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Configurational and energy landscape in one-dimensional Coulomb systems
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We study a one-dimensional Coulomb system, where two charged colloids are neutralized by a collection of
point counterions, with global neutrality. With temperature being given, two situations are addressed: Either the
colloids are kept at fixed positions (canonical ensemble) or the force acting on the colloids is fixed (isobaric-
isothermal ensemble). The corresponding partition functions are worked out exactly, in view of determining
which arrangement of counterions is optimal. How many counterions should be in the confined segment between
the colloids? For the remaining ions outside, is there a left-right symmetry breakdown? We evidence a cascade
of transitions as system size is varied in the canonical treatment or as pressure is increased in the isobaric
formulation.
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I. INTRODUCTION

In condensed matter physics, interactions due to electro-
static forces are essential. Since matter is made of protons
and electrons, special properties of materials are ultimately
due to the electric and magnetic interactions at the atomic
and molecular scales. Plasmas exhibit as well strong electro-
magnetic interactions that are responsible for their behavior.
Their understanding sheds light on the physics at work in
the interior of a star [1] or on the conducting properties of
liquid metals such as gallium-based alloys, which are used
for industrial purposes. Substances with polar solvents (e.g.,
colloids, polymers, and membranes) give another example of
systems where including electric interactions is paramount to
describing thermodynamic properties [2].

Coulomb systems are the ensembles that model the inter-
action between charges with the Coulomb potential energy. In
three dimensions this potential reads

UC3D (r1,r2) = −q1q2

|r1 − r2| . (1)

Yet an analytic expression for a partition function of a
Coulomb system is impossible to obtain. Mean field theories
provide an approach to this problem but fail when the electric
correlations are important, which is the case for many systems
of interest in soft condensed matter [1,2]. The two most
important phenomena they fail to account for are charge
reversal (overcharging) and like-charge attraction. The first
occurs when a colloid (large ion) is screened by enough
counterions (small ions with opposite charge) such that the net
charge opposes the one of the colloid. Like-charge attraction
happens when two colloids of the same bare charge sign are
attracted to each other due to the interactions with the medium
(counterions).

Another powerful method that has proven operational
predicting the behavior of Coulomb systems, especially the
qualitative one, is to study a lower-dimension model. In lower
dimensions, the electrostatic potential is easier to manipulate
while keeping important features of the three-dimensional
(3D) case such as its long range. They can also be mapped

to some three-dimensional systems with a translational in-
variance in one direction. For example, the 2D logarithmic
potential given by

UC2D (r1,r2) = −q1q2 ln
|r1 − r2|

L
(2)

is used to model the interaction between vortices in quantum
fluids (e.g., superfluid 4He and 3He films), two-dimensional
crystalline solids, and XY (classical rotor) magnets [1].
Another example is the analogy between the Laughlin trial
wave function for the fractional quantum Hall effect [3] and
the Boltzmann factor for the two-dimensional one-component
plasma [4]. This analogy has proven fruitful to understand the
properties of both systems. For example, in [5,6], the authors
considered a special case that allows an analytic solution. This
led them to find that a plasma forms a double-layer structure
that causes an excess density as the edge of the leading support
is approached from the inside of the plasma. Furthermore,
these two-dimensional models have been used to study
important physical phenomena such as charge renormalization
and the Onsager-Manning-Oosawa counterion condensation
[7,8], which is reviewed in [9].

In one-dimensional Coulomb systems, charged particles
interact via the potential

UC1D (x1,x2) = −q1q2|x1 − x2|. (3)

For these systems, analytical expressions for the canonical
and isobaric partition functions can be obtained. These were
first investigated independently by Lenard [10] and Prager
[11]. Although a one-dimensional model is a simplification
or fictitious model, it gives insights into the qualitative
behavior of the three-dimensional problem. As Prager remarks
in [11]: “It is these [long-range] forces which make the
statistical mechanics of plasmas and electrolyte solutions
so extraordinarily difficult to treat. . . . The one-dimensional
plasma, where this can be done exactly, should thus serve as
a useful testing-ground for approximations developed to treat
the three-dimensional case.” The fact that an exact analytical
resolution is possible is indeed of particular interest, for
it heralds non-mean-field effects such as overcharging and
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FIG. 1. Sketch of the model studied in [13].

like-charge attraction. These properties were found in a one-
dimensional model first introduced in [12] and analytically
solved in [13]. It consists of two colloidal charges separated
by a distance L and N neutralizing counterions bounded by
the colloids (Fig. 1). Depending on whether the colloidal
charges are integer multiples of the counterion charges and
the parity of the number of counterions, it was found that
both overcharging and like-charge attraction were possible.
One-dimensional Coulomb systems have also been used as
simple models that mimic some properties of electrolytic soap
films and can exhibit their collapse mechanism into Newton
black films [14].

The present work extends the analysis of Ref. [13]. We
wish here to explore the situation where a variable number of
counterions may become unbounded (Fig. 2). Two questions
then arise. Which is the optimal configuration and do the
non-mean-field phenomena still occur for the new configu-
rations? We will answer these questions, providing a complete
thermodynamical solution and interpretation for the canonical
and isobaric ensembles that arise from this modification.

Our problem bears some similarities with some three-
dimensional studies [15,16] where ions of both signs may be
exchanged with a salt reservoir. In our case, counterions may
escape the segment interior by populating the outside regions.
It is shown in [16] that electroneutrality breakdown may occur
in a slab interior, between two parallel charged planar surfaces.

The scheme we use to compute the canonical partition
function consists in rearranging the terms of the Coulomb
potential and writing it as a convolution product of some
auxiliary functions. Then we compute the Laplace transform
of the canonical partition function, which is the product of the
Laplace transforms of each auxiliary function by virtue of the
convolution theorem. By performing the Laplace transform,
we obtain the isobaric partition function, which gives us
information about the system in this ensemble. Finally, to
obtain the canonical partition function, we use the inversion
formula for the Laplace transform, which is computed by using
the residue theorem.

The outline is as follows. In Sec. II, following Prager [11]
and Lenard [10], we start by studying the isobaric ensemble,
where the partition function and ensuing quantities are easier
to compute and interpret. Special interest is given to finding
the configuration of particles that minimizes the Gibbs energy.
We then calculate in Sec. III the canonical partition function
from its isobaric counterpart, performing an inverse Laplace
transform. In each section, the form of the thermodynamic
quantities in each ensemble is analyzed by analytical and
graphical means. We summarize in Sec. IV.

FIG. 2. Representation of the modified model studied here.

II. ISOBARIC ENSEMBLE

Both Lenard [10] and Prager [11] noticed that for a one-
dimensional plasma with global neutral charge, the potential
energy could be expressed as a sum of the relative distance
between charges. We follow this technique to rewrite the
canonical partition function in a form in which the Laplace
transform (isobaric partition function) is readily obtained.

A. Isobaric partition function

Consider two charges q along a line located at x̃ = 0 and
x̃ = L̃. They play the role of the colloids depicted in Figs. 1
and 2. There are also N counterions of charge e = −2q/N

with positions x̃i . The potential energy of this neutral system
is denoted by Ũ . The system is in thermal equilibrium at a
temperature T . It is convenient to introduce the dimensionless
quantities x = βe2x̃, for the positions, and U = βŨ , for the
potential energy, where β = (kBT )−1 and kB is the Boltzmann
constant. With this notation, the dimensionless potential
energy takes the form

U (x1, . . . ,xN ) = N

2

N∑
i=1

(|xi | + |xi − L|)

−
∑

1�i<j�N

|xi − xj | −
(

N

2

)2

L, (4)

where the summands from left to right are due to colloid-
counterion, counterion-counterion, and colloid-colloid inter-
actions, respectively.

For the computation of the canonical partition function, it
is convenient to separate the dimensionless potential energy
in three summands. Let � and r be the number of unbounded
counterions to the left and right, i.e., for i � �, xi < 0 and
for i > N − r , xi > L, respectively. Then UL and UR are the
contributions due to the unbounded counterions and UB is due
to the counterions bounded by the colloids. The expression in
terms of the separated potentials is

U (x1, . . . ,xN ) = UL(x1, . . . ,x�) + UB(x�+1, . . . ,xN−r )

+UR(xN−r+1, . . . ,xN ). (5)

To simplify the expressions for the potentials the particles are
ordered as x1 < x2 < · · · < xN . Writing the distance between
particles as the sum of the distances between first neighbors,
the following expressions are obtained:

UL(x1, . . . ,x�) =
�∑

k=1

k2(xk+1 − xk) (6)

with the convention x�+1 ≡ 0,

UB(x�+1, . . . ,xN−r )

= −
N−r∑
k=�

k(N − k)(xk+1 − xk) + N (N − 4r)L

4
(7)

with x� = xN−r+1 ≡ 0, and

UR(xN−r+1, . . . ,xN ) =
N∑

k=N−r

(N − k)2(xk+1 − xk) (8)

with xN−r ≡ 0.
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The expression for the canonical partition function is given
by

Zc(N,L) =
∫ ∞

L

dxN

∫ xN

L

dxN−1 · · ·
∫ xN−r+2

L

dxN−r+1

×
∫ L

0
dxN−r

∫ xN−r

0
· · ·
∫ x�+2

0

∫ 0

x�−1

· · ·

×
∫ 0

x1

dx2

∫ 0

−∞
e−U (x1,...,xN )dx1. (9)

This expression can be split into a product of three terms, in a
similar way to the potential energy with the aid of the Fubini
theorem

Zc(N,L) =
⎛
⎝∫ 0

x�−1

· · ·
∫ 0

−∞
e−UL

�∏
j=1

dxj

⎞
⎠

×
⎛
⎝∫ L

0
· · ·
∫ x�+2

0
e−UB

N−r∏
j=�+1

dxj

⎞
⎠

×
⎛
⎝∫ ∞

xN−1

· · ·
∫ ∞

L

e−UR

N∏
j=N−r+1

dxj

⎞
⎠. (10)

Grouping the integrals of the left, right, and bounded positions
of the counterions, a product of the form

Zc = ZLZBZR (11)

is obtained. To compute each term, the following auxiliary
functions are introduced:

gk(x) ≡ ek2xH (−x), (12)

fk(x) ≡ ek(N−k)xH (x), (13)

where H (x) is the Heaviside step function. With these
functions, the partition function can be recast as a convolution
product. The left partition function ZL is naturally expressed
in terms of the gk functions. To write the right term ZR in
terms of the gk functions, a change of variables is performed

yk = xk − L. This translation only adds a factor due to the term
that does not cancel out, xN−r+1 = L + yN−r+1. The results
for ZL and ZR are

ZL(�) = L
{

�

�
k=1

gk(−x1)

}
(0) =

(
1

�!

)2

, (14)

ZR(r) = e−r2LL
{

r

�
k=1

gk(−yN )

}
(0) =

(
1

r!

)2

e−r2L, (15)

where L{f (x)}(0) is the one-sided Laplace transform of f (x)
evaluated at 0.

The partition function ZB , corresponding to the counterions
bound in between the two colloids, is essentially the same as
for the configuration of equally charged colloids studied in
[13]. There is a subtle difference from [13]: When writing
it as a convolution product, an extra factor exp[r(N − r)L]
appears. The expression for the partition function ZB is

ZB(N,�,r,L) = e−r(N−r)L−N(N−4r)L/4 N−r

�
k=�

fk(L). (16)

Putting together all these results, the canonical partition
function is then written as

Zc(N,L) = e−(N2/4)L

(�!r!)2

N−r

�
k=�

fk(L). (17)

It is convenient to switch to the isobaric partition function,
which is the Laplace transform of expression (17). This is done
using the convolution theorem, obtaining a simple expression
in terms of products of the Laplace transforms of the functions
fk evaluated at P + N2/4 due to the exponential factor

Zp(N,P ) = 1

(�!r!)2

N−r∏
k=�

1

P + N2/4 − k(N − k)
. (18)

To analyze the structure of the isobaric partition function,
we examine the effects of the parity of N separately. We
distinguish the even N = 2n and odd N = 2n + 1 cases. It
is also convenient to introduce the parameters M = max(�,r)
and m = min(�,r). In the even case N = 2n, depending on the
values of M and n, we have

Zp(2n,P ) =
⎧⎨
⎩

1
(M!m!)2

1
P

(∏n−M
k=1

1
P+k2

)2∏n−m
k=n+1−M

1
P+k2 if n − M − 1

2 > 0

1
(M!m!)2

∏n−m
k=M−n

1
P+k2 if 1

2 + M − n > 0.

(19)

Several important properties can be seen from these equations. When there is an even number of counterions, second-order poles
are present for M < n. The leading (largest) pole is P = 0 for M � n. For M > n the leading pole is P = −(M − n)2. For any
value of M and m the leading pole is always simple.

In the odd case N = 2n + 1, the partition function is

Zp(2n + 1,P ) =
⎧⎨
⎩

1
(M!m!)2

(∏n−M
k=0

1
P+(k+ 1

2 )2

)2∏n−m
k=n+1−M

1
P+(k+ 1

2 )2 if n − M + 1
2 > 0

1
(M!m!)2

∏n−m
k=M−n−1

1
P+(k+ 1

2 )2 if M − 1
2 − n > 0.

(20)

For the odd case the second-order poles appear for M � n and the leading pole is P = −1/4 until M � n + 1. For M > n + 1
the leading pole is P = −(M − n − 1/2)2. In the odd case the leading pole has order 2 for M < n + 1/2 and for M > 1/2 + n

it becomes simple.
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B. Equivalent model

Consider the model studied in [13]. It consists of N ′
counterions all bounded without chance to escape and two
colloidal charges surrounding them. These colloids have
different charge magnitudes Q1 and Q2. As considered here,
the system is neutral. After comparing the isobaric partition
function (18) with the expression obtained for the screening of
two unequal charges in [13], we find that they are proportional
by a factor (M!m!)2,

Zp(N,P ) = 1

(M!m!)2
Zp(N ′ = N − M − m,P,Q1,Q2),

(21)

where

Zp(N ′,P ,Q1,Q2) =
N−m∏
k=M

1

P + N2/4 − k(N − k)

=
∏

k∈{−Q<,−Q<+1,...,Q>−1,Q>}

1

P + k2
(22)

is the partition function found in [13] for a system
with N ′ = N − � − r = N − m − M counterions confined

between charges Q1 = N
2 − � and Q2 = N

2 − r . We
have defined Q> = max(Q1,Q2) = N

2 − m and Q< =
min(Q1,Q2) = N

2 − M . Note that Q1 and Q2 are the global
charges of the colloidal particles plus the counterions outside
the corresponding edge. The relation between the two ensem-
bles comes from the nature of the one-dimensional Coulomb
electric field. As far as the electric field is concerned, the
only thing that matters is the net charge at each side of the
point where the field is computed and not the detailed position
of each charge in the system. Then it is equivalent to have
charges spatially distributed or one point charge as long as the
net charge is the same. The proportionality factor only adds
up a constant factor to the Gibbs energy, which accounts for
the zero-pressure (infinite length in the canonical ensemble)
energy of the additional unbounded counterions.

C. Gibbs free energy and optimal configuration

1. General results

We now turn our attention to the Gibbs energy, which
will allow us to determine the fundamental configuration
(minimum Gibbs energy configuration). First we consider the
even case N = 2n. The Gibbs energy is given by the usual
expression G̃ = −β−1 ln ZP . Using the dimensionless free
energy G = G̃β, we have

G2n(M,m) =
⎧⎨
⎩

2 ln(M!m!) + ln P + 2
∑n−M

k=1 ln(P + k2) +∑n−m
k=n+1−M ln(P + k2) if n − M − 1

2 > 0

2 ln(M!m!) +∑n−m
k=M−n ln(P + k2) if 1

2 + M − n > 0 .
(23)

First we examine the situation when the total number of
unbounded ions is fixed. To this end, consider the exchange of
one particle from one side to the other

�G2n(M → M + 1,m → m − 1)

= 2 ln

(
M + 1

m

)
+ ln

(
P + (n + 1 − m)2

P + (n − M)2

)
, (24)

�G2n(M → M − 1,m → m + 1)

= 2 ln

(
m + 1

M

)
+ ln

(
P + (n + 1 − M)2

P + (n − m)2

)
. (25)

As n + 1 − m > n − M and n + 1 − M � n − m, from (24)
and (25) it can be concluded that �G2n(M → M + 1,m →
m − 1) > 0 and �G2n(M → M − 1,m → m + 1) � 0. This
means that the configuration where there is the same number
of left and right charges m = M is the one that minimizes
the Gibbs energy. The most probable configuration when the
number of unbounded particles is fixed is for m = M or, in
other words, r = l.

Now we consider transitions where an extra particle
becomes unbounded, that is, M → M + 1 at fixed m or
m → m + 1 at fixed M . The Gibbs free-energy differences
are

�G2n(M → M + 1,m → m) = ln

(
(M + 1)2

P + (n − M)2

)
, (26)

�G2n(M → M,m → m + 1) = ln

(
(m + 1)2

P + (n − m)2

)
. (27)

From these two expressions, it appears that for large enough
value of P , the Gibbs energy difference will always be negative
regardless of the values of n, m, and M . This means that
for a regime of high pressure the configuration where all
particles are between the colloids is the one with highest energy
and thus the least probable. This can be seen physically as
follows: High pressure implies small volume (length in this
case). If the ions are confined tightly together, the entropic
cost of confinement becomes overwhelming and it is more
favorable to have ions unbounded, in the leftmost or rightmost
regions. This can be seen as a phenomenon of counterion
evaporation.

For low pressure we analyze first the equality (26). The
following inequality guarantees an endergonic (�G � 0)
reaction:

M � P + n2 − 1

2(n + 1)
. (28)

On the other hand, 2n − m − M needs to be a positive
integer since it is the number of particles in the inner
region between the colloids. Therefore, 2n − 1 − m � M .
Putting this together with (28), we have �G2n(M → M + 1,
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m → m) � 0 when

2n − 1 − m � M � P + n2 − 1

2(n + 1)
. (29)

From this relation we can define a special value of the
pressure

PH (m) = 3n2 + 2n(1 − m) − (2m + 1)

= 3
4N2 + N (1 − m) − (2m + 1), (30)

which satisfies 2n − 1 − m = PH (m)+n2−1
2(n+1) and will be im-

portant in the following analysis. Suppose now that M is
small enough such that (29) is not satisfied and therefore by
increasing it, while the other parameters P and m are kept
fixed, the Gibbs energy will decrease. One can continue to
take out ions successively from the inner region to the outer
region with the largest number of ions (M → M + 1) and
decrease the Gibbs energy until M reaches a value that satisfies
(29). From there, increasing M will start to increase the Gibbs
energy. Therefore, the value of M = Mc

2n(P,m) for which the
system reaches the minimum Gibbs energy, at given pressure
P and value of m, is

Mc
2n(P,m) =

{⌈
P+n2−1
2(n+1)

⌉
if P � PH (m)

2n − m if P > PH (m) (no ions remain in the inner region),
(31)

where �x� is the ceiling function.

From relation (27) one can obtain more information in a
similar fashion. When m → m + 1, �G � 0 if

n − 1 � m � P + n2 − 1

2(n + 1)
. (32)

The first inequality stems from the fact that 2n − M − m � 1
and M � m. Now an intermediate regime is obtained from this
last inequality. Let us define PI such that PI +n2−1

2(n+1) = n − 1,
that is,

PI = n2 − 1. (33)

If PI < P � PH and M satisfies (29), then freeing ions to the
side that contains the largest number of ions (M → M + 1
and m → m) will increase the Gibbs energy. However, if ions
are freed to the other side (the one with the smallest number
of ions, m → m + 1 and M → M), the Gibbs energy will
decrease.

2. Optimal ionic configurations

We are now in a position to identify the fundamental
energy or configuration. Note that we only need to compare
the energies of the configurations that have M = m or M =
m + 1. These were found to be the configurations with minimal
energy among the systems with a fixed number of free ions.
First let us compare the transitions in which the number of free
ions is kept even, that is, M → M + 1 and m → m + 1 with
M = m. This is given by

�G2n(M → M + 1,m → m + 1) = 2 ln

(
(m + 1)2

P + (n − m)2

)
.

(34)

FIG. 3. Fundamental configuration for P = 0 and N = 2n = 26
(even) and n = 13 (odd). In this case, the first threshold is precisely
P0 = 0. As soon as P increases and 0 < P � P1, one particle from
each interior side will go to the outside, leaving (n − 1)/2 particles
in each interior side of the colloid and (n + 1)/2 on each outer side.

The argument of the logarithm is the same as in (26). Then,
following the same analysis done for Eq. (26) but restricting
the value of m such that m < n − 1, we find that the value for
which m minimizes the energy is

mc
2n(P ) =

{⌈
P+n2−1
2(n+1)

⌉
if P � PI

n if P > PI .
(35)

Since mc
2n(P ) and Mc

2n(P ) are the same when M = m, it fol-
lows that any configuration with an odd number of unbounded
particles must be more energetic than the configuration with
M = m = mc

2n(P ). Then the fundamental configuration has
an even number of unbounded ions, with M = m = mc

2n(P ).
The evolution of the fundamental configuration as P varies

is the following. For P = 0, which corresponds to a large
average separation 〈L〉 between the colloids, the number of
unbound ions on both sides of the colloids is

mc
2n(0) =

⌈
n − 1

2

⌉
=
{
n/2 if n is even
(n − 1)/2 if n is odd. (36)

The remaining bound ions will be divided in two and locate
themselves in the vicinity of each colloid. This number of
bound ions around each colloid is

n − mc
2n(0) =

{
n/2 if n is even
(n + 1)/2 if n is odd. (37)

These configurations are shown in Figs. 3 and 4. Essentially,
there is one-quarter of the total number of counterions on each
side of each colloid. For the case when n is even it is exactly
one-quarter (n/2 = N/4) and in the case when n is odd there is
a frustration to achieve this and there is one counterion more on
each inside side than on the outside sides. This configuration
can be understood by a simple argument. For P = 0, 〈L〉 →
∞, so each colloid is like an isolated system that will attract
N/2 counterions to neutralize it. Since the effect of the other

FIG. 4. Fundamental configuration for P = 0 and N = 2n = 28
(even) and n = 14 (even).
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TABLE I. Values of the pressure Pk at which a jumping transition occurs.

N = 2n N = 2n + 1

Parameter n even n odd n even n odd

pressure threshold Pk (N + 2)(k + 1
2 ) (N + 2)k (N + 2)(k + 1

4 ) (N + 2)(k + 3
4 )

number of unbound ions Mc
N

n

2 + k n−1
2 + k n

2 + k n+1
2 + k

index k range k ∈ {0,1, . . . , n

2 − 1} k ∈ {0,1, . . . , n−1
2 } k ∈ {0,1, . . . , n

2 } k ∈ {0,1, . . . , n−1
2 }

colloid will be negligible, the left and right sides of each colloid
are equivalent and the N/2 = n counterions will distribute
themselves in equal numbers around each side (parity of n

permitting).
Then, as P increases, 〈L〉 decreases and it becomes more

entropically favorable for the counterions in the inside region
to “jump out” to the outside regions.1 There is no symmetry
breaking between the left and right outside regions, so at
each transition two counterions simultaneously jump to the
outside, one on each side. These transitions occur when
the argument of the ceiling function in Eq. (35), (P + n2 −
1)/2(n + 1), is an integer. The values of the pressure at
which a transition occurs (P = Pk) can be indexed by an
integer k. Table I shows the values of Pk that depend on
the parity of N and n. At each transition P = Pk there is
a fourfold degeneracy where the configurations (�,r) corre-
sponding to (mc

2n(Pk) − 1,mc
2n(Pk) − 1), (mc

2n(Pk),mc
2n(Pk) −

1), (mc
2n(Pk) − 1,mc

2n(Pk)), and (mc
2n(Pk),mc

2n(Pk)) all have the
same Gibbs energy.

These transitions continue as P increases until all particles
are outside. This occurs for P = PI = n2 − 1. At this value,
the last two counterions that are in the inside region jump to
the outside region. The corresponding Gibbs energies of these
configurations are

G2n(n− 1,n− 1) = 4 ln(n− 1)! + 2 ln(P + 1) + ln P (38)

1We use the word “jump” figuratively, since the system is really
one dimensional and the particles go through the colloids at each
transition rather than jumping over them.

FIG. 5. Gibbs energies for N = 4. The solid lines represent the
configurations with minimal Gibbs energy for a fixed number of
unbounded particles.

(there remain only two counterions inside) and

G2n(n,n) = 4 ln n! + ln P (39)

(all counterions out). When P = PI = n2 − 1 we have
G2n(n − 1,n − 1) = G2n(n,n) = G2n(n,n − 1).

Figures 5 and 6 illustrate this situation when N = 4 (n = 2).
In that case PI = 3, which is the value of the pressure above
which it is more favorable to take all four particles unbounded
outside (two on each side) than to have two outside and two
confined in the inner region. The discussion of the present
results comes with a word of caution. When n = M = m, as
for the curve labeled (2,2) in Fig. 5, the force experienced
by each of the colloids at x = 0 and x = L vanishes. This is
because the electric field acting on a colloid (say, at x = 0)
reads simply −n (it tends to repel the colloid from the other
located at x = L), so the resulting force is −n2. On the other
hand, the osmotic pressure stemming from counterions on the
left-hand side of the colloid creates a contribution n2, which is
exactly opposite. The fact that the pressure vanishes makes the
isobaric ensemble more subtle to analyze and the quantity P

involved in the Laplace transformation to obtain the partition
function is not the physical pressure of the system. As a
consequence, the curve (2,2) in Fig. 5, which admits a simple
analytical expression [GP = ln(16 P )], indicates by its domain
of prevalence (P > 3) a region that is physically forbidden
(in a canonical description). We will see when discussing
canonical ensemble results that this scenario is confirmed and
that the pressure is indeed always smaller than 3 in the case
N = 4. A similar phenomenon appears when N is odd and all
ions are unbounded (meaning that N = 2n + 1, M = n + 1,
and m = n). In this case, one can show that P is again L

independent (and more precisely that P = −1/4, irrespective

FIG. 6. Configuration that minimizes the Gibbs energy for N =
4. The figure shows the value of m = M , which is half the number of
unbounded counterions.
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of N ). The canonical and isobaric descriptions yield distinct
results: When the canonical pressure is size independent, the
system cannot adjust its volume to adapt to the externally
imposed pressure P . The isothermal-isobaric ensemble then
exhibits an instability, leading the system to adopt a vanishing
volume, or an infinite one, dependent on P . This suppresses
the equivalence of ensembles. One can be slightly more precise

and state that the ensemble equivalence is lost when the
canonical free energy does not diverge for L = 0. We therefore
anticipate that for the N = 5 results to be shown below (Fig. 9),
the domain of prevalence of the (3,2) configuration also signals
a region that is, canonically, unphysical.

Now the odd case (N = 2n + 1) is examined. The dimen-
sionless Gibbs energy is given by the following expression:

G2n+1(M,m) =
{

2 ln(M!m!) + 2
∑n−M

k=0 ln
[
P + (

k + 1
2

)2]+∑n−m
k=n+1−M ln

[
P + (

k + 1
2

)2]
if n − M + 1

2 > 0

2 ln(M!m!) +∑n−m
k=M−n−1 ln

[
P + (

k + 1
2

)2]
if M − 1

2 − n > 0.
(40)

The energy changes for a fixed number of free ions are given
by

�G2n+1(M → M + 1,m → m − 1)

= 2 ln

(
M + 1

m

)
+ ln

(
P + (n − m + 3/2)2

P + (n − M + 1/2)2

)
� 0, (41)

�G2n+1(M → M − 1,m → m + 1)

= 2 ln

(
m + 1

M

)
+ ln

(
P + (n − M + 3/2)2

P + (n − m + 1/2)2

)
� 0. (42)

From these expressions we obtain again a behavior in which
the system tends to be with the same number of counterions
on each side. In the case in which the number of free ions
is odd, the fundamental configuration is degenerated because
changing the exceeding (m = M − 1) ion from left to right is
indifferent to the Gibbs energy.

The Gibbs energy differences when only M or m is changed
are

�G2n+1(M → M + 1,m → m) = ln

(
(M + 1)2

P + (n− M + 1/2)2

)
,

(43)

�G2n+1(M → M,m → m + 1) = ln

(
(m + 1)2

P + (n− m + 1/2)2

)
.

(44)

Performing a similar analysis as in the even case, we conclude
that M → M + 1 with m fixed yields �G � 0 if

2n − m � M � P + n2 + n − 3/4

2n + 3
. (45)

We can define a special value of the pressure as before:
PH (m) = 3n2 + 5n + 3/4 − m(3 + 2n). In terms of N =
2n + 1, this is the same as (30). The M such that the system
has the minimum energy Mc

2n+1(P ) for a given pressure and a

FIG. 7. Fundamental configuration for P = −1/4 (meaning that
the intercolloid distance is large) and N = 2n + 1 = 27 (odd) and
n = 13 (odd).

given m is

Mc
2n+1(P ) =

{⌈
P+n2+n−3/4

3+2n

⌉
if P � PH

2n + 1 − m if P > PH .
(46)

On the other hand, when m → m + 1 with M fixed, we
have �G � 0 if

n � m � P + n2 + n − 3/4

2n + 3
. (47)

Let us define PI such that PI +n2+n−3/4
2n+3 = n, that is,

PI = n2 + 2n + 3/4. (48)

The same analysis done to obtain the fundamental config-
uration for N = 2n is valid for the case N = 2n + 1. The
fundamental configuration for P � PI is given by M = m =
mc

2n+1(P ) with

mc
2n+1(P ) =

{⌈
P+n2+n−3/4

3+2n

⌉
if P � PI

n if P > PI .
(49)

The evolution of the fundamental configuration as P

increases is similar to the case of N even. The smallest physical
value for the pressure is P = −1/4, which corresponds to
〈L〉 → ∞. As before, the counterions will arrange themselves
in four quarters around each side of the colloids. Nevertheless,
since N = 2n + 1 there is a “misfit” counterion that roams in
the inside region between the two colloids, responsible for the
effective attractive force (P = −1/4) between the colloids.
The role of this counterion is analyzed in more detail in
Ref. [13]. It should be noted that this delocalized ion is a
fundamental piece of the mechanism to generate an effective
attractive force and this mechanism is also valid for three-
dimensional systems in the strong-coupling regime [17,18].

Figures 7 and 8 show the possible fundamental configura-
tions for P = −1/4. As P increases, the transitions where two
inside counterions jump to the outside region will occur each
time (P + n2 + n − 3/4)/(3 + 2n) is an integer, accompanied
by the fourfold degeneracy previously discussed. Notice that

FIG. 8. Same as Fig. 7, with still an odd N = 2n + 1, but now n

even: P = −1/4, N = 29, and n = 14.
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FIG. 9. Gibbs energies N = 5. The solid lines represent the
configurations with minimal Gibbs energy for a fixed number of
unbounded particles.

the first transition will occur for a value of P > 0, therefore
the configuration discussed in the preceding paragraph is the
fundamental one for all the region of attractive effective force
(P < 0) and also for small pressures. Table I shows the values
of the pressure at the transitions thresholds and the number of
counterions Mc

2n+1 outside.
Finally, when P = PI = n2 + 2n + 3/4 we have

G2n+1(n,n) = G2n+1(n + 1,n). The last inside counterion
will jump to one of the outside regions. For P > PI the lowest
energy is degenerated for the configurations determined
by M = n + 1 and m = n.

FIG. 10. Configuration that minimizes the Gibbs energy N =
5. The values of both m and M are reported; the total number of
unbounded ions is m + M .

The situation is illustrated in Figs. 9 and 10 for N = 5
(n = 2). In this case PI = 35/4 = 8.75. Equation (49) predicts
two transitions: first from having one particle at each outer side
to having two particles at each outer side (at P0 = 1.75) and
then the remaining particle goes to one outer region when
P = P1 = PI = 8.75.

D. Isobaric length

The isobaric length is given by the usual relation 〈L〉 =
− ∂ ln Zp

∂P
:

〈L〉2n(M,m) =
⎧⎨
⎩

1
P

+ 2
∑n−M

k=1
1

P+k2 +∑n−m
k=n+1−M

1
P+k2 if n − M − 1

2 > 0∑n−m
k=M−n

1
P+k2 if 1

2 + M − n > 0,
(50)

〈L〉2n+1(M,m) =
⎧⎨
⎩
∑n−m

k=n+1−M
1

P+(k+ 1
2 )2 + 2

∑n−M
k=0

1
P+(k+ 1

2 )2 if n − M + 1
2 > 0∑n−m

k=M−n−1
1

P+(k+ 1
2 )2 if M − 1

2 − n > 0.
(51)

We define LF
P as the value of 〈L〉 corresponding to the minimal

Gibbs energy configuration for a given pressure P . This
quantity LF

P is obtained from Eqs. (50) and (51) by replacing
the appropriate values of m and M that correspond to the
minimal Gibbs energy configuration. By doing this, we are
considering a situation where the system is quenched at that
fundamental configuration. In Fig. 11 we show graphically the
relation between the length LF

P and the pressure P .
The behavior of the fundamental isobaric length shown

in Fig. 11 is consistent with the physical intuition for small
pressures. The only unexpected behavior is the asymptotic
approach to zero length as P tends to infinity. It would be
expected that it reaches zero (for even N ), or −1/4 (for
N odd) for a finite value of P , when all particles become
unbounded, as discussed after Fig. 5. The fact that this does
not happen is due to the characteristic that the pressure of the
isobaric ensemble includes the right colloidal charge, unlike
the canonical ensemble. We assume here, for the sake of the
argument, that the left colloid is held fixed without fluctuations
allowed. Thus, a barostat acting on the rightmost colloid has
to work against the fluctuations of the colloid itself, which

contributes to the barostatic pressure. As alluded to above, we
emphasize that the branch with P > 3 in Fig. 11, having all
counterions out, is such that the equivalence of canonical and
isobaric ensembles is lost. This will be confirmed in Fig. 14,
where it will appear that the value of 3 is the upper bound for
the canonical pressure. Note also that for N = 4 the pressure
never reaches negative values, while for N = 5 it is negative
for LF

P > 80/9. For an arbitrary n such that N = 2n + 1 we
have a similar behavior with P becoming negative for LF

0 (n).
The function LF

0 (n) as a function of n is shown in Fig. 12 and
it can be obtained exactly by substituting P = 0 in Eq. (51).
It is a monotonically increasing function for n ∈ N∗, bounded
from below and from above by 8 and 10, respectively. The
lower bound is realized for n = 1. Note that each value of
LF

0 is repeated twice when n is increased by one, a behavior
that can be explained by analyzing the corresponding number
of unbound particles. When n is increased to n + 1 and the
number of unbounded particles remains the same mc

n = mc
n+1,

in the system of n + 1 there are two additional particles in
the bounded region. The only way to maintain the same
pressure with more bounded particles is by increasing the
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FIG. 11. Fundamental isobaric length LF
P = 〈L〉 for (a) N = 4 and (b) N = 5.

length. Then, for an n such that mc
n = mc

n+1 the length for
n + 1 increases LF

0 (n) < LF
0 (n + 1). If, on the other hand, the

number of unbounded particles increases, there is the same
number of counterions inside, leaving the pressure and length
unchanged. Remember that the fundamental configurations
are for M = m and thus if m increases by 1, so does M . This
means that either both particles become unbounded or none
at all are. For N = 2n, the fundamental pressure is always
positive. Consequently, like-charge attraction only occurs for
an odd number of counterions.

III. CANONICAL ENSEMBLE

A. Canonical partition function

The canonical partition function is obtained by computing
the inverse Laplace transform of Eq. (18). This is done with the
aid of the residue theorem. It is more convenient to work with
expressions (19) and (20), from which it is easier to identify the
first- and second-order poles of the isobaric partition function.
For M < n and N = 2n (even number of counterions) there
are both first- and second-order poles, which leads to the
expression

Zc(2n,L) = 1

(M!m!)2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

[(n − M)!(n − m)!]2
−

n−m∑
j=n+1−M

e−j 2L

j 2

(
n−M∏
k=1

1

j 2 − k2

)2 n−m∏
k=n+1−M

k �=j

1

k2 − j 2
−

n−M∑
j=1

e−j 2L

j 2

×

⎛
⎜⎜⎜⎝

n−M∏
k=1
k �=j

1

j 2 − k2

⎞
⎟⎟⎟⎠

2⎛
⎝ n−m∏

k=n+1−M

1

k2 − j 2

⎞
⎠
⎡
⎢⎢⎢⎣L + 1

j 2
− 2

n−M∑
k=1
k �=j

1

k2 − j 2
−

n−m∑
k=n+1−M

1

k2 − j 2

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (52)

If M � n and N is even, the isobaric partition function only contains simple poles, leading to

Zc(2n,L) = 1

(M!m!)2

n−m∑
j=M−n

e−j 2L

n−m∏
k=M−n

k �=j

1

k2 − j 2
. (53)

FIG. 12. (a) Isobaric fundamental length LF
P (n) when P = 0 as a function of n. Here LF

P (n) ∈ [8,10), approaching asymptotically 10.
(b) Corresponding values of mc

n = Mc
n as a function of n. Both graphs emphasize the large-n region, where a doublet structure is apparent.
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A

L → 0
All ions

are
unbounded

+ r = N

2 ln( !r!)

Some
ions are

unbounded
+ r < N

Diverges ∼ (N − − r) ln 1
L

L → ∞

N Odd Diverges

{
∼ L/4 for M ≤ n

∼ (M − n − 1/2)2L for M > n

N Even

M ≤ n 2 ln(M !m!(n − M)!(n − m)!)

M > n Diverges ∼ (M − n)2L

FIG. 13. Behavior of the Helmholtz free energy.

For the odd case, N = 2n + 1, something analogous happens. For M � n there are second-order poles and for M > n there are
only simple poles, as can be seen in the expressions

Zc(2n + 1,L) = 1

(M!m!)2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n−m∑
j=n+1−M

e−(j+1/2)2L

(
n−M∏
k=0

1

j 2 + j − k2 − k

)2 n−m∏
k=n+1−M

k �=j

1

k2 + k − j 2 − j

+
n−M∑
j=0

e−(j+1/2)2L

⎛
⎜⎜⎜⎝

n−M∏
k=0
k �=j

1

k2 + k − j 2 − j

⎞
⎟⎟⎟⎠

2⎛
⎝ n−m∏

k=n+1−M

1

k2 + k − j 2 − j

⎞
⎠

×

⎡
⎢⎢⎢⎣L −

n−M∑
k=0
k �=j

2

k2 + k − j 2 − j
−

n−m∑
k=n+1−M

1

k2 + k − j 2 − j

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (54)

Zc(2n + 1,L) = 1

(M!m!)2

n−m∑
j=M−n−1

e−(j+1/2)2L

n−m∏
k=M−n−1

k �=j

1

(k − j )(k + j + 1)
. (55)

B. Helmholtz free energy

To discuss the configuration that will be adopted in the
canonical ensemble, we analyze the Helmholtz free energy
Ã. We use the relation Ã = −β−1 ln Zc and we introduce the
dimensionless free energy A = βÃ. The analytic expression
for A is hard to analyze, but its physical interpretation is
straightforward. First consider small values of the length L.
There are two different behaviors as L approaches zero. If all
counterions are unbounded, they screen the colloids, behaving
effectively as two charges of opposite sign, decreasing their
energy as they get closer. If at least one particle is bounded,
again the two colloids are screened, but as the distance between
them decreases, the pressure increases, making A diverge.
Now consider the asymptotic behavior when L → ∞. If N

is odd the energy diverges because the ensemble decouples in
two charges of opposite sign. Separating them requires work,
which gives an increase of A as L grows. This is due to the fact
that A can be interpreted as the energy required to assemble the

system. However, if N is even, two behaviors are observed. If
M < n + 1, all the ions screen the opposite colloid, creating
two neutral systems, which will require a finite amount of
energy to be separated an infinite distance. If M � n + 1, this
screening is not successful and we have the same situation as
in the case when N is odd. A summary of the behavior of A

for L → 0 and L → ∞ is shown in Fig. 13.

C. Canonical pressure

The canonical pressure is given by P = d ln Zc

dL
. We are inter-

ested in the behavior of the fundamental (energy-minimizing)
configuration. In Figs. 14 and 15 one can see the essential
traits for N = 4 and N = 5. For the even case note that the
fundamental pressure is always positive, while for an odd
number of ions, it can be negative. We stress again that
like-charge attraction is only possible for an odd numbers
of counterions. The pressure exhibits discontinuities when a

022112-10



CONFIGURATIONAL AND ENERGY LANDSCAPE IN ONE- . . . PHYSICAL REVIEW E 95, 022112 (2017)

FIG. 14. (a) Fundamental Helmholtz energy AF . (b) Pressure P F
c for N = 4.

configuration transition occurs. The Helmholtz free energy
is always continuous regardless of the parity of N . The most
notable difference between the free energies due to the parity is
the asymptotic behavior as L → ∞. For N even, A approaches
0 as L → ∞, while when N is odd, A tends to infinity for
L → ∞. This behavior was explained in Sec. III B and it has
do to with the formation of two effective opposite charges
made by the colloids and the ions that screen them.

D. Density profiles

The density profile of the counterions is obtained by
computing the expression

n(x,L) = 1

Zc(N,L)

N∑
k=1

∫
x1<···<xk=x<···<xN

e−U (x1,...,xN ,L)

×
N∏

j=1
j �=k

dxj . (56)

The sum in Eq. (56) can be separated into three sums, one per
region [in the spirit of the decomposition in Eq. (5)]. Due to
the characteristics of the one-dimensional Coulomb potential,
the integrals of each region depend only on the ions that reside
in it. The parts of the integral that depend on ions that are not
in the region do cancel out and the expression for the density

profile for x < 0 is given by

n�(x < 0,�) = 1

ZL

�∑
k=1

∫
x1<···<xk=x<···<x�

e−UL(x1,...,x�)

×
�∏

j=1
j �=k

dxj (x < 0). (57)

This can be evaluated following similar lines as above. We first
introduce the change of variables yj = xj − xk (for 1 � j <

k) and the functions φk(x) = H (x)exp(k2x), which yields

∫
x1<···<xk=x<···<x�

e−UL(x1,...,x�)
�∏

j=1
j �=k

dxj

= (−1)�−k

(
�

�
j=k

φj (xk)

)
L
{

k−1
�

j=1
gj (−x1)

}
(0). (58)

In the second step, we have

n�(x,�) = (�!)2
�∑

k=1

(−1)�−kek2x

[(k − 1)!]2

×
�∑

i=k

�∏
j=k

j �=i

ei2x

i2 − j 2
(x < 0). (59)

FIG. 15. (a) Fundamental Helmholtz energy AF . (b) Pressure P F
c for N = 5.
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FIG. 16. Density plot for r = 2 and (a) � = 0, (b) � = 1, (c) � = 2, and (d) � = 3.

Analogously, the density profile for the region x > L is
obtained as

nr (x,r,L) = (r!)2
r∑

k=0

e−(k+1)2(x−L)

[k!]2

×
r∑

i=N−k+1

r∏
j=N−k+1

j �=i

e−i2(x−L)

j 2 − i2
(x > L).

(60)

For the bounded interval x ∈ [0,L] the convolution product
of the bounded partition function splits into two convolution
products. This convolution products can be expressed in terms
of canonical partition functions using equality (17):

nB(x,�,r,L) = 1

Zc(N,�,r,L)

N−r∑
k=�+1

Zc(N,�,N − k + 1,x)

×Zc(N,k,r,L − x)[k!(N − k + 1)!]2. (61)

From the three expressions for the three regions it can be
observed that for the intervals x < 0 and x > L, the density
is independent of L. Also n�(x,�) and nr (x,r,L) do not
depend on r and �, respectively. All these properties stem
from the fact that in the present one-dimensional setting, the
presence of colloidal charges at x = 0 and x = L decouple the
corresponding half lines that each of them delimits. In Fig. 16,
this is shown for N = 5. For most of the cases the density
is not continuous at the colloids position. In fact, for a given
value of � and r it is only continuous for one value of L. The
values at the fixed points x = 0 and x = L follow a simple

expression. For the cases n(0+) and n(L−) the expressions can
be obtained using the equivalent model (22) and the contact
theorem (see [13])

n(0+) = P + (N/2 − �)2, (62)

n(L−) = P + (N/2 − r)2. (63)

For the outside regions, the same equation is valid, however
the pressure is zero, giving the expressions

n(0−) = �2, (64)

n(L+) = r2. (65)

This is fully compatible with the results displayed in Fig. 16.
The above results also call for a number of comments. When
no ions are bound, we necessarily have n(0+) = n(L−) =
0. Equations (62) and (63) thus imply that (N/2 − �)2 =
(N/2 − r)2, which is indeed true since we have r + � = N

(all ions out). These equations also immediately yield P = 0
for N = 2n even, m = M = n and P = −1/4 for N = 2n + 1
odd, M = n + 1, and m = n. These results have already been
mentioned in Sec. II C 2.

E. Charge reversal

Finally, concerning overcharging, there is always a config-
uration for which this happens independently of parity or L.
This is due to the fact that one can always pick a configuration
that has M > N/2, which will reverse the charge of one
colloid. As expected for an odd N overcharging occurs for
all configurations due to the fact that even for M � N/2 the
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charges cannot be arranged such that the screened colloids are
neutral. That is, one of the colloids will have at least one more
counterion in its vicinity. That and the fact that the system is
neutral implies that one of the colloids will have an effective
charge q+ � |e| and the other q− = −q+.

IV. CONCLUSION

We have studied a one-dimensional Coulomb system,
which is an extension of the model proposed in [13], where the
charge of two colloids is compensated by that of an ensemble
of N counterions, all of the same charge. Our goal was to
identify the fundamental (optimal) configuration of charges:
How many counterions should be confined, and therefore lying
between the two colloids, and how many should be unbound?

We found that for large separation between colloids (or
small pressures for the isobaric ensemble), the system sepa-
rates in two almost independent subsystems. These subsystems
are formed by each colloid and a screening cloud with half
of the total number of counterions. If N is odd, there is
additionally a single counterion between these subsystems.
The structure of the screening cloud of each subsystem is such
that approximately half of the counterions of the cloud are on
each side of the colloid. The exact number of counterions on
each side depends on the parity of n (N = 2n or N = 2n + 1),
which plays a crucial role in determining the subsystem
structure. The precise subsystem structure for each case is
illustrated in Figs. 3, 4, 7, and 8.

When the colloids are close (high pressure), the interaction
between counterions dominates, forcing them to escape in
pairs the bounded region. The process is symmetrical, except
for the last bounded particle in the odd case, which lacks a
pair to jump with. For an arbitrary separation of colloids, we
characterize analytically the fundamental configuration in the
isobaric ensemble (see Table I).

We observed that this model allows both like-charge
attraction and charge reversal, even for the fundamental
configuration. As in [13], these phenomena were related to the
parity of the number counterions, arising due to the failure to
neutralize the colloidal charges. All thermodynamic quantities
for the isobaric and canonical ensembles were obtained ana-
lytically for all the configurations. The fundamental canonical
configuration was examined with computational aid. Within
the isobaric ensemble, we explained in detail how the Gibbs
energy behaves for all possible configurations and provided the
physical interpretation. We also gave asymptotic behaviors for
the thermodynamic quantities in the two ensembles.
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