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In an attempt to quantify the role of polydispersity in colloidal suspensions, we present an efficient
implementation of the renormalized jellium model for a mixture of spherical charged colloids. The different
species may have different size, charge, and density. Advantage is taken from the fact that the electric potential
pertaining to a given species obeys a Poisson’s equation that is species independent; only boundary conditions
do change from one species to the next. All species are coupled through the renormalized background (jellium)
density, that is determined self-consistently. The corresponding predictions are compared to the results of Monte
Carlo simulations of binary mixtures, where Coulombic interactions are accounted for exactly, at the primitive
model level (structureless solvent with fixed dielectric permittivity). An excellent agreement is found.
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I. INTRODUCTION

Predicting structural and thermodynamic properties of
charged colloidal suspensions is a difficult task [1–4]. At
the simplest level of description, the solvent is treated as a
continuous medium of fixed dielectric permittivity and one
discards correlation effects that prevail, as a rule of thumb, for
multivalent microions and sufficiently charged colloids [3].
Viewing the microionic fluid as an inhomogeneous ideal gas
leads to the Poison-Boltzmann theory. However, as such, it
does not easily lend itself to numerical investigations [5,6],
not to mention analytical progress. In practice, this mean-field
theory often needs a further mean-field-like reduction, to
predict quantities that can be compared to experiments or
simulations, such as osmotic pressures. One successful and
popular such simplification is the so-called cell model, where
an N -body colloidal situation is mapped onto a one-body
problem, placed at the center of a Wigner-Seitz cell [7]. This
cell is often taken spherical for simplicity, with a volume
equal to the mean volume per colloid. As an alternative to
the cell picture, a renormalized jellium model was proposed in
Ref. [8], elaborating on an idea put forward by Beresford-
Smith et al. [9], who nevertheless did not implement the
renormalization procedure, which turns out crucial [8,10–12].

For monodisperse colloidal suspensions, both cell and
jellium models yield very close and accurate results for
quantities that can be compared against numerical simulations
or experiments [8,13–16]. Yet, when it comes to colloidal mix-
tures, the cell model is not free of ambiguities [17], whereas
the jellium model admits a natural extension [11,12]. In light
of the intrinsic interest in polydisperse suspensions [18–21],
our goal here is threefold. First, we present in Sec. II the main
ingredients of the jellium model, together with a procedure that
allows us to solve the problem self-consistently for mixtures,
in a more efficient way than hitherto proposed. Compared to
the method used in Refs [8,10] for monodisperse colloids,
an elegant reformulation was reported in Refs. [11,12] that

significantly speeds up the resolution. We shall argue that this
reformulation loses its suitability when dealing with mixtures.
Second, we discuss in Sec. III some of the main features of
effective charges as emerging within the jellium approach.
Yet, such quantities, interesting in their own right, can be
coined as “secondary,” in the sense that they are often not
directly measured in an experiment or in a simulation. We
therefore implement Monte Carlo simulations of a binary
charged mixture, which provide an important benchmark
against which the polydisperse cell and the jellium schemes
can be confronted. Our simulations, at the level of the primitive
model, do not rely an any mean-field hypothesis, and treat
exactly the Coulombic nature of the interactions between
all species (colloids and microions). Conclusions are finally
drawn in Sec. IV.

For the following discussion, it seems appropriate to revisit
briefly an aspect of the common phenomenology of cell and
jellium effective charges. For highly charged colloids [yet in
the mean-field regime, where a Poisson-Boltzmann description
may hold], the strong interactions between the colloids and the
microions induce an accumulation of the latter in the vicinity
of the colloids. This in turn induces a renormalization of the
colloidal effective charge [1,3,22–24]. If the colloidal bare
charge Zbare is large, the effective charge become independent
of Zbare; this is the saturation phenomenon [25], a signature
of mean-field, where the effective charge becomes Zsat, which
only depends on the density and salt content. For a reason
to become clear below, in the no salt case, Zsat as a function
of density (or volume fraction η) exhibits a nonmonotonous
behavior, very close to that of the function f (X,∞) versus
X in Fig. 1. For small η (equivalently, small X in Fig. 1),
the effective charge decreases with increasing η. This is an
entropy effect, whereby a lowering of η induces a dilution
of microions, which leave the vicinity of the colloids to gain
translational entropy [26]. In other words, increasing η, less
volume is available for the microions, electrostatic “binding”
is stronger, and Zsat consequently decreases. However, further
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FIG. 1. Behavior of the effective charge f (X,Y ) as a function
of screening, as encoded in X. The quantity Y denotes the bare
charge of the macroion under study, so that the upper curve, showing
f (X,∞) corresponds to the saturation value studied in Ref. [23].
Practically, f (X,Y ) a/�B is the effective jellium charge of a sphere
having radius a, bare charge Ya/�B , at a packing fraction X/f (X,Y )
(monocomponent case).

increasing η, Zsat starts to increases: this can be viewed as an
indirect effect of screening. The microions efficiently screen
their own interactions with the colloids, so that electrostatic
binding is weakened. This dichotomy between the entropy-
dominated and the energy-dominated regimes will be met
again below, where it induces a nontrivial dependence on
mixture composition.

II. THE RENORMALIZED JELLIUM:
PRINCIPLES AND RESOLUTION

A. A (mean-field)2 approach

We consider an arbitrary mixture of positively charged
spherical colloids, where each species is indexed by an integer
i. The radius of species i having number density ρi is ai , while
eZi

bare stands for the bare charge, e > 0 being the elementary
charge. The total density is ρ = ∑

i ρi , and to characterize the
composition of the mixture, it is convenient to introduce the
molar fraction xi = ρi/ρ, such that

∑
i xi = 1. The starting

point of the jellium model is the same as the celebrated
Poisson-Boltzmann theory [1,3], with an additional assump-
tion that allows us to restrict the problem to a single-colloid
formulation (the cell model approach also aims at a similar
restriction but proceeds very differently [17]). The key point in
the jellium approach is that the charge of other colloids around
a given tagged macroion is smeared out to form a homogeneous
background of charge density ρ eZback, in which the small ions
are then immersed. A self-consistency requirement connects
this background charge with the effective charge of the various
species; see Refs. [8,10–12] for more details.

We denote the Bjerrum length by �B , and we restrict for
the sake of the argument to salt-free systems (see Sec. II C
for the general case). The dimensionless electrostatic potential
around a given colloid of type i, centered at position r = 0,

then obeys [8,10–12]

∇2φi = 4π�B ρZback(eφi − 1), (1)

with boundary conditions

φi → 0 for r ≡ |r| → ∞ and

dφi

dr
= −Zi

bare�B

1

a2
i

at r = ai. (2)

The first contribution on the right-hand side of Eq. (1) stems
from the counter-ions and takes the usual Poisson-Boltzmann
form, while the second is that of the smeared-out background.
Self-consistency demands that [8] ρZback = ∑

i ρiZ
i
eff, where

Zi
eff is the effective charge of species i, defined from the

far-field (large r) behavior of φi [23]. Since all species obey
the same differential equation, but with different boundary
conditions, it follows that their effective charge is given by a
unique two-parameter function f ,

Zi
eff �B

ai

= f

(
Xi,

Zi
bare �B

ai

)
, (3)

where

Xi = 4π�BρZbacka
2
i /3 (4)

is a dimensionless parameter that scales like a2
i from one

species to the next. The reason for including the factor 3
in the definition of Xi will become clear below. Once the
function f (X,Y ) is known, the self-consistency condition
determines Zback:

Zback =
∑

i

xi Zi
eff

= 1

�B

∑
i

xi ai f

(
4π�BρZbacka

2
i /3,

Zi
bare �B

ai

)
. (5)

At this stage, it can be appreciated that the renormalized
jellium model is a mean-field simplification of an otherwise
mean-field (Poisson-Boltzmann) starting point. The N -body
Poisson-Boltzmann problem is a notoriously difficult problem
to solve from a computational viewpoint (not speaking of the
lack of analytical results) [6]. With the renormalized jellium, a
complex mixture problem is mapped onto a series of single
colloid equations, Eq. (1), in a common background with
density ρZback to which all species contribute [see Eq. (5)],
acting thereby as a coupling term.

B. Self-consistent resolution

In the subsequent analysis, we will single out species 1, and
use its radius a1 as our reference length scale. Since colloidal
charges appear in conjunction with the ratio �B over some
radius in most expressions, we introduce the rescaled charges:

Z̃i = Zi �B

a1
. (6)

Then, X1 can be naturally expressed as a function of Z̃1
eff and

of a dressed packing fraction,

η̃ = 4π

3
ρa3

1, (7)
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leading to

X1 = η̃ Z̃back. (8)

The dressed fraction η̃ is connected to the packing fraction η

in the suspension through

η =
∑

i

4π

3
ρi a3

i = η̃
∑

i

xi

a3
i

a3
1

. (9)

To summarize the previous discussion, the key equation to
be solved within the jellium model is

Z̃back ≡ Zback �B

a1
=

∑
i

xi

ai

a1
f

(
η̃ Z̃back

a2
i

a2
1

,Z̃i
bare

a1

ai

)
. (10)

Hence, once the physical parameters have been chosen (bare
charges, compositions xi , radii ai , and packing fraction), one
needs to find the root X∗ of equation

X

η̃
=

∑
i

xi

ai

a1
f

(
X

a2
i

a2
1

,Z̃i
bare

a1

ai

)
, (11)

from which the background (effective) charge follows: Z̃back =
X∗/η̃. Of course, the function f (x,Z̃i

barea1/ai) should be
computed beforehand for all species, but this task deals with a
monocomponent problem only. In other words, f (X,Y ) is the
effective charge of the potential φ obeying

d2φ

dr̃2
+ 2

r̃

dφ

dr̃
= 3 X(eφ − 1), (12)

with boundary conditions

φ → 0 for r̃ → ∞ and
dφ

dr̃
= −Y at r̃ = 1, (13)

meaning that for large r̃ ,

φ ∼ f (X,Y )
e−κ̃(r̃−1)

(1 + κ̃)r̃
with κ̃2 = 3 X. (14)

It is thus straightforward to obtain f , following, for instance,
the method presented in the Appendix of Refs. [24,27]. Typical
results are shown in Fig. 1. When Y is small, charge renormal-
ization effects disappear, so that f (X,Y ) = Y , irrespective of
X. In the limit of small bare charges, the background charge
thus takes a simple form: Zback = ∑

i xiZ
i
bare. On the other

hand, upon increasing the bare charge through Y , the effective
charge also increases, with always f < Y [28]. The saturation
upper curve is reached for large Y .

It appears at this point that the packing fraction (either
the real one, η, or its dressed counterpart η̃) only enters the
self-consistency condition on the left-hand side of Eq. (11). As
a consequence, our method allows us to treat very simply the
effect of packing fraction, since the more time-consuming part
of the calculation is that of the right-hand side of Eq. (11).
This is an important advantage over previous proposals,
be it the technique presented in Ref. [10] or subsequent
improvements [11,12].

For concreteness, the explicit solution of a binary colloidal
problem is constructed in Fig. 2 with relatively weakly charged
macroions: both have the same charge Z̃1

bare = Z̃2
bare = 4,

but they differ in size: a2/a1 = 2. The pristine effective
charges f (X,4) and f (X,2) should be known, from which one

FIG. 2. Illustration of the method employed to find the solution
of Eq. (11), for Z̃1

bare = Z̃2
bare = 4,a2 = 2 a1, and η̃ = 10−2. The

continuous curves show the effective charge f (X,4) (lower curve,
indexed “species 1”) and 2f (4X,2) (upper curve, indexed “species
2”). Depending on the mixture composition, the weighted average of
both with weights x1 and x2 = 1 − x1 are shown with the dashed lines.
These are the master curves, corresponding to the right-hand side of
Eq. (11), to be considered for all possible η̃. The linear curves show
X/η̃ for two values of the dressed packing fraction (̃ηa = 10−2 and
η̃b = 2 × 10−2). For an equimolar mixture (x1 = 1/2), the effective
background charge is shown, by the circle (case η̃ = 10−2) and by
the square (case η̃ = 2 × 10−2).

constructs the weighted average appearing in the right-hand
side of Eq. (10) is calculated. Depending on the mixture
composition, this leads to the dashed curves: from bottom to
top are a species 1-rich, an equimolar, and a species 2-rich
mixture. The procedure closes, after the choice of density
through η̃, by searching for the intersection with the line
X/η̃. With x1 = 1/2, we thereby get the background charge
Z̃eff = 3.29 at η̃ = 10−2, and Z̃eff = 3.23 at η̃ = 2 × 10−2.
The graphical construct proposed allows us to anticipate the
dependence of effective charges on mixture composition; see
Fig. 3, which corresponds to a bidisperse solution with a1 = a2

but unequal bare charges. It can be expected that increasing η,
a regime will be reached in the vicinity of the species 2 curve
minimum, where the corresponding range for the variations of
Z2

sat with composition will vanish. This will be confirmed in
Sec. III. Turning to the effect of binary mixture composition
on background charge in the case of unequal colloidal sizes,
Figs. 4 and 5 address large bare charges (saturated limit)
and show by vertical dashed lines how X is affected by
going from x1 = 1 to x1 = 0. Once X (or more precisely,
the root X∗) is known, the background charge follows from
Z̃back = X/η̃. These two figures are for a2/a1 = 1/3 and 3.
Of course, the 1 ↔ 2 labeling of species is immaterial in the
case x1 = x2 = 1/2, so that at a given density ρ, the solutions
of the two problems should coincide. This is not the case in
Figs. 4 and 5, since η̃ is common to both, meaning that they
correspond to different densities ρ.

C. The general case

So far, the discussion focused on the deionized limit. In
case salt is present, for instance when the system is in osmotic
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FIG. 3. Like-size binary mixture of a weakly charged species
with Z̃1

bare = 1 and a strongly charged species (limit Z̃2
bare → ∞).

The packing fraction is η = η̃ = 10−5. When changing the mixture
composition, the allowed range for Z̃2

eff is displayed by the vertical
double arrow on the left-hand side).

equilibrium with a salt reservoir of density cs , Eq. (1) becomes

∇2φi = 4π�B [2cs sinh φi − ρZback], (15)

with the boundary conditions

2cs sinh φi − ρZback → 0 for r → ∞ and

dφi

dr
= −Zi

bare�B

1

a2
i

at r = ai. (16)
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FIG. 4. Binary case. Log-linear plot. Here Z̃1
bare = Z̃2

bare are both
saturated (divergent), η̃ = 10−3,a2/a1 = 1/3. The weighted average
Eq. (10) lies in between the two thick curves upon changing the
composition x1 from 0 (in which case it corresponds to the “species
2” bottom curve) to 1 (in which case it coincides to the “species 1”
upper curve). As a consequence, the values X can lie between the
two vertical dashed lines, from which the allowed range for Z̃back can
be read on the y axis and falls in between the two horizontal dashed
lines. As in Fig. 3, the allowed range is thus shown by the vertical
arrow.
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FIG. 5. Same as described in the caption of Fig. 4 but for
a2/a1 = 3.

The first equation stems from electroneutrality and defines the
potential at infinity, often referred to as the Donnan potential.
The second results from Gauss’ theorem. Defining the inverse
squared Debye length in the reservoir as κ2

res = 8π�Bcs , we
arrive at

∇2φi = κ2
res sinh φi − 4π�B ρZback, (17)

and we can proceed along very similar lines as in Sec. II A. We
have assumed here the salt to be monovalent, for simplicity.
Generalization to mixed-valency salts is straightforward.
Expressing the colloids’ effective charges requires the intro-
duction of a generalization of function f , which we denote
fsalt, so that

Zi
eff �B

ai

= fsalt

(
Xi,

Zi
bare �B

ai

,κresai

)
, (18)

keeping the same notation for Xi . Of course, one has f (X,Y ) =
fsalt(X,Y,0). The self-consistency condition becomes

Zback =
∑

i

xi Z
i
eff

= 1

�B

∑
i

xi ai fsalt

(
4π�BρZbacka

2
i /3,

Zi
bare �B

ai

,κresai

)
.

(19)

Again, the functions fsalt, which are those of a single
component problem, can be computed as such [24], and
subsequently used to describe an arbitrary mixture. Typical
results are shown in Fig. 6, for a colloidal bare charge that is
neither small nor large, meaning that it is of order 10 a/�B .

From the very form of Eq. (17), it appears that the long-
distance potential φi is of the standard form,

φi − φi(∞) ∼ Zi
eff �B

(1 + κai)

e−κ(r−ai )

r
, (20)

an expression which can be viewed as defining the effective
charge Zi

eff, and which involves the effective screening length
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FIG. 6. Effect of salt on the screening function fsalt appearing
in Eq. (18). Here, the reduced charge in chosen equal to 10, and
we show fsalt(X,10,z) as a function of X (the jellium background
dimensionless charge), for different salinities z.

κ−1 given by

κ2 = κ2
res cosh[φi(∞)]. (21)

This quantity can be reexpressed as

κ4 = κ4
res + (4π�B ρ Zback)2. (22)

It is worth emphasizing here that a bona fide feature
of jellium-like models is that the osmotic pressure takes a
particularly simple form, and is directly connected to the
effective charges [8,10,12]:

βP = ρ + 2cs cosh[φi(∞)] − 2cs

= ρ +
√

(2cs)2 + (ρZback)2 − 2cs. (23)

It is the excess pressure with respect to the salt reservoir,
including the colloidal contribution, taken ideal for simplicity.
For salt-free systems, it takes the form βP = ρ + Zbackρ,
which is usually close to Zbackρ.

D. Comparison with previous approaches

Before discussing the physical results, it seems oppor-
tune to put the method described above in the context of
those used so far. For the sake of the discussion, we assume
that the salt content is fixed, and we wish to identify the
number of independent parameters that have to be (essentially
continuously) varied before the full solution is reached. This
allows for a definition of the “dimensionality” of the method,
a measure of user-friendliness.

We start by the monocomponent case and consider that
the goal is to obtain a curve Zeff as a function of Zbare,
parameterized by η. The original method used in Refs. [8,10]
is brute force: for each η,Zbare, and Zback, Eq. (17) is
solved by a shooting method, to obtain the desired value of
Zbare: this is a procedure of dimension 1 [29]. Then Zback

should be changed, to find in which case the background and
effective charges coincide. In that respect, the resolution is
of dimension 2 for each η and Zbare, it is thus of dimension
4 overall. Castañeda-Priego and collaborators [11,12] have
found an interesting reformulation, in which self-consistency
is automatically enforced by imposing a priori Zback = Zeff,
and computing the corresponding Zbare in one step only. This is
achieved by constraining the far-field. For each η, the method
is of dimension 1 (Zeff has to be changed). Hence, the overall
dimension is two, which is an improvement. Finally, with the
method presented here, a unique function f of two parameters
encodes the relevant information, and the approach also is of
dimension 2.

The “degeneracy” between the latter two procedures is
lifted when considering mixtures. Following Refs. [11,12],
the effective charges have to be chosen a priori, and the bare
charges follow. However, a physical problem is in practice
formulated in terms of bare charges. This subtlety is immaterial
for monocomponent systems: the functions Zeff(Zbare) and
Zbare(Zeff) convey the same information and are simply
connected. This is no longer the case for mixtures, where
the functions Zi

eff(Z
1
bare,Z

2
bare . . .) and Zi

bare(Z1
eff,Z

2
eff . . .) are

not simply related. Deriving the second from the first requires
a shooting task that appears quite impractical. Additionally,
there is no guarantee that the a priori choices of effective
charges are not unphysical, with for instance values above the
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FIG. 7. Saturation charge, Z̃2
sat, as a function of the total density of colloids in the no salt case. The dependence on x1 is not very strong. In

these case Z̃1
bare = 1 (left) and Z̃1

bare = 20 (right).
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for a value of the total fraction η̃ = 10−3 and with a1 = a2 (so that
η = 10−3 as well).

saturation limit. This is the case, for instance, in Fig. 5 of
Ref. [12], for low salt content [30]. Our alternative treatment
is free of these shortcomings.

III. RESULTS

A. General features of effective charges

In this section we focus on the behavior of the saturation
charge. In Ref. [8], it has been found that the saturation value
for the charge when the concentration was small (̃η < 10−5)
was given by

Zsat 	 a

�B

[δ − γ log(̃η)], (24)

where γ 	 1 and δ 	 2. In Fig. 7 the saturation value Z̃2
sat

has been plotted as a function of the density η̃ for the no salt
case, for Z̃1

bare = 1 (left) and Z̃1
bare = 20 and three values of the

composition x1. As we can see, for small values of η̃, Eq. (24)
holds, with different values for δ and γ , that depends slightly
on x1. In Fig. 7 (right) we reobtain the monodisperse case

because both species are of the same size and the bare charges
are large enough to be in the saturation limit.

In Fig. 8, the saturation value has been plotted as a function
of Z̃1

bare for a density η̃ = 10−3 and three values of the
concentration x1. The dependence on x1 decreases as the
value of Z̃1

bare increases because we approach the saturation for
species 1. We are now in a position to analyze the dependence
of this property on the colloidal sizes asymmetry. To this aim,
we have studied the variation of the saturation value of the
charge as we vary the size ratio. In Fig. 9, left, we have plotted
Z̃2

sat as a function of a2/a1 for a system with η̃ = 10−3 and
x1 = 0.5. It appears that the dependence is roughly linear on
a2/a1. The dashed line is a linear fitting. However, on closer
inspection, the situation is more complex; see Fig. 9, right,
plotting Z̃2

sat a1/a2 for different values of Z̃1
bare and x1. It can

be seen that for a2/a1 < 1, the behavior of Z̃2
sat is not linear

in a2/a1. This behavior can be understood from the plot of
f (X,∞) reported in Fig. 1, which exhibits in its left-most part
(say for X < 10−2), the entropy dominated regime alluded
to in the introduction (decrease of the effective charge with
an increase of concentration). Upon decreasing a2 at fixed
a1, the relevant background parameter X2 decreases as a2

2 ,
and this leads, from Eq. (3), to an increase of Z2

sat�B/a2. On
the other hand, increasing a2, one probes at some point the
shallow minimum seen in Fig. 1, where f takes values around
7. This is compatible with Fig. 9, right, and also means that
Z̃2

sat = Z2
sat�B/a1 scales like a2/a1 (see Fig. 9, left).

B. Osmotic pressure and comparison to Monte Carlo
simulations

One of the advantages of the jellium model is that once
the renormalized charges are known, the evaluation of the
osmotic pressure is straightforward. However, a competing
theory of equal simplicity does exist [17], where the standard
Poisson-Boltzmann cell model [7,22] has been generalized for
mixtures. For colloidal spheres, the radii of the cells can be
different for each type of macroion. These radii are determined
self-consistently for a given set of parameter, from the solution
of the nonlinear Poisson-Boltzmann equation with appropriate
boundary conditions [17].
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FIG. 9. (Left) Saturation charge Z̃2
sat as a function of the radius ratio a2/a1, for a system with η̃ = 10−3,Z̃1

bare = 5 and x1 = 0.5. (Right)
Z̃2

sata1/a2 for a system with η̃ = 10−3 and different values of Z̃1
bare and x1.
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FIG. 10. Osmotic pressure for a system consisting of two kinds
of colloidal particles with the same charge Z̃i

bare = 6.4, as a function
of a2/a1.

In this section, we compare the results from both methods,
with those of Monte Carlo (MC) simulations of bidisperse
systems of spherical charged colloids. Explicit counter-ions are
considered, without added salt. The simulations, which treat
exactly Coulombic forces, have been performed in the NVT
ensemble with periodic boundary conditions. In order to take
into account the long range electrostatic interactions with the
images of the system, Ewald summations were used [31,32].
The number of colloidal particles of each type is N1 = N2 =
40, confined in a simulation box of side length L. The number
of monovalent counterions, Nion, was set in each case so that
charge neutrality was obtained.

The pressure of the system was computed using the virial
theorem,

βP = ρ + β〈W 〉, (25)

where ρ is the particle number density, β = (kBT )−1 and W

is the virial function,

W = − 1

3V

N∑
i=1

r i · ∇iU, (26)

for a system with particles at positions r i interacting between
themselves with a pair potential U , which is the sum of
the long-range Coulomb potential, using the known Ewald
expressions [33–35] with the minimum image convention, and
a short-range hard-core potential.

In order to compute 〈W 〉 for the hard-core part of the
potential we use [36]

β〈W 〉 = 1

3V

〈
N−1∑
i=1

N∑
j>i

2F (r ij ) δ(F (r ij ) − 1)

〉
, (27)

where F (r ij ) is an overlap function. In the case of spherical
particles the overlap function has a simple form and the virial
expression for the hard core interaction is

β〈W 〉 = 1

3V

〈
N−1∑
i=1

N∑
j>i

r2
ij

σij

δ (rij − σij )

〉
, (28)

in which σij = (σi + σj )/2 and σi is the diameter of
particle i.

In all the simulations, the radius of the first colloidal
species (a1) was kept constant and used to normalize the
distances. The radius of the ions was set to amicro = 10−3a1.
The volume of the simulation box and the Bjerrum length were
also kept constant at (L/a1)3 = 33 540.8 and �B/a1 = 0.32,
respectively. The systems were equilibrated for 3 × 105 MC
steps before averaging and then the averages were carried out
for 3 × 105 ∼ 8 × 105 MC steps, where a MC step involves a
test move of every particle in the system.

Three sets of simulations were carried out at η̃ = 0.01.
In the first set, the two colloidal species have the same bare
charge Z̃1

bare = Z̃2
bare = 6.4 (and thus Z1

bare = 20), while the
radius of the second species (a2) is varied. We show in Fig. 10,
the simulation results (filled squares) as well as the predictions
obtained by the renornalized jellium model (empty circles) and
the cell model (filled triangles). As can be seen, the agreement
between the three sets is very good. In the second set of
simulations, the colloids are all of the same size (a1 = a2),
the charge of the first species is kept at Z̃1

bare = 6.4 and the
charge of the second species (Z̃2

bare) is varied (Fig. 11, left).
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FIG. 11. (Left) Osmotic pressure for a system consisting of two kinds of colloidal particles with the same radius a1 = a2, as a function of
Z̃2

bare, with Z̃1
bare = 6.4. (Right) Osmotic pressure, changing the size ratio, keeping a constant surface charge density for both colloids. Here, a1

is fixed, Z̃i
bare = 6.4, and a2 changes.
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GARCÍA DE SORIA, ÁLVAREZ, AND TRIZAC PHYSICAL REVIEW E 94, 042609 (2016)

The results obtained from the jellium and cell models are
again nearly identical. Although the pressure they predict
is in general smaller than that of the MC simulations, the
agreement is good. The situation is similar for the third set
of simulations, (Fig. 11, right) in which a1 is fixed and a2

varies in such a way as to keep the surface charge density (si)
constant si = Zi

bare/(4πa2
i ). In all cases, the proximity of cell

and jellium results is striking, and somewhat surprising given
they rely on rather distinct calculations.

The MC data shown here do not allow to discriminate
one approach against the other. The reason may be that
charge renormalization effects are not overwhelming with the
parameters of the simulations, even if not negligible. It would
be in this respect interesting to increase somewhat the values
of the bare charges, to enhance nonlinear effects. In doing
so though, one has to keep in mind that correlation effects
will be increased as well, and when the so-called plasma
parameter �i = 2π�2

Bsi exceeds unity, the whole Poisson-
Boltzmann-like description will start to break down, be it in its
jellium, or in its cell clothing [3,37,38]. With the parameters of
Fig. 11, right, we have �1 = �2 = 1. On the other hand, with
the procedure underlying Fig. 10, we have �2 	 a1/a2 and,
therefore, decreasing a2/a1, Coulombic correlations increase,
to reach a value beyond 10 for the left-most point. In this
region, MC simulation are impeded by enhanced equilibration
time (which explains why it is void of MC results).

IV. CONCLUSIONS

We have proposed a novel procedure for solving jellium-
like models, taking due account of renormalization effects.

Such approaches had been tested with some success on
liposome and latex dispersions [39,40]. Particular emphasis
was put on colloidal mixtures, where it was shown that the
computationally most demanding part of the task boils down
to a sequence of monocomponent calculations. The idea was
illustrated on binary mixtures, but can be straightforwardly
generalized to arbitrary polydispersities, including continuous
case after suitable discretization. The method takes advantage
of the mean-field nature of the theory, where all species
considered obey the same Poisson equation, with different
boundary conditions, in a background density that couples all
constituents of the mixture.

In a second step, we have performed Monte Carlo simula-
tions of binary mixtures at primitive model level: the solvent
is viewed as a dielectric continuum, but otherwise, Coulombic
interactions are treated exactly. This allows us to assess the
accuracy of mean-field simplifications. In this respect, we
tested the jellium predictions for the osmotic pressure and
those of the Poisson-Boltzmann cell, against Monte Carlo. It
was known that in the monocomponent case, both mean-field
approaches yield very close results, that fare very favorably
against MC, provided, of course, one remains in the regime
of relatively weak couplings where Poisson-Boltzmann theory
may hold. We have shown here that despite the different nature
of the jellium and Poisson-Boltzmann cell approximations,
both approaches continue to give similar results, close to MC,
in the case of binary mixtures of spherical colloids.

Finally, while the method was illustrated on the simplest
implementation of the jellium view, refinements and gener-
alizations along the lines proposed in Refs. [41–43] can also
be addressed. It is also of interest to extend our approach to
colloidal objects of nonspherical shapes.

[1] L. Belloni, J. Phys. Condens. Matt. 12, R549 (2000).
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