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Self-assembly into target structures is an efficient material design strategy. Combining analytical
calculations and computational techniques of evolutionary and Monte Carlo types, we report about a
remarkable structural variability of Wigner bilayer ground states, when charges are confined between
parallel charged plates. Changing the interlayer separation, or the plate charge asymmetry, a cascade of
ordered patterns emerges. At variance with the symmetric case phenomenology, the competition between
commensurability features and charge neutralization leads to long range attraction, appearance of
macroscopic charges, exotic phases, and nonconventional phase transitions with distinct critical indices,
offering the possibility of a subtle, but precise and convenient control over patterns.
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The self-assembly of colloidal systems opens the way to
the synthesis of materials that considerably widen the
class of known natural crystals, among which are opals or
butterfly wings. From an academic perspective, these new,
complex structures allow for detailed and original studies of
fundamental processes like nucleation, glass transition, or
low-dimensional statistical physics [1,2]. Skillfully com-
bined with progress in particle synthesis, self-assembly has
led to a wealth of applications such as patterned magnetic
systems or band gap materials used in displays, optical
devices, photochemistry, and biological sensors [3–6].
Taking advantage of targeted self-organization requires a
fine control of interactions between the entities under study.
This tailoring is achieved in most cases either by (a) intro-
ducing some patchiness on the colloids, (b) increasing the
complexity of the problem, by considering, e.g., mixtures
instead of pure systems, (c) affecting the solvent through
various additives (polymeric, electrolytic, etc.), (d) introduc-
ing an external field, be it electric, magnetic, laser-optical, or
stemming from the interactions with a patterned substrate
[7–12]. As fruitful as they have turned out to be, these
strategies in general do not allow for convenient in situ
changes of the obtained ordered structures, so that it is
challenging to probe and tune their variety in a simple
fashion, by controlling an external parameter. Relinquishing
the four routes above, we consider here a pure classical
system of charges and show that the simplest form of
external control—confinement in a slab—induces an

unexpected structural variability, which in turn opens the
way for a precise structural control. We shall focus on energy
minimizing configurations, relevant when the kinetic energy
is small compared to the Coulombic potential energy, and
where the charges are forced into a bilayer configuration,
thereby creating a particular realization of a so-calledWigner
crystal.
Wigner crystals were first predicted by the eponymous

physicist in the 1930s for electrons in a metal [13], where
they have actually never been observed. Instead, their
occurrence was reported in the 1970s for electrons at
helium interfaces [14]. Found in neutron stars and in the
interior of white dwarfs, they have subsequently been
evidenced in semiconductors [15–18], graphene [19],
quantum dots, trapped ionic plasmas or other dusty plasmas
[20], and in the colloidal realm [1]. While the symmetric
setup is now completely understood [21–25], very little is
known for the asymmetric one [26]. How do charges
organize into the bilayer structures that spontaneously
form in our problem? Upon answering this question, we
will treat the general asymmetric situation (no mirror
symmetry between the two layers), which turns out to
be considerably more complex than the symmetric case.
The question addressed is the following. Consider an

ensemble of mobile point charges (“particles”) interacting
via a 1=r potential, confined between two parallel plates
bearing uniform charge densities σ1e and σ2e, with −e the
(elementary) charge of the mobile particles; the system as a
whole is electroneutral. What is the energy-minimizing
arrangement of particles for a fixed plate-to-plate distance
d? The Earnshaw theorem [27] provides a first clue: given
that a classical system of point charges under the action of
direct (i.e., not image) electrostatic forces alone cannot be
in an equilibrium configuration, the particles are expelled
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from the slab interior, and have to stick to the confining
plates. Numerical and analytical work have furthermore
shown that when σ1 ¼ σ2, staggered configurations arise
on each plate, which—depending on d—can be rectangular
or square, rhombic or hexagonal [21–25], see also the line
A ¼ σ2=σ1 ¼ 1 in Fig. 1.
Our interest focuses on the asymmetric case (σ1 ≠ σ2),

first on the cornucopia of ordered structures that appear as
energy minimizing, and second, on the distinct properties
that characterize these new phases. Indeed, macroscopic
charges do emerge, which result in a long range attraction
between the plates. In addition, different universality
classes are probed by changing solely the interplate
separation, and overcharging is reported in some pockets
of the phase diagram. By a combination of complementary
analytical and computational techniques of evolutionary
and Monte Carlo type [28], our goal is to unravel these
properties, while charting out the phase diagram.
Without loss of generality, we assume σ1 > 0. We

introduce the asymmetry parameter A ¼ σ2=σ1, and con-
sider A ∈ ½0; 1� [41]. We then define the dimensionless

distance η ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðσ1 þ σ2Þ=2

p

. Our system is thus entirely
specified by η and A. We further introduce the surface
particle densities n1 and n2 and the order parameter
x ¼ n2=ðn1 þ n2Þ. Electroneutrality imposes σ1 þ σ2 ¼
n1 þ n2. In general ni ≠ σi (i ¼ 1, 2) and thus each of
the plates as a whole (i.e., particles plus surface charge
density) is charged. The electrostatic potential induced by
the two plates is given by ϕðzÞ ¼ −2πeðσ1 − σ2Þz,
0 < z < d. If local neutrality holds for both plates, then
ni ¼ σi (i ¼ 1, 2) and we find x ¼ xneutr ≡ A=ð1þ AÞ.
This should be the case when d → ∞, since violating local
neutrality would result in a macroscopic electric field at
large d, with divergent energy.
Upon changing η in the symmetric case (A ¼ 1), it is

known that a sequence of five phases (denoted I to V)
emerges, consisting of two equivalent, “ideal” (i.e., undis-
torted) structures on plates 1 and 2, shifted with respect to
one another. For A ¼ 1, each of the plates is locally
neutralized, and x ¼ xneutr ¼ 1=2. Increasing η, the hex-
agonal Wigner monolayer (phase I) is found at η ¼ 0, then
a bilayer with rectangular arrangements on each plate

FIG. 1. Phase diagram in the ðη; AÞ plane; η measures slab width and A ¼ σ2=σ1 is the bilayer charge asymmetry. The color code is
that of the so-called RGB (red-green-blue) scheme; here, the values of fourfold, fivefold, and sixfold bond orientational order parameters
are added up to yield the color of a given state point: Ψð4Þ

4 for red, Ψð4Þ
5 for green and Ψð4Þ

6 for blue. The range of stability of phase I is
shown by the black region on the left-hand side. It terminates on the rhs at the AcðηÞ curve. The continuous lines are for the analytical
predictions of phase boundaries, restricting candidate structures to be of I, Ix (including H), II, IIx, III, IV, V, Vx, and S1 types. Some
typical snapshots of structures are shown: those found in the symmetric A ¼ 1 case, together with Ix (for η ¼ 0.184, A ¼ 0.775,
x ¼ 1=4), H (η ¼ 0.198, A ¼ 0.85, x ¼ 1=3), IIx (η ¼ 0.148, A ¼ 0.95, x ¼ 2=5), snub S1 (η ¼ 0.622, A ¼ 0.675, x ¼ 1=3),
pentagonal P (η ¼ 0.381, A ¼ 0.85, x ¼ 3=7≃ 0.429), Vx (η ¼ 0.707, A ¼ 0.5, x ¼ 1=4) and DVx (η ¼ 0.7, A ¼ 0.75, x ¼ 2=5). For
all structures, the unit cell is the shaded region. Particles colored red are in plate 2, and those in blue are in plate 1.
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(structure II), which transforms into a square lattice
(structure III). A staggered rhombic arrangement (phase
IV) and a staggered hexagonal lattice (structure V) are
subsequently observed, see Fig. 1 [25]. All transitions are
continuous, except IV → V, which is of first order [25].
The analytical work proceeds with the derivation of new

series representations for the Coulombic energies of undis-
torted structures [28]. This yields the exact Coulombic
energy of the structures considered. On the other hand, the
numerical work is two-pronged: a first technique, inspired
from evolutionary algorithms (EAs), identifies the optimal
periodic structures among all those that have less than 40
particles per unit cell [28]; the second line of attack consists
in extensive Monte Carlo simulations [28,42] on much
lager systems (∼4000 particles per unit cell). To quantify
order and identify the complex patterns formed, it is
indispensable to introduce suitable probes: besides the
population index x, we have used the bond orientational
order parameters of symmetry n ¼ 4, 5, 6, 7, 8, 10, 12, 18,
and 24, as defined from a Voronoi construction [28]. These
parameters ΨðLÞ

n take the unit value under perfect n-fold
ordering, and have been computed in four different var-
iants: restricting to particles in layer 1 (a choice referred to
with index L ¼ 1), in layer 2 (L ¼ 2), by projecting layer 1
perpendicularly onto layer 2 (L ¼ 3), or finally by studying
the neighbors in layer 1 of a given particle in layer 2 (index
L ¼ 4). While all four variants lead to compatible results, it
appears that the latter choice, Ψð4Þ

n , with n ¼ 4, 5, and 6 is
particularly conducive to investigating the phase behavior.
These parameters have been used to construct the phase
diagram in Fig. 1, in conjunction with a precise RGB (red-
green-blue) scheme [43]. Figure 1 gathers the results for
about 35 000 state points obtained with EA computations.
The computational cost for MC simulations is about 200
times higher than for EAs, due to the complex treatment of
long ranged interactions in quasi-2D systems (see Ref. [44]
and references therein). Consequently, a smaller number of
state points can be explored with MC simulation and a
careful selection of those has to be operated to optimize
resources [28]. MC simulations show that the structures
obtained following the EA route are stable; more generally
a complete agreement between EA and MC simulations is
reported [45].
The first noticeable feature revealed by Fig. 1 is that at

small distance η, it is always favorable for the charges to
stick to the plate of highest surface charge (i.e., plate 1).
Thus, in the black region of Fig. 1, the classic hexagonal
Wigner monolayer is realized, with x ¼ 0 (structure I).
For large asymmetry (smaller A), the monolayer stability is,
expectedly, augmented. Regions where the system either
remains in phase I or partly populates layer 2, are separated
by a curve in the ðη; AÞ plane, denoted by ηcðAÞ [or
conversely AcðηÞ] shown in Fig. 1. For A≳ 0.4085, this
curve separates phase I from a family of phases that are
denoted by Ix: the latter originates from the monolayer (i.e.,

a hexagonal lattice α on plate 1 with spacing a) by picking a
fraction x of particles in a hexagonal arrangement to
relocate them on plate 2 (with thus spacing b > a). An
illustration is provided in Fig. 1. For these particular
structures, a complete analytical analysis can be achieved
and simple geometric considerations imply that only a
discrete set of x values is compatible with this geometric
constraint: x ¼ 1=ðj2 þ jkþ k2Þ, with non-negative inte-
gers j and k such that jþ k > 1: x ∈ f1=3; 1=4; 1=
7; 1=9;…g. As x → 0, these values become essentially
dense, so that we can consider x in this regime as a
quasicontinuous variable. A sufficient condition for the
instability of phase I is that it becomes energetically
favorable to extract one particle from the monolayer,
keeping all others in position. This leads to an upper
bound for ηcðAÞ, shown by the thick curve in Fig. 1, quite
close to the boundary obtained by the EA. On this curve,
the increase in the potential energy of a tagged particle
shifted from plate 1 to plate 2 is balanced by a decrease in
the particle’s interaction energy (correlation term). For
A≲ 0.4085, phases competing with phase I originate from
a different mechanism. This family of phases, denoted by
Vx, is made up of two triangular (hexagonal) structures on
the two plates (lattices α and β) with some shift, see Fig. 1
for the special cases x ¼ 1=2 (leading to structure V), and
also x ¼ 1=4. Note that when the rescaled distance η → ∞,
one expects structure Vx with x ¼ xneutr ¼ A=ð1þ AÞ.
Considering x as a continuous variable, one can calculate
analytically the location of the transition line ηcðAÞ,
depicted in Fig. 1, along with its EA counterpart. We
present the essence of the calculation, which sheds light on
the critical behavior. For a given A value, the energy
difference between structures I and Ix can be written in a
small-x expansion as

EIxðx; ηÞ − EIðηÞ
e2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ1 þ σ2
p ¼ fðηÞxþ 23=2π

λ
η2x5=2 þOðx7=2Þ; ð1Þ

where fðηÞ is a closed expression in η, which also depends
on A, and λ≃ 1 [28]. The order parameter x vanishes at the
transition, i.e., at a point where η ¼ ηc, fixed by the
condition fðηcÞ ¼ 0. This relation yields the continuous
curve ηcðAÞ in Fig. 1 and can be viewed as a locus of critical
points. Besides, expanding f for η > ηc up to linear order in
η gives access to the critical index. Together with the
extremum condition of Eq. (1) with respect to x, this leads
to the prediction x ∝ ðη − ηcÞβ with β ¼ 2=3 [28]. This
exponent differs from its Ginzburg-Landau theory counter-
parts, based on an energy expansion that is analytic in the
order parameter. Here, the long-range nature of Coulomb
interaction breaks analyticity. Numerical results are fully
compatible with β ¼ 2=3, not only for A≃ 1 where it is
admissible to neglect lattice distortions (see Fig. 2), but for
all A values, along the full curve ηcðAÞ. Transitions I → Ix
and I → Vx therefore share the same nonstandard exponent
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β ¼ 2=3. On the other hand, the other transitions such as
II → III and III → IV are standard: there, the analytical
treatment is rigorous, and leads to mean-field continuous
transitions, with β ¼ 1=2 [28]. Thus, fixing A, it is
remarkable that a sequence of transitions with distinct
critical indices takes place when increasing η.
Figure 1 provides the stability domain of structures Ix.

Moving away from the ηcðAÞ curve by increasing η, a
cascade of Ix phases emerges, each of them corresponding
to an x value specified above and associated to a plateau on
the left-hand side of Fig. 2. A snapshot of structure I1=4 is
shown in Fig. 1. Noteworthy is the honeycomb lattice (H
phase) on plate 1, structure I1=3; the corresponding plateau
in Fig. 2 for 0.07 < η < 0.17 is of significant extension.
Comparing the boundaries of theH phase, evaluated via the
numerical and the analytical methods, shows an excellent
agreement for 0 < η≲ 0.30, confirming thereby the
absence of distortions of the optimal structure within that
region. For η > 0.45, the analytical approach still estab-
lishesH as the most stable phase (see Fig. 1), while EA and
Monte Carlo identify novel intricate snub-square or pen-
tagonal structures, see below.
Phases Vx extend over a significant area in the ðA; ηÞ

plane of Fig. 1. The agreement between the numerical and
the analytical approaches is fair, with discrepancies arising
from the emergence of complex, distorted structures. At
large distances though, where structures α and β are
undistorted, some exact statements can be put forward
[28]: (i) for A < 1 the plates (plus ions in contact) remain
charged at any finite distance; only as η → ∞ and/or

A → 1, does x approach the electroneutral value xneutr;
(ii) while the always attractive interplate pressure is short
range (exponential) for the symmetric case, it becomes long
range whenever A ≠ 1, decaying like 1=η2 [46]. A detailed
analysis of structures Vx reveals that at intermediate
distances, they can accommodate significant distortions,
leading to new structures coined DVx in Fig. 1 [47].
We now focus on the vicinity of the symmetric line

A ¼ 1, where the structures that prevail for A ¼ 1 do exist
in some parameter range (A larger than 0.9). These are the
ðx ¼ 1=2Þ phases II, III, and IV. As the symmetric
structures II to IV are undistorted, both the analytical
and the numerical approaches predict regions of stability
that are in perfect agreement (see the vertical lines in the
upper part of Fig. 1). While for phases III and IV, no
generalizations to x values different from 1=2 have been
identified, phases IIx emerge in a small pocket of the ðA; ηÞ
plane. The numerical EA approach indicates a continuous
IIx → II transition. The fact that several undistorted IIx
structures can be classified via well-defined sequences of
alternating rows of particles in the two layers (see Fig. 1
where the IIx¼2=5 arrangement is depicted), opens the
possibility of an analytical, exact energy calculation
[28]. The numerical and analytical routes provide fully
consistent results for the stability of these phases.
The upper part of the phase diagram is the locus of a

rather unexpected phenomenon of charge reversal. While
for A ¼ 1 each plate plus ions in contact is electroneutral at
all distances (x ¼ 1=2), the majority of identified states is
characterized by undercharging: plate 2 (with density
0 < σ2 < σ1) plus the (negative) ions in contact carry a
net positive charge. Thus plate 2 attracts less mobile
charges than required for neutrality, so that x < xneutr.
This is somewhat expected but is no longer the case for
A≃ 1, where overcharging takes place: the most weakly
charged plate attracts more ions than necessary for neutral-
ity so that x > xneutr, see Fig. 2 [48].
Finally, we report more exotic phases, starting with the

snub type. The regular snub square structure S1 shown in
Fig. 1 has x ¼ 1=3: particles in layer 1 form a snub square
lattice [49], while particles in layer 2 arrange in a square
lattice (with slight deformations as η grows). Since particles
in layer 1 have five nearest neighbors, the S1 phase can be
quantified via the fivefold order parameter Ψð1Þ

5 together
with Ψð2Þ

4 [28]. Interestingly, the undistorted snub square
lattice is an Archimedean tiling [49,50]. Such a geometry is
amenable to an analytical treatment [28]. Surprisingly,
another snub square structure, denoted S1, can be identified
with x ¼ 1=3 as well. In contrast to the S1 phase, it shows
stronger deformations, which decrease Ψð2Þ

5 . Both struc-
tures occupy relatively small regions in Fig. 1, where
pentagonal (P) phases are also reported [51].
We have considered a charged bilayer system governed

by two parameters only: the charge asymmetry A between
the parallel plates, and the slab width η, more prone to

FIG. 2. Order parameter x as a function of distance η for
A ¼ 0.93. The horizontal dashed line shows x ¼ xneutr (0.481
here) above which the system is overcharged. The three configu-
rations illustrate the cascade of Ix structures found (with x ¼ 1=7,
x ¼ 1=4 and x ¼ 1=3; from bottom to top). As in Fig. 1, particles
colored red are in plate 2, and those in blue are in plate 1. While the
projected pattern (redþ blue) is throughout of simple hexagonal
type, the partitioning between plate 1 and plate 2 is complex. The
inset zooms into the behavior of x in the vicinity of ηc ≃ 0.036,
compared to the predicted power law with an exponent β ¼ 2=3
(dashed line). The shaded grey areas indicate the regions of
overcharging (predicted and observed in simulations).
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experimental tuning. The competition of slit confinement
with Coulomb interactions leads to a plethora of ordered
bilayers with phase transitions pertaining to different uni-
versality classes. In light of the simplicity of the model, the
complexity and variability of emerging phases is striking.
Patterns emerge as a trade-off between the commensurability
of structures, and incomplete charge neutralization (the latter
effect being quantified by x − xneutr). Figure 1 summarizes
our main findings. Besides possible experimental confirma-
tion in quantum wells [17], semiconductor bilayers [16,18],
bilayer graphene [19], or ionic plasmas [52], other relevant
perspectives deal with the inclusion of an ionic hard core,
which would frustrate several of the arrangements put
forward, the study of disordered or patterned substrates,
as well as the analysis of dynamical processes and elemen-
tary excitations.
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