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We examine here an alternative protocol (termed “Route 2” for conciseness), that uses directly the position of
the trap center as the additional degree of freedom, and not the effective temperature as in TESE. Though the
experimental implementation of the effective temperature relies on an engineering of the trap center position, the two
protocols differ: within Route 2, the trap does no longer follows a white noise signal. Route 2 is defined as follows:
at initial time, the stiffness of the trap is changed abruptly from κi to κf < κi, while a second trap of stiffness κmax

is added. Whereas the first trap remains fixed until the end of the protocol, the center of the second will follow the
trajectory x0(t) = f(t)δ(i). The shape f(t) of this trajectory is fixed, but its amplitude δ(i) is a random variable,
centered and of standard deviation δ, whose values are uncorrelated between two realizations of the protocol. As
explained in the main text, the statistics we refer to concern the ensemble of realizations of the protocol. As the
particle density function remains Gaussian during the whole transformation, we only focus on the first and second
moment of the position of the particle. This position is denoted by x(i)(t) for the ith realization, and 〈.〉i refers to
the ensemble average on the realizations of the protocol.

For realization i, the colloid’s position obeys Langevin equation
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where the initial position of the particle x(i)(0) is a random variable with the initial equilibrium Gaussian distribution
(centered, of variance kBT/κi). To be successful, a protocol needs to meet the following requirements on its first two
moments
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The second equality ensures that the system reaches the desired equilibrium, and the last one that it remains subse-
quently at equilibrium. While the first condition trivially holds if 〈δ(i)〉i = 0, we need to engineer the shape f(t) of
the trap trajectory and its amplitude δ to fulfill the last two. Defining
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we have
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Conditions (4) and (5) can be rephrased as
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Once we choose the final value F (tf ), then
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To fully determine the protocol, we just need to choose a shape for F (t) that takes the good values F (tf ) and Ḟ (tf )
at final time, for example a polynomial form

F (t) = A(t/tf )2 +B(t/tf )3, (12)

and to deduce f(t) from it

f(t) = Ḟ (t) + F (t)/τ ′. (13)

Note that according to equation (8), in general, F (tf ) and Ḟ (tf ) have the same sign, as κ′ = κf + κmax is likely
to be greater than κi for experimental reasons (the trap must not be too loose), and then τ ′ < τi. This means in
particular that f(tf ) cannot be zero, as can be seen from equation (13), and that it is impossible to bring the second
trap back at the origin at the end of the protocol. As a consequence, the protocol cannot be carried out by only one
trap, contrarily to our protocol that only needed one trap.

Finally, let us evaluate the standard deviation of the trap displacement f(t)δ when choosing a reasonable value for
F (tf ), for example F (tf ) = τ ′. Keeping our values of the parameters (τi = 4.7 ms, χ = 0.44, tf = 1 ms, κmax = 6κi so
τm = ν/κmax = τi/6 ' 0.78 ms and τ ′ = (1/τf + 1/τm)−1 ' 0.73 ms), we obtain a standard deviation on the order of
3σi, to be compared with our experimental 12σi (cf Fig. 1 of the main text). The shorter the protocol, the bigger the
amplitude of the trap displacement. So authorizing up to the displacement of 12σi that we used in our experiment,
this alternative protocol can be realized approximately ten times faster than ours, the other parameters being fixed,
but requires two independent traps where TESE only requires one.

To conclude, Route 2 is fully operational, if not simpler than our protocol, but is restricted to a single particle
system, and does not lend itself to a generalization to N non interacting trapped Brownian objects. A similar
comment can be made to the TESE protocol, in the experimental implementation we proposed. Yet, the TESE idea
in its generality does not suffer from the same shortcoming. The key is to be able to emulate a bona fide effective
temperature, see our comment in the concluding section of the main text.
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