2D case, which
can be envisioned as dealing with a collection of parallel
lines in three dimensions. The pairwise Coulomb interactions
among particles are no longer 1/(εr), but the effective ones
given by the 2D version of the generic Poisson Eq. (1),
v(r) = −(2/ε) ln r . The number of particles per unit length
along the cylinder axis,

N =
∫ R

0
dr 2πrn(r) = 2πσR, (59)

fulfills the 2D electroneutrality condition, σe being the line
charge density on the disk boundary. The potential induced by
the line charge density σe inside the disk is constant, equal to
−(2/ε)Ne ln R. To obtain the internal energy of the Coulomb
system, we have to sum the interaction energy of the fixed line
charge density with itself,

Ess = 1

2
Ne

(
−2

ε
Ne ln R

)
= − (Ne)2 ln R

ε
, (60)

the interaction energy of the fixed line charge density with
particles,

Esp = (−Ne)

(
− 2

ε
Ne ln R

)
= 2(Ne)2 ln R

ε
, (61)

and finally the mean particle-particle interaction energy,

Epp = 1

2

∫ R

0
d2r

∫ R

0
d2r ′ n(r)

(
−2e2

ε
ln |r − r′|

)
n(r ′).

(62)
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The integral can be simplified by using the equality for two
points with polar coordinates r = (r,ϕ) and r′ = (r ′,ϕ′):

− ln |r − r′| = − ln r> +
∞∑

j=1

1

j

(
r<

r>

)j

cos j (ϕ′ − ϕ), (63)

where r> = max(r,r ′) and r< = min(r,r ′). The terms with
positive j do not contribute to the integral in (62) after
integration over either angle ϕ or angle ϕ′. Taking advantage
of the (r,r ′) symmetry, we can write

Epp = −2e2

ε

∫ R

0
d2r n(r) ln r

∫ r

0
d2r ′ n(r ′). (64)

Evaluating the integral, the total internal energy per unit length
along the cylinder axis U = Ess + Esp + Epp is given by

βU

N
= 1 − 4

η
ln

(
1 + η

4

)
. (65)

An alternative way to calculate U is to use the formula,

βU = 1

8π�B

∫ R

0
d2r [φ′(r)]2. (66)

Computing the integral,∫ R

0
dr 2πr[φ′(r)]2 = 32π

∫ R

0
dr

r3

(b2 − r2)2

= 8π

[
η

2
− 2 ln

(
1 + η

4

)]
, (67)

we recover the laboriously derived result (65).
With the aid of the same procedure as in the plane geometry,

the excess free energy per particle is found to be

βF ex

N
= −1 +

(
1 + 4

η

)
ln

(
1 + η

4

)
. (68)

The small-η expansion of this expression reads as

βF ex

N
= η

8
− η2

96
+ η3

768
− η4

5120
+ η5

30720
+ · · · . (69)

The large-η expansion of (68) takes the form,

βF ex

N
= ln η − (1 + ln 4) + 4 ln η

η
+ 4(1 − ln 4)

η

+ 8

η2
− 32

3η3
+ 64

3η4
+ · · · . (70)

The pressure is not uniquely defined for our curved geom-
etry. In contrast to the standard jellium models in which the
neutralizing background charge fills uniformly the domain’s
volume, our system has the neutralizing surface charge density
on the domain boundary. It still suffers from the jelliumlike
problems when calculating the pressure. According to the
standard definition, the pressure is related to the derivative
of the free energy with respect to the volume at the fixed
number of particles. Changing the volume or surface of the
domain involves the change of the background charge which
must be compensated by the change of the particle number to
maintain the overall electroneutrality. We refer to the work of
Choquard et al. [18] for a discussion of the various definitions
of the pressure in jelliumlike systems.

IV. DERIVATION OF ABEL’S EQUATION
FOR COUNTERIONS

In this section, we aim at deriving a differential equation di-
rectly for the crucial function z(η) for all three geometries. We
shall adapt the procedure for gravitational systems presented,
e.g., in Ref. [28].

We first rewrite the PB equation (18) into the form,

1

2
r

d

dr

(
r
dφ

dr

)
+ α − 1

2
r
dφ

dr
= 1

2

zr2

R2
eφ. (71)

Let us define the new variable,

ζ ≡ ln

(
2R2

zr2

)
, (72)

and the functions,

θ (ζ ) ≡ φ − ζ, p(ζ ) ≡ dθ

dζ
, q(ζ ) ≡ d2θ

dζ 2
. (73)

Because rdr = r(dζ/dr)dζ = −2dζ , the PB equation (71) is
now equivalent to

2q − (α − 1)(p + 1) = eθ . (74)

We introduce another function Q via

θ = ln(2Q), Q = q − (α − 1)(p + 1)

2
. (75)

Because it holds

p ≡ dθ

dζ
= 1

Q

dQ

dζ
= 1

Q
q

dQ

dp
, (76)

expressing from (75) q in terms of p and Q, we obtain the
linear differential equation for Q as the function of p:

[2Q + (α − 1)(p + 1)]
dQ

dp
− 2Qp = 0. (77)

Now we return to the original r variable and the electric
potential φ(r) and express in terms of them the new p variable,

p(r) ≡ dθ

dζ
= dφ

dζ
− 1 = −1

2
rφ′(r) − 1, (78)

and the Q function,

Q(r) ≡ 1

2
eθ = 1

2
eφ−ζ = zr2

4R2
eφ(r). (79)

In view of the last two relations, the BC at r = 0 corresponds
to p = −1 and Q = 0 which is fully consistent with Eq. (77).
Under the gauge φ(R) = 0, the BC at r = R corresponds to

p = −1

2
η − 1, Q = z

4
. (80)

Inserting these relations into Eq. (77) we end up with the
first-order Abel differential equation of the second kind,

dz

dη
= (2 + η)z

z − (α − 1)η
, z(η = 0) = 0. (81)

For α = 0 and 1, this equation coincides with the exact
ones (34) and (58), respectively.
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Although our Coulomb Eq. (81) was derived in analogy
with gravitational Enig’s equation [27,28], it differs fundamen-
tally from the latter one. Like, for instance, the multiplicity of
solutions of Enig’s equation for the spherical geometry [26] is
absent in its Coulomb counterpart (81). Equation (81) provides
the analytic series expansion of z(η) for small values of η:

z = (1 + α)η + 1 + α

3 + α
η2 + + (1 + α)(1 − α)

(3 + α)2(5 + α)
η3

− 2(1 + α)(1 + 2α)(1 − α)

(3 + α)3(5 + α)(7 + α)
η4 + O(η5). (82)

The first two terms are in agreement with those obtained
by the systematic expansion around the linear DH limit; see
formula (A8) in the Appendix. In the limit of large η, the
differential Eq. (81) implies the nonanalytic expansion,

z = 1

2
η2 + 2αη + 4α(1 − α) ln η + c − 16α(1 − α)2 ln η

η

+ 4(1 − α)[2α(3α − 1) − c]
1

η
+ O

(
ln η

η2

)
, (83)

where the integration constant c ≡ c(α) depends on the
geometry. The higher-order terms are of the form (ln η)j /ηk

with positive integers j � k. In the leading order, we recover
the quasiplanar term η2/2 independent of the geometry α. As
was shown in the previous two sections, c is equal to π2/2 for
α = 0 and to 0 for α = 1. This constant is unknown for the
spherical α = 2 geometry and it has to be determined, at least
approximately, in an alternative way.

V. CONTACT DENSITY AND THERMODYNAMICS
FOR SPHERICAL GEOMETRY

The PB equation for the spherical geometry (α = 2) reads

d2φ(r)

dr2
+ 2

r

dφ(r)

dr
= z

R2
eφ(r). (84)

It is complemented by the BCs limr→0 r2φ′(r) = 0 and
Rφ′(R) = η. The corresponding differential equation for z(η)
is

dz

dη
= (2 + η)z

z − η
, z(η = 0) = 0. (85)

As emphasized above, this Abel equation does not belong to
the integrable ones [33]. The corresponding small-η series
expansion is

z = 3η + 3

5
η2 − 3

175
η3 + 2

525
η4 − 991

1 010 625
η5

+ 18166

65 690 625
η6 + O(η7). (86)

It is straightforward to generate also the higher-order terms
of this series expansion, making use of a symbolic com-
putation software (to get the series up to the term η20, it
requires on the order of a second of CPU on a standard
modern computer). The series representation works well up
to η 
 2. On the other hand, the large-η expansion is of the

0 0,1 0,2 0,3
lnη / η

0

5

10

15

20

A

0 2×10-6 4×10-6 6×10-6
19,7473

19,74735

19,7474

19,74745

19,7475

FIG. 1. Determination of the integration constant c ≡ c(α = 2)
for the spherical geometry. The differential equation (85) is solved
numerically. Use is then made of the large η expansion (87). By
plotting A = z − η2/2 − 4η + 8 ln η as a function of (ln η)/η, we
expect a linear behavior in the vicinity of the origin, the extrapolation
of which at (ln η)/η → 0 yields c. The main graph corresponds to
the range 3 < η < 5 × 106 while the inset is a zoom in the upper-left
corner, corresponding to the large η regime, where the expected linear
behavior is met. The dashed line shows the best fit to the numerical
data, with slope 32 as predicted by Eq. (87). The extrapolation yields
c, shown with an arrow, with the value c 
 19.747502.

form,

z = 1

2
η2 + 4 η − 8 ln η + c − 32

ln η

η
+ 4(c − 20)

1

η

+ 96
ln η

η2
+ 4(8 − 3c)

1

η2
+ · · · . (87)

By comparison with the large-η expansion for parallel plates,
Eq. (32), we see that the curvature effect of the sphere surface
is embodied in the linear and logarithmic terms. Although
there exists an implicit solution of Abel’s equations including
the nonintegrable ones [37,38], we failed in deducing from
it the integration constant c. Our numerical estimate is c 

19.747502; see Fig. 1. In the same spirit, it is possible to
check the consistency of this estimate and of expansion (87)
by plotting η[z − η2/2 − 4η + 8 ln η − c − 32(ln η)/η] as a
function of (ln η)/η. Extrapolating this quantity for (ln η)/η →
0 should give 4(c − 20) 
 −1.01. We have verified that this
indeed is the case.

To obtain the thermodynamics of the spherical system, we
return to the original PB equation (84). When multiplied by r ,
it can be rewritten as

d

dr
[rφ′(r)] + φ′(r) = zr

R2
eφ(r). (88)

We first multiply this equation by r2φ′(r) and then integrate
over r from 0 to R, with the result,

1

2

∫ R

0
dr r

d

dr
[rφ′(r)]2 +

∫ R

0
dr [rφ′(r)]2

= z

R2

∫ R

0
dr r3 d

dr
eφ(r). (89)
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The integration by parts of the first integrals on the left and
right sides leads to

1

2
Rη2 + 1

2

∫ R

0
dr [rφ′(r)]2 = z

R2

[
R3 − 3

∫ R

0
dr r2eφ(r)

]
.

(90)

Rewriting equation (84) as

d

dr
[r2φ′(r)] = z

R2
r2eφ(r), (91)

and integrating over r from 0 to R, we find that

z

R2

∫ R

0
dr r2eφ(r) = Rη. (92)

Considering this equality in Eq. (90), we get

1

2R

∫ R

0
dr r2[φ′(r)]2 = z − 1

2
η2 − 3η. (93)

Thus the (dimensionless) internal energy is given by

βU = 1

8π�B

∫ R

0
dr 4πr2[φ′(r)]2 = R

�B

(
z − 1

2
η2 − 3η

)
.

(94)

Because there are N = 4πR2σ particles in the ball, we have
the relation for the internal energy per particle,

βU

N
= 1

η

(
z − 1

2
η2 − 3η

)
. (95)

It is interesting that this exact result follows from simple
manipulations with the PB equation, without solving explicitly
the spherical system. Because the series representations of z in
terms of η are at our disposal, this means the complete solution
of thermodynamics for counterions inside a sphere.

The excess free energy per particle is obtained in the form,

βF ex

N
= −1

η

(
z − η2

2
− 3η

)
+ ln

(
z

3η

)
. (96)

In the limit of small η, this formula implies the expansion,

βF ex

N
= η

10
− 3η2

350
+ 2η3

1575
− 991η4

4 042 500

+ 18166η5

328 453 125
+ · · · . (97)

In the limit of large η, we find that

βF ex

N
= ln η − (1 + ln 6) + 8

ln η

η
+ 8 − c

η
+ · · · . (98)

VI. CONCLUSION

We have studied a system of identical counterions inside
a homogeneously charged sphere surface, within the Poisson-
Boltzmann mean-field theory. For our salt-free system, there
exists a clear-cut criterion for the validity of the Poisson-
Boltzmann approach, as compared to an exact statistical
mechanics solution, treating all charges as interacting through
the bare Coulomb potential, in a medium of fixed dielectric
permittivity (the so-called primitive model). In the spherical
geometry, the Coulombic coupling is measured by the coupling

parameter � = 2π�2
Bσ , and the PB treatment is appropriate for

� < 1. For larger couplings, non-mean-field effects appear,
such as overcharging of like-charge attraction [8,39–42].

Using techniques applied to the Liouville equation, we
derived the PB-exact series expansions of the contact density
and of the thermodynamics (the internal and free energies)
in the regions of small and large surface charge densities
and sphere radius. The derivation of the series expansions is
straightforward and very high orders can be readily obtained on
the order of a second of CPU. As was indicated in the Appendix
for the case of small surface charge densities, the systematic
generation of the series by the standard expansion around the
Debye-Hückel limit of weak charges is cumbersome, and one
can reach with an increasing difficulty the first few terms only.
In the limit of large surface charge densities, one integration
constant is missing; it can be determined numerically with a
high precision.

The cell model of colloidal suspensions requires one to
solve the PB equation for counterions between two concentric
spheres with charged surfaces. This problem brings into the
consideration two length scales, the radiuses of the inner and
outer spheres, with the corresponding Neumann boundary
conditions. It is not clear whether the techniques presented here
can be generalized to such a geometry of confinement. If yes,
previous simplified approximations for curved geometries,
such as the application of the contact theorem valid for planar
walls to the cell boundaries in [43], might be replaced by
rigorous approaches.

Another possible extension of the formalism is provided
by Coulomb systems in an arbitrary ν-dimensional Euclidean
space with the Coulomb potential 1/rν−2 which are of
mathematical interest [44,45].
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APPENDIX: SMALL-η EXPANSION OF z(η)

For all three geometries α = 0,1,2, we consider the PB
equation,

d2φ(r)

dr2
+ α

r

dφ(r)

dr
= z

R2
eφ(r), (A1)

with the BCs limr→0 rαφ′(r) = 0 and Rφ′(R) = η. The gauge
is fixed to φ(R) = 0. We assume that the electric potential φ(r)
is small.

In the leading DH order, we substitute the exponential
exp[φ(r)] by unity:

d2φ(r)

dr2
+ α

r

dφ(r)

dr
= z

R2
. (A2)

The general solution of this differential equation reads

φ(r) = z

2R2(1 + α)

r2

R2
+ c1

r1−α

1 − α
+ c2. (A3)

The BC limr→0 rαφ′(r) = 0 implies c1 = 0. The gauge
φ(R) = 0 sets c2 = −z/[2R2(1 + α)]. The BC Rφ′(R) = η
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leads to

z = (1 + α)η. (A4)

The next order corresponds to exp[φ(r)] ∼ 1 + φ(r). The
resulting equation,

d2φ(r)

dr2
+ α

r

dφ(r)

dr
= z

R2
[1 + φ(r)], (A5)

has the solution,

φ(r) = −1 + cr
1−α

2 Jα−1
2

(
−i

√
z

R
r

)
, (A6)

with the Bessel function of the first kind J , which automat-
ically fulfills the BC limr→0 rαφ′(r) = 0. The gauge fixes

c = R
α−1

2 /J α−1
2

(−i
√

z). Because

Rφ′(R) = i
√

z
J α+1

2
(−i

√
z)

Jα−1
2

(−i
√

z)

= z

1 + α
− z2

(1 + α)2(3 + α)
+ O(z3), (A7)

the BC Rφ′(R) = η leads to the expansion,

z = (1 + α)η + 1 + α

3 + α
η2 + O(η3). (A8)

The derivation of next expansion terms is a more difficult
task.
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[6] J. P. Hansen and H. Löven, Ann. Rev. Phys. Chem. 51, 209

(2000).
[7] D. B. Lukatsky and S. A. Safran, Phys. Rev. E 63, 011405

(2000).
[8] Y. Levin, Rep. Prog. Phys. 65, 1577 (2002).
[9] S. Alexander, P. M. Chaikin, P. Grant, G. J. Morales, and P.

Pincus, J. Chem. Phys. 80, 5776 (1984).
[10] P. Hess, J. Math. Ana. App. 43, 241 (1973).
[11] B. Li, SIAM J. Math. An. 40, 2536 (2009).
[12] D. Andelman, in Soft Condensed Matter Physics in Molecular

and Cell Biology, edited by W. C. K. Poon and D. Andelman
(Taylor & Francis, New York, 2006), Chap. 6, pp. 97–122.

[13] R. M. Fuoss, A. Katchalsky, and S. Lifson, Proc. Natl. Acad.
Sci. 37, 579 (1951).

[14] G. S. Manning, J. Chem. Phys. 51, 924 (1969).
[15] E. Trizac and G. Téllez, Phys. Rev. Lett. 96, 038302 (2006).
[16] D. Henderson and L. Blum, J. Chem. Phys. 69, 5441 (1978).
[17] D. Henderson, L. Blum, and J. L. Lebowitz, J. Electroanal.

Chem. 102, 315 (1979).
[18] Ph. Choquard, P. Favre, and Ch. Gruber, J. Stat. Phys. 23, 405

(1980).
[19] S. L. Carnie and D. Y. C. Chan, J. Chem. Phys. 74, 1293 (1981).
[20] H. Totsuji, J. Chem. Phys. 75, 871 (1981).
[21] H. Wennerström, B. Jönsson, and P. Linse, J. Chem. Phys. 76,

4665 (1982).
[22] J. P. Mallarino, G. Téllez, and E. Trizac, Mol. Phys. 113, 2409

(2015).
[23] S. Chandrasekhar, An Introduction to the Study of Stellar

Structure (Dover Publications, New York, 1967).

[24] D. A. Frank-Kamenetskii, Diffusion and Heat Exchange in
Chemical Kinetics (Princeton University Press, Princeton,
1955).

[25] Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, and G. M.
Makhaviladze, The Mathematical Theory of Combustion and
Explosions (Plenum, New York, 1985).

[26] J. J. Steggerda, J. Chem. Phys. 43, 4446 (1965).
[27] J. W. Enig, Combust. Flame 10, 197 (1966).
[28] J. Adler, IMA J. Appl. Math. 76, 817 (2011).
[29] Z. Schuss, J. Cartailler, and D. Holcman, arXiv:1505.02173.
[30] F. Akoum and O. Parodi, J. Phys. France 46, 1675 (1985).
[31] A. Obliger, M. Duvail, M. Jardat, D. Coelho, S. Békri, and B.
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