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We give here the principal arguments or details behind the calculations described in the manuscript. We start
in section I by showing how to treat the JN integrals along similar lines as those invoked for their IN counterpart.
The idea is summarized in I A; it relies on a symmetry property that is worked out in I B. As a side comment, an
alternative route to identity (7) is presented in I C. We then prove Eqs. (15) and (16) of the main text in section
II. Section III is devoted to revisiting our causality argument, in a situation where a spreading packet of walkers on
a line undergo a left-right symmetric random walk; the packet will exhibit a fixed center-of-mass, until the front of
the packet hits a boundary, which impinges on symmetry. This is associated to a change of behavior for a new class
of integrals. This situation is the reverse of that discussed in the main paper, where a “message” was traveling from
the edge of the system, to its center. Here, the messengers will start from the center and travel towards the edges.
Finally, we show in section IV that it is sufficient to work with functions that have a bounded Fourier transform.

I. THE RANDOM WALK REFORMULATION FOR THE JN -TYPE INTEGRALS

A. Summarizing the argument

In order to treat integrals JN defined in Eq. (2) of the main text, we invoke (5)

pN (a1) =

∫
dk

2π
cos(ka1)

N∏
n=1

sinc(an k). (S1)

Thus, we evaluate the same object as before pN (x), at x = a1, at the boundary of the domain spanned by the first
step. The left/right symmetry of the steps n = 2, n = 3 etc. preserves the “edge” density pN (a1), which has to be
exactly half of p1(0) = 1/(2a1). This property will be derived in the next subsection; it is visible in Fig. 1 of the main
text, and holds until the “messengers”, now originating from the second edge at x = −a1, do reach x = a1. They
have to travel a distance 2a1, twice larger than previously, see below. This tells us that J1 = J2 = . . . = π/2, under

the proviso that
∑N
n=2 an < 2 a1, and we recover the exact result established in [1, 2]. This constraint is looser than

that applying to IN integrals (i.e.
∑N
n=2 an < a1), since the messengers now have to travel twice a larger distance.

B. Symmetry argument for the “edge” density

The JN type of integrals, from Eq. (S1) above, are related to the density of walkers at x = a1, at the edge of the
domain spanned by the first jump of the random walk ([−a1, a1]). Unlike the walkers that are located close to x = 0,
those at x = a1 do know they sit at an edge, therefore in a non-infinite world. Yet, a simple symmetry argument shows
that unless the walkers having started their journey from the other edge after the first jump (i.e. at x = −a1), have
reached x = a1, then pN (a1) = pN (0)/2. It turns convenient to this end to introduce a fictitious density of walkers,
denoted P for “phantom”, such that after step 1, the regular walkers are uniform in [−a1, a1] while the P walkers are
uniform in [a1, 3a1], with the same density. P walkers are non interacting, do not interact with regular ones, but all
follow the same random walk. Considering the total (regular + phantom) density of walkers, ptotalN , we are back to the
problem treated in the main text, but for the fact that we have a twice more extended system after step 1, spanning
an interval of length 4a1 rather than 2a1 (see Fig. S1 where a1 = 1). Consequently, ptotalN (a1) = 1/(2a1), under the

proviso that
∑N
n=2 an < 2a1. To connect ptotalN (a1) to pN (a1), which is the desired quantity, we invoke the left-right

symmetry of each step of the random walk. It implies first that the left and right tails of the regular walker density
are symmetric with respect to x = 0, and that that the right tail of the regular walkers density pN and the left tail
of the phantom walker density (denoted pPN ) are symmetric with respect to x = a1 (see Fig. S1). More specifically,
at x = a1, we have pN (a1) = pPN (a1), see the bullet in Fig S1-b. As a consequence, pN (a1) = ptotalN (a1)/2 = 1/(4a1)

for
∑N
n=2 an < 2a1. This shows that JN = π/2 for all N and jump sizes fulfilling the constraint

∑N
n=2 an < 2a1.
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FIG. S1. (Color online) The phantom walkers arguments. The density of phantom walkers is shown with the dashed blue
line while the continuous black curve is for the regular walkers. Left (a): After step 1 of the random walk, phantom walkers
are introduced in the system, with a uniform density. Considering regular and phantom walkers altogether, we are back to
the situation we started from in the main text, and a uniform density of walkers in [−a1, 3a1] (here, a1 = 1). Provided the
walkers starting from the edges (regular walkers at x = −a1 and phantom walkers at x = 3a1) have not reached the center at
x = a1, we thus have ptotalN (a1) = ptotal1 (a1) = 1/(2a1). Indeed, the total density of walkers (red dash-dotted line) is uniform

near x = a1. Such a situation, meaning
∑N

n=2 an < 2a1 which we assume throughout, is depicted in the right panel (b) where
we show for concreteness the case N = 3, a1 = 1, a2 = 1/3 and a3 = 1/5. Besides, the left/right symmetry of each random
step leads to the symmetry in the density of regular and phantom walkers, with respect to x = a1 (right panel). Regular and
phantom walkers thus have the same density at x = a1 (see the bullet), so that pN (a1) = ptotN (a1)/2 = 1/4 on the Figure.

C. Recovering identity (7)

We stress that Eq. (S1) can be invoked for an alternative route to Eq. (7), which reads

∫ ∞
−∞

cos(a1k)

N∏
n=2

sinc(an k) dk = 0. (S2)

Indeed, starting from x = 0, we consider now pN−1(a1) to evaluate the density at x = a1 for a walk made up of steps

n = 2, n = 3 etc. This series of steps is too localized when the condition
∑N
n=2 an < a1 prevents the walkers to reach

the point x = a1: pN−1(a1) = 0 so that the integral vanishes in (S2). With the argument presented in the main text,
the vanishing result in (S2) stems from the origin being void of walkers after N steps.

II. PROOF OF EQS. (15) AND (16) OF THE MAIN TEXT

We consider a 4-step random walk in d = 2. The walker starts at the origin O : (0, 0) in the 2d plane. In step 1,
it jumps ±1 (with equal probability) along the x direction. In step 2, it again jumps ±1 (with equal probability),
but now along the y-direction. For a particular configuration, see Fig. S2-a, where after step 2, the walker arrives at
O′ : (1, 1). Following step 2, the walker makes an isotropic Pearson jump of fixed radius b, where the end point of this
step (denoted by B in Fig. S2-a) is chosen uniformly on the circle of radius b. Finally, at the 4-th step, the walker
makes another isotropic Pearson jump of radius a, with the endpoint A chosen uniformly on the circle of radius a
(see Fig. S2-a). Without loss of generality, we consider a < b. At the end of the 4-th step, the Fourier transform of
the position distribution p̃4(k) is given by the product of the characteristic functions of the 4 jumps, since they are
independent. Hence one gets

p̃4(k) = cos(kx) cos(ky) J0(b k) J0(a k) (S3)

where k =
√
k2x + k2y and for the 3rd and the 4th steps, we have used the formula in line (ii) of Eq. (10) in the main

text with d = 2 and S2 = 2π. Consequently, the position pdf is given by the Fourier inversion,

p4(r) =

∫ ∞
−∞

dkx
2π

∫ ∞
−∞

dky
2π

p̃4(k) e−ik·r. (S4)
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In particular, the pdf at the origin, i.e, the probability (density) to come back to the origin after 4 steps, is given by
the double integral

p4(0) =

∫
R2

dkx
2π

dky
2π

cos(kx) cos(ky) J0(b k) J0(a k) . (S5)

This yields the left hand side (lhs) of Eq. (15) of the main text (times a factor 1/4π2).
Now, let us compute p4(0) directly by an elementary method. To this end, we ask the following question: starting

from a point B chosen uniformly on the circle of radius b (centered at O′ : (1, 1) in Fig. S2-a) (just before the 4-th
step), if a walker makes an isotropic jump of radius a < b, what is the probability (density) p4(0) that it will end up at
the origin O : (0, 0)? To make the computation simple, we make use of the circular symmetry and transform Fig. S2-a

to Fig. S2-b. The point O′ : (1, 1) is at a distance
√

2 from the origin O : (0, 0) in Fig. S2-a. Hence, we can construct
a new figure (Fig. S2-b) with a circle of radius b centered at O′, we call this a new origin O′ : (0, 0) in Fig. S2-b. The

target point O is just a distance
√

2 from this center O′, and without loss of generality, we can take this target point
O to be on the new x axis in Fig. S2b, i.e., O : (

√
2, 0). Now, we choose a point B uniformly on the circle of radius

b, say it has the co-ordinate (b cosφ, b sinφ) where φ is the angle shown in Fig. S2-b. The probability distribution of
B is uniform on the circle. Now, starting from B, we make an isotropic jump of fixed length a, characterized by the
pdf q(r) = 1

2πa δ(r − a), where r = |r| and evidently q(r) is normalized to unity. If the target point is O : (
√

2, 0),

clearly its distance from the starting point B : (b cosφ, b sinφ) is r =
√

(
√

2− b cosφ)2 + b2 sin2 φ. Thus the original

probability p4(0) is then obtained by averaging q(r) over all possible φ (i.e., all possible B’s) with uniform probability

p4(0) =
1

2πa

∫ 2π

0

δ

(√
(
√

2− b cosφ)2 + b2 sin2 φ− a
)
dφ

2π
. (S6)

To perform this integral, we first use the periodicity of the integrand with φ to rewrite it as

p4(0) =
1

2π2 a

∫ π

0

δ(

(√
(
√

2− b cosφ)2 + b2 sin2 φ− a
)
dφ . (S7)

To perform this integral over φ, it is convenient to make a change of variable φ→ f(φ) where

f(φ) =

√
(
√

2− b cosφ)2 + b2 sin2 φ− a =

√
b2 + 2− 2

√
2 b cos(φ)− a (S8)

and rewrite Eq. (S7) as

p4(0) =
1

2π2 a

∫ π

0

δ (f(φ)) dφ =
1

2π2 a |f ′(φ∗)|
(S9)

where f ′(φ) = df(φ)/dφ and φ∗ ∈ [0, π] is the unique root of f(φ∗) = 0, i.e, upon using Eq. (S8)

cos(φ∗) =
2 + b2 − a2

2
√

2 b
. (S10)

Evaluating the Jacobian |f ′(φ∗)| and using Eq. (S10) then gives us the desired integral

p4(0) =
1

π2

1√
8b2 − (2b2 − a2)2

. (S11)

One can further use the identity, 8b2 − (2 + b2 − a2)2 =
(

(a+ b)
2 − 2

)(
2− (a− b)2

)
, to re-write the right hand side

(rhs) of Eq. (S11) in a way that is manifestly symmetric under the exchange of a and b. Thus, the lhs of Eq. (15)
of the main text, given by 4π2p4(0) reduces, using Eq. (S11), to the rhs of Eq. (15) in the main text. This then
provides the detailed proof of Eq. (15).

Proof of Eq. (16). This proof proceeds in a similar manner as above, except that the jump in the 4-th step (from
B on the circle of radius b centered at O′ in Fig. S2-b) is no longer a Pearson jump of fixed length a as before, but
rather a jump whose endpoint is distributed uniformly within a circle of radius a with a < b. In other words, the
jump pdf of the 4-th step is now q(r) = 1

πa2 θ(a− r) where r = |kr| and θ(z) is the Heaviside step function: θ(z) = 1
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FIG. S2. (a) A random walk, starting at O : (0, 0) makes 4 steps: (i) a +1 jump along x direction (ii) a +1 jump along y
direction (iii) a Pearson jump of fixed length b, by choosing the point landing point B uniformly on a circle of radius b centered
at O′ : (1, 1) and (iv) a Pearson jump of fixed length a < b where the landing point A is chosen uniformly on a circle of radius
a. (b) To compute the probability (density) p4(0) of coming back to the origin after 4 steps, it is sufficient to calculate the
probability (density) that the walker, starting at point B (chosen uniformly on the circle of radius b) after the third step, lands
at the point O : (

√
2, 0) on the x axis with the new origin O′ : (0, 0).

if z > 0 and is 0 otherwise. Consider first the lhs of Eq. (16) in the main text. Using line (i) of Eq. (10) with d = 2
for the 4-th step, we get the probability (density) for the walker to land at the origin

p4(0) =
1

2π2a

∫
R2

dkx dky cos(kx) cos(ky) J0(b k)
J1(a k)

k
. (S12)

Following the same construction in Fig. S2-b as in the previous case, with the exception that the pdf q(r) in the 4-th
step is given by q(r) = 1

πa2 θ(a− r), we get

p4(0) =
1

πa2

∫ 2π

0

θ

(
a−

√
(
√

2− b cosφ)2 + b2 sin2 φ

)
dφ

2π
. (S13)

We again use the periodicity of the integrand to first re-write this as

p4(0) =
1

π2a2

∫ π

0

θ

(
a−

√
(
√

2− b cosφ)2 + b2 sin2 φ

)
dφ . (S14)

However the integral on the rhs can now be trivially done to give

p4(0) =
1

π2a2
φ∗ (S15)

where again φ∗ is given by the root f(φ∗) = 0, i.e., by Eq. (S10). Using this we get

p4(0) =
1

π2a2
arccos

(
2 + b2 − a2

2
√

2 b

)
. (S16)

Comparing to Eq. (S12) then provides a proof of Eq. (16) in the main text.

III. ANOTHER FAMILY OF RELATIONS INVOLVING A MOMENT OF THE WALKERS
PROBABILITY DISTRIBUTION

In the main text, we solved non trivial integrals by establishing a mapping to the density of random walkers at
some point in space, when the underlying walk is made of finite-range jumps. A related approach takes advantage of
a specific feature of such walks. We consider a random walk on the line, with a Pearson first jump: the walker is then
at x = ±a1 and 〈|x1|〉 = a1 after step 1. If the following steps are left-right symmetric, bounded with amplitude an
(n = 2, 3...N) such that the walkers cannot go back to the origin after N steps, then 〈|xN |〉 = a1 also; this is the case

provided
∑N
n=2 an < a1, which we henceforth assume. Indeed, if the walker is at x = a1 after step 1, then its mean

position remains at a1 for all successive steps. Since the walker cannot reach the origin after N steps, its position
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remain positive, so that xN and |xN | have the same mean value. Clearly, a related argument holds when the walker
is at −a1 after step 1, from which we have 〈|x1|〉 = a1.

The remaining task is to relate 〈|xN |〉 to the characteristic function of the N -step random walk. The following
identity is thus of particular interest:

|y| =
2

π

∫ ∞
0

1− cos(ky)

k2
dk, (S17)

which holds for all real y. Choosing y = xN and taking the mean value of this relation, we get

〈|xN |〉 =
2

π

∫ ∞
0

1− 〈 exp(i k xN ) 〉
k2

dk (S18)

where we have used the fact that the imaginary part of the integral vanishes. Next, using the explicit expression for
the characteristic function 〈exp(i k xN )〉 (where the first jump is Pearson’s type with fixed length a1 and successive
jumps have independent but arbitrary distributions but each with a finite support), we obtain the relation

∫ ∞
0

1

k2

(
1− cos (ka1)

N∏
n=2

F̂n(ank)

)
dk =

π

2
a1, provided

N∑
n=2

an < a1, (S19)

where each “building block” F̂n has the same meaning as in the main text (Fourier transform of an arbitrary distri-
bution with unit-support). In particular, we may choose the first N1 jumps to be of Pearson’s type and the next N2

terms of uniform jump distribution and obtain the nontrivial identity

∫ ∞
0

1−
∏N1

n=1 cos(ank)
∏N2

n′=1 sinc(bn′k)

k2
dk =

π

2
a1, provided

N1∑
n=2

an +

N2∑
n′=1

bn′ < a1, (S20)

taking again, without loss of generality, positive an and bn′ . For concreteness, we plot in Fig. S3 the probability
density of a 4-step walk corresponding to the relation

2

π

∫ ∞
0

1− cos(k) cos(k/2) sinc(k/4) sinc(k/8)

k2
dk = 1. (S21)

These results, unfortunately, cannot be easily generalized to arbitrary dimensions d > 1.
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FIG. S3. Probability density function with N = 4: the first two steps are Pearson-type with amplitude 1 and 1/2, and the
last two steps are uniform in [−1/4, 1/4] and [−1/8, 1/8]. Symmetry implies that 〈|x4|〉 = 1, which in turn leads to relation
(S21). Here, it can be considered that the message starts at |x| = 1 after the first step (see the arrow), and travels towards the
origin at x = 0 that can be viewed as a boundary. Since the space covered by the sum of the second, third and fourth steps is
bounded by 1/2 + 1/4 + 1/8 < 1, the origin is void of walkers and symmetry applies (〈|x4|〉 = 1).
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IV. DO THE F̂ (d)
n (k) NEED TO BE CHARACTERISTIC FUNCTIONS?

The answer is negative, and follows from a two-pronged argument. First, one can use the Plancherel theorem to
write integrals like those of (11) or (13) as integrals over x rather than k. For concreteness, we consider (11), and for
simplicity, we work out the case d = 1, making use of (10)∫

R
sinc(a1k)

N∏
n=2

F̂n(an k)
dk

2π
=

∫
R

θ(1− |x|)
2a1

~Nn=2 Fn(an x) dx, (S22)

where θ denotes Heaviside step function, and the Fn(x) are of support bounded by unity. Since the convolution

product ~Nn=2 Fn(an x) yields a bounded function of support smaller than
∑N
n=2 an, assumed to be smaller than a1,

we have ∫
R
θ(1− |x|) ~Nn=2 Fn(an x) dx =

∫
R
~Nn=2 Fn(an x) dx. (S23)

The integral on the rhs can be viewed as the Fourier Transform of the convolution, evaluated at k = 0. This means
finally that ∫

R
sinc(a1k)

N∏
n=2

F̂n(an k)
dk

2π
=

1

2a1

N∏
n=2

F̂n(0), (S24)

which can be rewritten ∫
R

J1/2(a1k)

k1/2

N∏
n=2

F̂n(an k) dk =

(
2π

a1

)1/2 N∏
n=2

F̂n(0). (S25)

In the most general d-dimensional case where the F̂ (d)
n (k) are not characteristic functions but only of bounded Fourier

transform, (13) remains true while (11) becomes∫
Rd

Jd/2(a1k)

kd/2

N∏
n=2

F̂ (d)
n (an k) ddk =

(
2π

a1

)d/2 N∏
n=2

F̂ (d)
n (0) (S26)

once more under the proviso that
∑N
n=2 an < a1.
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