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Supplemental material for ‘Blast dynamics in a

disipative gas’

Henderson constitutive relation

The dense transport framework for inelastic hard
spheres suggests the constitutive relation

p = nΘZ(n) (1)

where Z(n) stems from the finite compressibility of the
gas. In the dilute limit, Z(n → 0) → 1 and the rela-
tion above becomes the ideal gas law (note that kB does
not appear since Θ is an energy rather than a thermody-
namic temperature). However, Z(n) diverges at finite n
to account for the increase of pressure due to steric effect;
while there is no known expression for Z(n) that may ap-
ply in all conditions, we choose the classical Henderson
relation [35]

Z(n) =
1 + φ(n)2/8

(1 − φ(n))2
(2)

with the volume fraction φ(n) = nπ σ2. This relation
is found to provide sufficient agreement between theoret-
ical and numerical results, despite being derived under
assumptions (such as local equilibrium) not expected to
hold in our system. Other valid candidates, some incor-
porating a singularity at close packing, can be found in
[36] and yield comparable results.

Extended Rankine-Hugoniot conditions

Assuming the system to be quasi-1d near the interface,
it is possible to integrate Eqs.(1) between coordinates r1
and r2 such that ṙ1 = ṙ2 = Ṙ, and obtain flux difference
equations:
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Letting r1 = R(t)− ǫ and r2 = R(t) + ǫ with ǫ → 0 gives
a system with one non-trivial solution corresponding to
finite compression at the interface, the usual Rankine-
Hugoniot jump conditions [32] – in fact, the singular layer
thus delimited is the shock front, of microscopic width,
where hydrodynamical models fail due to the mixing of
particles in different states. But the equations above hold
for any r1 = R(t) − x with finite x, provided that dis-
tance is small enough compared to the radius of curva-
ture of the interface that local unidimensionality can be
maintained, and assuming higher order hydrodynamical

terms play no significant role in that region. We thus
extend this description to characterize not only the jump
between the boundaries of the shock front, but also the
continuous variation of the fields through the cooling re-
gion, up to the point of maximal compression.

Intermediate scaling regimes

As discussed in the main text, the similarity regimes
obeyed by the blast, conservative or dissipative, are
driven by central pressure and orthoradial momentum
exchanges; if both vanish, a new conservation law ap-
pears and controls the scaling regime: conservation of
radial momentum per angular sector (or solid angle in
spatial dimension d = 3). In addition, for α < 1, if
the central pressure is eliminated before orthoradial ex-
changes, one should expect an exponent δ < 1/(d + 1).
This may provide an explanation for the slower growth
observed experimentally [13, 14]: in that case, the blast
is created with an initial central hole, which nullifies the
central pressure, and it furthermore never reaches the
MCS fixed point due to the non-zero external temper-
ature, which eventually causes the shock to decay. In
other settings, orthoradial exchanges in the shell usu-
ally vanish before the central pressure caused by non-
accreted energetic particles, and an intermediate regime
known as the Pressure-Driven Snowplow (PDS) arises
with δ = 2/(dγ + 2) ≥ 1/(d + 1) [8]. It is self-similar
of the second kind, varying with the adiabatic index γ.
Fig. S1 provides a numerical validation of this succession
of regimes in a granular gas with a standard γ = 1+2/d,
so that δ = 2/(d+ 4) = 2/7 in dimension three.
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FIG. S1: Scaling of the radius R(t) in a three dimensional
simulation (d = 3). There are three successive regimes:

quasi-elastic t
2/(d+2) (solid line) before dissipation becomes

significant, then Pressure-Driven Snowplow (PDS, dashes)

t
2/(dγ+2), and Momentum-Conserving Snowplow (MCS, dots)

t
1/(d+1). Left: Raw data. Right: Data rescaled by the PDS
law, to evidence that regime over one decade (shaded region).
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Linear stability analysis

In addition to the perturbation of the hydrodynamical
fields (8), we must consider the perturbed radius

R(θ, t) = R(t) (1 + δR cos(kθ) ts) (4)

As the normal to the interface is now different from er,
the orthoradial velocity field can be non-zero (as seen in
Fig. 1, particle velocities tend to stay aligned with the
normal), and we must consider a pertubation δV⊥. The
coupling between the four perturbations δM , δP, δVr

and δV⊥ is expressed as a matrix whose coefficients are
functions of λ. In the incompressible limit, M(λ) = Mrcp

and there is no density perturbation δM = 0. The unper-
turbed profiles are then given by Eqs. (7). The matrix
equation for the remaining perturbations then takes the
form (omitting the dependence in λ)





1 0 0
V − δ 0 M−1

0 V − δ 0





d

d lnλ
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
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

(5)

where we define Ψ′ = dΨ/d lnλ for any field Ψ(λ).

Rankine-Hugoniot conditions on the perturbed inter-
face allow to specify boundary values for the perturba-
tions

δVr(1) =
s

δ
V (1)− V ′(1), δV⊥(1) = −V (1)

δP(1) =
2s

δ
P (1)− P ′(1) (6)

and we must solve the equations above numerically by
shooting from that interface toward the internal bound-
ary with the central cavity, optimizing the parameter s
in the matrix to satisfy the condition

lim
λ→λi

P (λ) δP(λ) = dδ2(1−M)(1−M−1) (7)

The above condition guarantees null pressure (includ-
ing the perturbation) at the interface with the cavity.
The location of the boundary λi = Ri/R can be com-
puted from the hydrodynamic profiles using the condition
u(Ri, t) = λiṘ since, at the boundary with an empty re-
gion, the phase velocity of the wave must be equal to the
flow velocity.
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