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Randomly driven granular fluids: Large-scale structure
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The nonequilibrium steady state of a granular fluid, driven by a random external force, is demonstrated to
exhibit long-range correlations, which behave as;1/r in three and; ln(L/r) in two dimensions. We calculate
the corresponding structure factors over the whole range of wave numbers, and find good agreement with
two-dimensional molecular dynamics simulations. It is also shown by means of a mode coupling calculation,
how the mean field values for the steady-state temperature and collision frequency, as obtained from the
Enskog-Boltzmann equation, are renormalized by long wavelength hydrodynamic fluctuations.
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I. INTRODUCTION

Systems of granular particles, like grains of sand or m
ideally glass, plastic, or metal beads, exhibit different flo
regimes@1#, depending on the external forcing. A systema
experimental study of the rapid or collisional flow regime
compared to the quasistatic, slow, or frictional regime w
first performed by Bagnold@2# using an annular shear cel
Later, a similar but more refined characterization was m
in Ref. @3#. The possibility of coexistence of different flow
regimes was observed in an experimental study of flo
down an inclined chute@4#.

In several more recent experimental studies of therapid
granular flow regime, more microscopic properties ha
been measured. In Ref.@5# the fluidization behavior of a
vertically vibrated two-dimensional model granular mater
has been investigated using high-speed photography.
terns at the surface of a vertically vibrated granular lay
analogous to Faraday waves in molecular fluids, have b
observed in Ref.@6# and stimulated the interest of man
theorists@7#. An understanding of these patterns through
derivation of, e.g., an amplitude equation@8# from the hydro-
dynamic description of the system, is still lacking, howev
In Ref. @9# the effect of inelastic collisions on the formatio
of clusters is investigated in a system of particles rolling
a smooth surface and driven by a moving wall. Finally, R
@10# studies the steady state of a vertically shaken gran
monolayer, and discusses clustering, inelastic collapse,
long-range order.

Even rapid flows ofmodelgranular materials are poorl
understood in general, since complicating effects, such
gravity and interactions with boundaries, have to be ta
into account. If the model granular material consists
spherical grains with a smooth surface, collisions betw
particles can be characterized only by their coefficient

*Present address: Laboratoire de Physique The´orique et Hautes
Energies, Baˆtiment 211, Universite´ Paris–Sud, 91405 Orsay Cede
France.
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restitutiona or their inelasticitye512a2. We assume this
coefficient of restitution to be a constant, independent of
relative velocity between the colliding particles, and refer
the model as the inelastic hard-sphere~IHS! model. Dissipa-
tive collisions complicate the dynamics in a nontrivial wa
they may cause the system to become unstable, and give
for instance, to clustering; they create several new intrin
length scales that might interfere for small inelasticity w
the system sizeL, and for large inelasticity with the mea
free pathl 0 .

By driving an IHS fluid by boundaries or external fields
can reach a steady or oscillatory state. Due to the existe
of these new ‘‘cooling’’ lengths, this state is frequently in
homogeneous, where the spatial gradients become larg
higher inelasticity. Only for small inelasticity, the mean-fre
path is well separated from the scale on which the mac
scopic fields vary, and a hydrodynamic description@11#
through Navier-Stokes or Burnett equations is expected
hold. In fact, one of the primary goals in the study of rap
granular flows atlarger inelasticities is to find the prope
reduced set of macroscopic fields and the correct form of
relevant macroscopic continuum equations. The concep
basis for the validity of the Navier-Stokes and Burnett eq
tions of fluid dynamics in rapid granular flows breaks dow
due to the lack of scale separation. Therefore, we res
ourselves mostly to small inelasticities, and explore the
gion of validity of the standard fluid dynamic description.

In the present paper we investigate the properties of
IHS fluid that is heated uniformly so that it reaches a s
tially homogeneous steady state. This way of forcing, wh
a random external force accelerates a particle, was prop
by Williams and MacKintosh@12# for inelastic particles
moving on a line. Peng and Ohta@13# performed simulations
on a 2D version of this model. In two dimensions the mod
may be considered to describe the dynamics of light di
moving on an air table, a system that has been investig
experimentally in Ref.@14#. In three dimensions it can b
extended to include gravitational and drag forces, makin
to some extent relevant for gas-fluidized beds@15# when hy-
drodynamic interactions are unimportant. A similar IH
4326 ©1999 The American Physical Society
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model with random external accelerations has been use
Bizon and Swinney@16# in their computer simulations to tes
continuum theories for vertically vibrated layers of granu
material.

In the present paper we will describe the randomly driv
IHS fluid in two and three dimensions, and characterize
nonequilibrium steady state~NESS!. The single-particle ve-
locity distribution function in the NESS has been calcula
in Ref. @17# from the Enskog-Boltzmann equation and w
shown to be well approximated by a Maxwellian, except
an overpopulated tail;exp(2Ac3/2), wherec is the velocity
scaled by the thermal velocity andA;1/Ae. Computer
simulations of the one-dimensional system of Ref.@12#
showed the existence of long-range spatial correlations in
steady state, which were addressed theoretically in Ref.@18#.
Here we will give quantitative predictions for long-rang
correlations@19# in the two- and three-dimensional NES
Moreover, we extend the mode coupling theory of Brito a
Ernst @20# to analyze how long wavelength fluctuations
the NESS renormalize the mean-field predictions of kine
theory, and use this theory to calculate the renormalized t
perature and collision frequency in the NESS.

To obtain an adequate description of the structures
steady granular flows, one does not only need the equat
of fluid dynamics for the average macroscopic behavior,
also the spatial correlation functionsGab(r), and their Fou-
rier transforms, the structure factorsSab(k). Let da(r,t)
5a(r,t)2^a(r,t)& with (a5n,T,ua) be the fluctuations of
the slowly varying fieldsa(r,t), i.e., the local densityn(r,t),
local temperature T(r,t), and local flow velocity
ua(r,t) (a5x,y, . . . ), around their average value
^a(r,t)&. Then the objects of interest are the correlati
functions in the NESS, which are given by the limit,

Gab~r!5 lim
t→`

1

VE dr8^da~r1r8,t !db~r8,t !&,

~1!
Sab~k!5 lim

t→`

V21^da~k,t !db~2k,t !&.

Here ^•••& is an average over some initial distributio
da(k,t) is the spatial Fourier transform ofda(r,t), and
Sab(k) is that ofGab(r). Moreover, we consider the unequa
time correlation functions in the NESS, defined as

Fab~k,t !5 lim
t8→`

V21^da~k,t81t !db~2k,t8!&, ~2!

whereFnn(k,t) is the intermediate scattering function@21#.
The dynamic structure factoris then

Snn~k,V!5ReF̃nn~k,z5 iV10!, ~3!

whereF̃ab(k,z) is the Laplace transform ofFab(k,t).
The paper is organized as follows. In Sec. II we sh

how the macroscopic equations for granular flow are mo
fied to account for the external driving/heating by the ra
dom accelerations. Section III characterizes the noise of
ternal and internal fluctuations, and the structure factors
spatial correlation functions are calculated in Secs. IV and
The latter section also presents the mode coupling calc
tions for the temperature and the collision frequency in
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NESS. Computational details of our molecular dynam
~MD! simulations are described in Sec. VI, and Sec. V
compares our predictions with simulations. Some gene
comments and conclusions are presented in Sec. VIII.

II. MACROSCOPIC EQUATIONS

Consider a system of inelastic disks or spheres~IHS! (d
52,3), driven by a heat source, which is described a
random accelerationĵi ,

dv i

dt
5

Fi

m
1 ĵi~ t !. ~4!

Here Fi is the systematic force on particlei 5(1,2, . . . ,N)
due to inelastic collisions. If the time constant of the he
source is much smaller than the mean free timet0 between
collisions, thenĵi(t) can be considered as Gaussian wh
noise with zero mean and correlation,

ĵ ia~ t !ĵ j b~ t8!5j0
2d i j dabd~ t2t8!, ~5!

wherea,b5$x,y, . . . % denote Cartesian components of ve
tors or tensors. The overline indicates an average over
noise source. It is understood that the ensemble averag
Eqs. ~1! and ~2!, denoted by the angular brackets, also
cludes this noise average. To guarantee conservation of
momentum, the random force has to obey the constr
( i ĵi(t)50. In thermodynamically large systems this co
straint gives a correction to Eq.~5! of O(1/N), which can be
neglected.

The uniformly heated fluid is described by the standa
macroscopic equations of fluid dynamics, where the te
perature equation is supplemented with an additional sou
termmj0

2 , and a sink termG to account, respectively, for th
heating and the energy loss through inelastic collisions:

] tn1“•~nu!50,

] tu1u•“u52
1

r
“•P, ~6!

] tT1u•“T52
2

dn
~“•J1P:“u!2G1mj0

2 ,

where r5mn, u is the flow velocity, and1
2 dnT is the

kinetic-energy density in the local rest frame of the IH
fluid. The pressure tensorPab5pdab1dPab contains the
local pressurep and the dissipative momentum fluxdPab ,
which is proportional to¹aub and contains the kinemati
and longitudinal viscositiesn and n l , defined below Eq.
~A1! of Appendix A. The constitutive relation for the hea
flux, J52k“T, defines the heat conductivityk. For small
inelasticity the transport coefficientsn, n l , and k are as-
sumed to be given by the Enskog theory for a dense ga
elastic hard spheres~EHS! @22#.

To lowest order in the spatial inhomogeneities, the s
term, representing the energy loss through inelastic co
sions, is given by@23#

G52g0vT. ~7!
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It is proportional to the granular temperature, to the aver
Enskog collision frequency@v;AT, explicitly given in Eq.
~A2! of Appendix A#, and to the coefficient of inelasticity
e512a2[2dg0 , wherea is the coefficient of normal res
titution. To explain the termmj0

2 in Eqs. ~6!, we calculate
the energy gain of a single particle due to the random fo
in a small timedt. This is done by formally integrating Eq
~4! and averaging over the noise source, i.e.,

1
2 m@v i

2~ t1dt !2v i
2~ t !#5

d

2
mj0

2 dt, ~8!

where Eq.~5! has been used. Note that we have defined
granular temperature as twice the average random kin
energy per translational degree of freedom, so that the Bo
mann constantkB does not appear in its definition.

The above equations provide a consistent description
the heated IHS fluid at small inelasticity. The energy is n
conserved in inelastic collisions, and consequently, the t
perature isnot a hydrodynamicmode, but akinetic mode
with a relaxation rate}g0v. Nevertheless, at small inelas
ticities (g0!1), it is consistent to include temperatu
among the slowly changing macroscopic variables, wh
describe the dynamics of the system on time scalest large
compared to the mean free timet051/v, and on spatial
scalesl large compared to the mean free path,l 05v0t0 ,
wherev05A2T/m is the thermal velocity.

At large inelasticities, wheree;O(1), weexpect that the
temperature is afast kinetic mode, that decays on the tim
scale t0 , and cannot be included among the slow mac
scopic variables. In that case, the IHS fluid becomesather-
mal, and the slow macroscopic fields only involve the de
sity and flow field, as is the case in lattice gas cellu
automata without energy conservation@24,25#. However, the
proper constitutive relations for the IHS fluid at large inela
ticities are not known.

Let us consider the decay of temperature in more de
For a homogeneous state, the fluid dynamic equations~6!
will have as a solutionn(r,t)5n, u(r,t)50, and T(r,t)
5T(t), the latter satisfying

] tT~ t !52G1mj0
2 . ~9!

For long times the system approaches a steady state w
constant temperature, determined bymj0

252g0vT. As v
;AT, we obtain the mean-field prediction@Eq. ~A2!#, as
deduced from the Enskog theory,

TE[mS j0
2Ap

2g0Vdxnsd21D 2/3

. ~10!

Further symbols are defined below@Eqs.~A1!# in the Appen-
dix. To obtain the final approach to the NESS, we linear
Eq. ~9! aroundTE in Eq. ~10!. This yields an exponentia
approach, i.e.,

dT~ t ![T~ t !2TE5dT~0!exp@23g0vt#. ~11!

In fact, 3g0v can be identified as the decay ratezH(0) of the
long wavelength components of the temperature fluctuatio
as derived in Sec. IV below Eqs.~25!. The exact time depen
e
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dent solution of Eq.~9! can be obtained implicitly~t as a
function of temperature!, and reads

f SAT~ t !

TE
D 2 f SAT0

TE
D 52

3

2

mj0
2

TE
t, ~12!

where

f ~x!5 lnux21u2 1
2 ln~x21x11!1A3 arctanS 2x11

A3
D .

~13!

andT0 is the temperature att50.

III. NOISE CHARACTERISTICS IN THE NESS

The goal of this paper is to analyze the effects of spa
fluctuationsda(r,t) with (a5n,T,ua) around the NESS on
hydrodynamic space and time scales. As we are dealing
fluctuations, we linearize the nonlinear equations~6! around
the NESS, with the result~A1! of Appendix A. Moreover, to
extend the average equations to fluctuating equations, v
on mesoscopic spatial and temporal scales, we need to
culate theexternal noisetermsĵex(r,t) andûex(r,t) that con-
tribute to ] tu and ] tT in Eqs. ~A1!. These terms originate
from the random accelerationĵi(t), which enters in the mi-
croscopic equations of motion~4!. By starting from the mi-
croscopic expressions for the momentum and energy den
one finds that the noise sources are given by thelong wave-
length components of

ĵex~r,t !5
1

n(i
ĵi~ t !d„r2r i~ t !…,

~14!

ûex~r,t !5
2m

dn(
i

v i~ t !• ĵi~ t !d„r2r i~ t !….

These fields are again Gaussian white noise with zero m
and correlations

ĵa
ex~r,t !ĵb

ex~r8,t8!5
1

n
j0

2dabd~r2r8!d~ t2t8!,

~15!

ûex~r,t !ûex~r8,t8!5
4mT

dn
j0

2d~r2r8!d~ t2t8!,

as follows from Eq.~5!.
Next, we argue on the basis of the hydrodynamic eq

tions ~6! that there exists, close to the NESS, a range
hydrodynamic wave numbersk@k* , the so-calledelastic
regime, where the dynamics of the fluctuations is the same
in a fluid of elastic hard spheres or disks, and is driven
internal noisethat will be studied next. The validity of the
hydrodynamic equations~6! and Eqs.~A1! is restricted to
wave numbersk!2p/ l 0 ~to guaranteeseparationof kinetic
and hydrodynamic scales!, and tok!2p/s, wheres is the
disk or sphere diameter~to guarantee that the Euler equatio
involve strictly local hydrodynamics!. So, for the existence
of an elastic regime in the IHS hydrodynamics, the followi
constraints must be satisfied:
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k* !k!minH 2p

l 0
,
2p

s J . ~16!

Moreover, following McNamara@26# we can distinguish a
dissipative regime, kl0!e @typically kl0&O(e2)#, and a
standard regime, kl0@e @typically, kl0*O(Ae)#, separated
by acrossover regime, aroundkl0;O(e). In the dissipative
regime, dissipation dominates compression effects and so
propagation, which areO(kl0), as well as heat conduction
which isO(k2l 0

2). In the standard regime, dissipation effec
are of the same order as heat conduction. As a consequ
the hydrodynamic modes and their propagation velocities
those of a fluid ofelasticparticles, while the correspondin
damping rates of heat and sound modes still depend on
inelasticity. Only in theelastic regime, kl0@k* l 0;O(Ae);
also, these damping coefficients attain their elastic valu
The above argument applies for small enoughe512a2

52dg0 , where the inequalities~16! are obeyed, and an elas
tic regime exists and is well separated from the dissipa
regime.

In the elastic regimethe equations for the macroscop
deviations from the NESS are the same as those for a flui
elastichard spheres, deviating fromthermalequilibrium. To
describe fluctuating mesoscopic hydrodynamics on th

length scales, one can addinternal noise ĵ in(r,t) and
û in(r,t), describing the rapid microscopic degrees of fre
dom. The noise strength of the internal fluctuations can
obtained from the fluctuation-dissipation theorem@27,23# for
the EHS fluid, and is given in Fourier representation by

V21ĵa
in~k,t !ĵb

in~2k,t8!

5
2T

r
k2@n~dab2 k̂ak̂b!1n l k̂ak̂b#d~ t2t8!,

~17!

V21û in~k,t !û in~2k,t8!5
8kT2

d2n2
k2d~ t2t8!,

where n, n l , and k are the transport coefficients for th
EHS fluid, and k̂a is a component of the unit vectork̂
5k/k. Theeffectivenoise in the heated IHS fluid may, ther
fore, be described by the sum of external and internal no

ĵ(k,t)5 ĵ ex(k,t)1 ĵin(k,t), with a similar expression for
û(k,t). The noise characteristics ofĵ(k,t) and û(k,t) inter-
polatebetween two limiting behaviors and the correspond
noise strengths are given by the sum of Eqs.~15! and ~17!.

Having specified the characteristics of the noise source
the macroscopic equations, we conclude this section by s
marizing the Langevin-type equations that describe the
namics of the slow fluctuations. To do so, it is convenient
introduce the Fourier modesda(k,t)exp@ık•r# of the linear-
ized hydrodynamic equations~A1!. The mesoscopic equa
tions, valid on hydrodynamic space and time scales, i.et
@t0 andkl0!1, then take the form

] tda~k,t !5M ~k!da~k,t !1 f̂~k,t !, ~18!

where the components of the vectora are labeled witha
5$n,T,l ,'%. Here a5 l refers to the longitudinal velocity
nd
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componentul(k,t)5 k̂•u(k,t), and a5' refers to (d21)
transverse components ofu(k,t). The matrixMab with a,b
5$n,T,l ,'% is given explicitly in Eq.~A3!, and f̂ a(k,t) is
Gaussian white noise withnonvanishingcomponents fora
5T,l ,' and correlation function

V21 f̂ a~k,t ! f̂ b~2k,t8!5Cab~k!d~ t2t8!. ~19!

The noise strengthCab(k)5dabCab(k) is obtained by taking
the Fourier transform of Eqs.~15! together with Eqs.~17!,
and is only nonvanishing for the following diagonal el
ments:

CTT~k!5
4mTj0

2

dn
1

8kT2k2

d2n2
5

4TG

dn
1

8kT2k2

d2n2
,

Cll ~k!5
j0

2

n
1

2n lTk2

r
5

G

r
1

2n lTk2

r
, ~20!

C''~k!5
j0

2

n
1

2nTk2

r
5

G

r
1

2nTk2

r
,

where the NESS condition of Eq.~9!, i.e., G52g0vT
5mj0

2 , has been used.

IV. STRUCTURE FACTORS

The equal-time structure factors, introduced in Eqs.~1!,
obey the equations of motion,

] tSab~k!5(
c

$Mac~k!Scb~k!1Mbc~2k!Sac~k!%1Cab~k!,

~21!

which follows by formally integrating Eq.~18! and using Eq.
~19!. The left-hand side of Eq.~21! vanishes since the struc
ture factors do not depend on time in the NESS. The res
ing equation can be solved by spectral analysis, or num
cally. The spectral analysis is summarized in Appendix
wherewla and vla are, respectively, theath component of
the right and left eigenvectors of the hydrodynamic mat
M , andzl(k) is the corresponding eigenvalue.

Taking then the scalar product of Eq.~21! on both sides
with left eigenvectors~A5! of the Appendix, yields

(
ab

^vla~k!uSab~k!uvmb~2k!&

52(
ab

^vla~k!uCab~k!uvmb~2k!&
zl~k!1zm~k!

. ~22!

Using the completeness relation~A6! and the fact that off
diagonal elements ofCab in Eqs.~20! vanish, we obtain

Sab~k!52(
lmc

wla~k!vlc~k!Ccc~k!vmc~2k!wmb~2k!

zl~k!1zm~k!
,

~23!

which is the final result for the static structure factors. T
time correlation function~2! in the NESS reduces in a sim
lar manner to
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Fab~k,t !5(
lc

exp@zl~k!t#wla~k!vlc~k!Scb~k!. ~24!

The above result corresponds to the Landau-Placzek th
@21# for hydrodynamic correlations in the NESS.

To obtain more explicit results we need the explicit form
of eigenvalues and eigenvectors, which have only been
culated for smallk. The eigenvalue equation can be solv
numerically for any given wave number, and the results
illustrated in Fig. 1 for the two-dimensional case. Transp
coefficients, equation of statep(n,T), and pair-correlation
function at contact are obtained from Enskog’s theory
elastic hard spheres or disks. The generic features of
spectrum in Fig. 1 are the same as McNamara’s casea
5b50,’’ illustrated in Fig. 6~a! of his study@26# on hydro-
dynamics of granular materials, which corresponds to
temperature- and density-independent heat source. How
neither the equation of state, nor the transport coefficie
used in Ref.@26#, correspond to the heated fluid of inelas
hard spheres, used in the present simulations. In the hy
dynamic regime (kl0&1), all eigenvalues are found to b
negativefor nonvanishing wave numbers~see Appendix A!.
So, all modes are linearlystable.

With the help ofMATHEMATICA , the structure factors in
the steady state have been calculated numerically from
~21! with ] tSab(k)50 for a given wave number. The resul
ing structure factors are shown by solid lines in Fig. 2, a
will be tested against MD simulations in Sec. VII.

Next, we present analytic results for the dissipative
gime (kl0!g0). The eigenvalues on the largest spatial sca
can be determined as an expansion in powers ofk at a fixed
value ofg0 , with the results

z'~k!52nk2,

z6~k!57 ikvD2DSk2, ~25!

zH~k!523g0v1DHk2.

In later applications, the explicit form of the eigenvectors
M (k) is needed to lowest order ink. They read

FIG. 1. Dispersion relationszl(k)/v versusks for f50.4,
a50.9; the solid lines refer to the real parts forl5', 6, andH,
respectively. Dashed lines represent the imaginary parts of
sound-mode relaxation rates (l56). Here, l 0 /s.0.34, g0s/ l 0

.0.14, andAg0s/ l 0.0.64.
ry
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e
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w'~k!5~0,0,0,1!, v'~k!5~0,0,0,1!,

w6~k!5
1

A2
@1,2g~n!T/3n,6vD /n,0#,

~26!

v6~k!5
1

A2
~1,0,6n/vD,0!,

wH~k!5~0,1,0,0!, vH~k!5„g~n!T/3n,1,0,0….

The coefficientsg(n), vD , andDl with l5$',H,6% are
calculated in the Appendix. In the dissipative regime the
are two propagating sound modes (l56) with a propaga-
tion speedvD and a damping constantDS . There is akinetic
heat mode (l5H), with a long wavelength relaxation rat
zH(0)523g0v, in agreement with Eq.~11!. Therefore, on
the largest spatial scales, the temperature deviations h
decayed to zero, and temperature gradients do not e
there is no heat conduction. In addition, there are (d21)
transverse velocity or shear modes (l5'), which are purely
diffusive. The corresponding diffusivity,D'5n, has the
same form as for EHS. In Eqs.~A7!–~A10!, the coefficients
are expressed explicitly in terms of thermodynamic qua
ties and transport coefficients.

In the standard regime,kl0@g0 ~andg0 small!, the eigen-
values for shear and sound modes are to leading nonvan
ing order the same as for the EHS fluid, where the sou
waves propagate with theadiabatic sound speedvS of the
elastic fluid, which is larger than the propagation speedvD in
Eq. ~A7!. The damping of the sound and heat modes, on
other hand, are larger than in the elastic fluid due to
inelastic collisions. In the elastic regime, defined in Sec.
wherekl0@Ag0, all transport coefficients are equal to the
EHS values.

e FIG. 2. Structure factors,S'(k) andSi(k) in units T0s2/m, as
obtained from the full theory~solid lines! with externaland internal
noise. The dotted line representsSi

without(k) without internal noise
with the plateau value added~see discussion at the end of Sec. VI!.
The parameters area50.92, f50.63, andTE50.41T0 . Figure 6
shows that theSi simulation data agree much better with the so
line than with the dotted line.
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In summary, the eigenvalue spectrumzl(k) for the uni-
formly heated IHS fluid is quite different from that of th
freely evolving IHS fluid, linearized around the homog
neous cooling state@26#. In the free case, all shear mode
(l5') and the heat mode (l5H) are unstable in the dissi
pative regime~small k!, and propagating modes do not ex
for kl0!g0 . Moreover, there exist in this regime a stab
diffusive density mode and a kinetic temperature mo
which combine into two propagating modes forkl0
;O(g0), where crossover occurs from the dissipative to
standard regime. In theheatedcase, however, all modes a
linearly stable, and the sound modes remain propagatin
the dissipative regime down tok50.

V. EFFECTS OF LONG-RANGE CORRELATIONS

In this section we study static and dynamic structure f
tors and corresponding correlation functions at the larg
spatial scales. Moreover, we show by means of a mode
pling calculation, how average properties, which were cal
lated in Sec. II on the basis of a mean-field theory~i.e., the
Enskog-Boltzmann equation!, are renormalized by spatia
fluctuations.

The static structure factors have been calculated in
~23!. In thedissipative regime(kl0&g0), the relevant eigen-
values~25! and eigenmodes~26! are discussed below@Eq.
~26!#. The dominant singularity at small wave number of t
structure factorsSab(k);O(1/k2) in Eq. ~23! originates
from pairs of transverse modes, where 2z'(k)522nk2, and
from antiparallel sound modes, wherez1(k)1z2(k)5
22DSk2. We start with the transverse structure fact
where only the shear modes in Eqs.~26! contribute, and de-
duce from the equations above,

S'~k![S''~k!.
G

2rnk2
, ~27!

where the relation~20! has been used forkl0!g0 . The
structure factorsSab(k) for a,bÞ' derive their dominant
small-k behavior from two antiparallel sound modes and
obtain with the help of Eqs.~23!, ~25!, ~26!, and~20! at small
k,

Si~k![Sll ~k!.
G

4rDSk2
, ~28!

where the sound damping constant in the dissipative reg
DS has been calculated in Eq.~A9!. It depends on the inelas
ticity. The contribution of the internal noise is subdomina
in this regime. In a similar manner, we find

Sab~k!.BabSll ~k! ~k→0!, ~29!

where all nonvanishing coefficients labeled (ab)
5( l l ,nn,TT,nT) are listed in Table I. The remaining struc
ture factors are ofO(1) ask→0.

Next, we consider the spatial correlation functio
Gab(r ), which are the inverse Fourier transforms ofSab(k).
The small-k behavior ofSab(k), obtained above, enables u
to calculate the large-r behavior of the spatial correlatio
,

e

in

-
st
u-
-

q.

,

e

t

functions. The calculations are given in Appendix B. O
finds for the leading large-r behavior in three-dimensional
systems,

Gi~r !.S G

8prn D1

r
,

~30!

G'~r !.
G

16prS 1

n
1

1

2DS
D1

r
,

and in two-dimensional systems,

Gi~r !.G'~r !.
G

8prS 1

n
1

1

2DS
D lnS L

r D , ~31!

valid for r !L, whereL is the linear dimension of the sys
tem. The subleading large-r corrections to Eq.~31! are con-
stant terms, independent ofr. In the calculations given in
Appendix B, these constants depend on a cutoff wave ve
kmin52p/L, used to evaluate the divergentk integrals oc-
curring in the Fourier inversion ofSab(k). To calculate their
precise values, the subleading small-k corrections to Eqs.
~27! and ~28! are required.

The long wavelength behavior of the time-dependent c
relation functionFab(k,t) in Eq. ~24! can be evaluated in a
similar manner. We quote the result in terms of the Lapla
transformF̃ab(k,z), from which the dynamic structure facto
~3! follows. In thedissipative regime(kl0!g0), we find to
leading order for small wave numbers,

F̃''~k,z!.
S''~k!

z1nk2
,

~32!

F̃ ll ~k,z!. 1
2 (

l56

Sll ~k!

z1 ilkvD1DSk2
.

In a similar manner we obtain

F̃ab~k,z!.BabF̃ll ~k,z!, ~33!

where all nonvanishing coefficientsBab are listed in Table I.
The dynamic structure factor~3! then becomes

Snn~k,V!. 1
2 (

l56

DSk2Snn~k!

~V1lkvD!21DS
2k4

. ~34!

It contains only Brillouin peaks, coming from the soun
modes. There is no central Rayleigh peak, because the
mode is not a slow, but a fast kinetic mode in this regime.
the elastic regime,Snn(k,V) has the standard Rayleigh an
Brillouin lines of the EHS fluid.

TABLE I. CoefficientsBab in Eq. ~29!.

ab Bab

ll 1
nn n2/vD

2

TT g2(n)T2/9vD
2

nT 2g(n)nT/3vD
2



w
m

th

tio

ng
or

-
f

siz
lin
n
ish

d
g

en
o-
e

et
u

l
-
d
he
d

ho
e

tu

2,

th
e.
he
the

dy-
re-
ils,
in

om-

in
f

th

ties

l-
e

ro-

a

s of

. II.
e

e
e-

the

4332 PRE 59van NOIJE, ERNST, TRIZAC, AND PAGONABARRAGA
The existence of long-range spatial correlations sho
that the NESS is quite different from a thermal equilibriu
state@19#. In fact, the spatial fluctuations also modify~renor-
malize! the mean-field predictions for the averages and
particle distribution functions. In Appendix C a mode cou-
pling calculation is presented to estimate the renormaliza
effects on the average energy per particleE

5(1/N)( i^
1
2 mv i

2& and average collision frequencyv in the
NESS, and we recall their mean-field values, i.e.,EE

5 1
2 dTE and vE given by Eq. ~A2!, i.e., vE}nx(n)ATE,

whereTE is given in Eq.~10!.
As it turns out, the fluctuation contributions,dE anddv,

are finite and well-behaved inthreedimensions, but logarith-
mically divergent in the system sizeL in two dimensions, so
thatd52 is the upper critical dimension. The mode coupli
calculations of Appendix C yield then in two dimensions, f
largeL,

TNESS.TE1
CE

4p
lnS g0L

l 0
D ,

~35!

vNESS.vE1
Cv

4p
lnS g0L

l 0
D ,

whereCE and Cv are calculated in Appendix C. The argu
ment of the logarithmg0L/ l 0 is an estimate for the ratio o
the values for the right (k;g0 / l 0) and left (kmin52p/L)
boundaries of the dissipativek range, where the small-k be-
havior in Eqs.~27! to ~29! is valid. The logarithmic correc-
tion becomes only appreciable for large systems with a
L, much larger than the so-called homogeneous coo
length l T5 l 0 /g0 , which diverges in the elastic limit. The
the renormalization corrections for small inelasticity van
asdT;e ln(eL/l0) anddv;e2 ln(eL/l0). Here, we have used
the relationsCE;e andC v;e2 for e→0, as can be deduce
from the results in Appendix C. A similar mode couplin
theory has been recently used in Ref.@20# for freely evolving
granular fluids to calculate the long-time decay of the
ergy, which deviates from Haff’s cooling law due to inh
mogeneities in the hydrodynamic fields, and good agreem
between theory and simulations was found.

Before concluding this section, we compare the theor
cal predictions for the structure factors, with and witho
internal noise in Eqs.~20! and ~21!, as shown in Fig. 2.
Inspection of Eqs.~27! and~28! shows that only the externa
noise determines their dominant small-k behavior. The ques
tion then arises, what are the effects of internal noise, an
it meaningful to include it in the theoretical description? T
answer is affirmative, as we will show below. The stea
state solution of Eq.~21! without internal noiseclearly be-
haves at small wave numbers ask22, but thek-independent
plateau values, shown by the full theory~solid lines in Fig.
2!, are missing. These plateau values represent a very s
distance correlation;d(r). Calculation of the plateau valu
for Sab(k) yields (1/n2V)^( iv iav ib&5(T/r)dab , i.e., the
self-correlation term (i 5 j ) in the definition~1! of Sab(k), or
more explicitly in Eq. ~40! below. Then, addition of this
plateau value to the numerical solution of Eq.~21! without
internal noise yields the structure factorsSab

without(k), shown
as dotted lines in Fig. 2. For the transverse velocity struc
s
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factor, the dotted line coincides with the solid line in Fig.
as can be shown analytically from Eqs.~20! and ~21!. Only
the structure factor for the longitudinal flow field,Si

without(k)
differs appreciably fromSi(k) in the relevant intermediate
regime, 0.2&ks&0.5.

In Sec. VII the simulation results will be compared wi
the theoretical predictions with and without internal nois
As it turns out, the comparison shows convincingly that t
theory with/without internal noise agrees/disagrees with
simulations.

VI. COMPUTATIONAL DETAILS

In the two subsequent sections we describe molecular
namics simulations performed to verify our theoretical p
dictions. In this section we present the computational deta
before testing our theoretical results against simulations
the next section.

The model studied here has been extensively used in c
puter simulations for the freely evolving case~no forcing!
@28–30,23#, as well as for the randomly accelerated case
one@12# and two dimensions@13#. We consider a system o
N inelastic hard disks having diameters in a two-
dimensional square cell of lengthL, with periodic boundary
conditions. The disks interact via inelastic collisions wi
coefficient of normal restitutiona. For a colliding pair (i , j )
of particles having equal masses, the postcollision veloci
are:

v i* 5v i2
1
2 ~11a!~v i j •ŝ!ŝ,

~36!
v j* 5v j1

1
2 ~11a!~v i j •ŝ!ŝ,

wherev i j 5v i2v j , the asterisk denotes velocities after co
lision, andŝ is a unit vector along the line connecting th
centers of particlej and particlei.

The energy loss in consecutive collisions, which is p
portional to e512a2, is compensated by a periodic~in
time! and instantaneous perturbation of all velocities by
random amount. After every time stepDt, the velocity of
each particle is modified according to

v i→v i1wi , 1< i<N, ~37!

where the components of the vectorswi are taken from a
random distribution of zero mean and variancew0 ~in prac-
tice, a Gaussian or a flat function of finite support!. The time
step Dt of this ‘‘heating’’ or ‘‘kicking’’ is chosen much
smaller than the mean time between successive collision
a tagged particle~typically a factor 104 smaller!, so that the
system under scrutiny reduces to that described in Sec
The opposite limit, whereDt is much bigger or comparabl
to the mean-free path, was considered in Ref.@31# ~in the
presence of an additional external damping or drag forc!,
and in that limit, clustering was observed. The relation b
tweenw0 andj0 , the variance of the noise term in Eq.~4!,
can be deduced from the energy fed into the system by
kicks. This yields straightforwardly,

j0
25

w0
2

Dt
. ~38!
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Between the heating events, the motion of the disks is f
which enables us to implement an event-driven molecu
dynamics scheme with a linked-list method@32#. The CPU
time, however, scales likeN2 because the lists in all cell
need to be updated after each heating event.

Four parameters determine the state of the system:
inelasticity e512a2, the packing fraction f
5pNs2/(4L2), the reduced lower wave number cuto
kmins52ps/L, and the heating ratej0

2 . The values ofN
investigated in this article vary between 103 and 104, and we
shall restrict our attention to high packing fractions for whi
the use of linked lists implies the most significant reduct
of computer time. We consider the cases of moderate ine
ticities (0.6,a,1) and complete inelasticity (a50). For
the latter case, inelastic collapse occurs, i.e., the collis
frequency involving only a small number of correlated p
ticles diverges, as observed first by McNamara and Yo
@29# in freely evolving fluids of inelastic hard disks. Also i
our system, for high enough inelasticity, the heating see
never sufficient to prevent the inelastic collapse. Fora
,0.5, the inelastic collapse has been avoided by introduc
a slight modification of collision rule~36!, as proposed in
@30#: in each collision, the velocities are first computed a
cording to the standard procedure (v1 ,v2)→(v1* ,v2* ); the
relative velocity v12* is then rotated by a random ang
smaller than a maximum valueQ ~typically less than a few
degrees!, keeping the center-of-mass velocity fixed. No
that this modified collision rule does not change the to
energy loss of the colliding pair, and does not introduce a
spurious drag or forcing on the particles.

The structure factors in the NESS have been computed
wave vectors compatible with the periodic boundary con
tions, i.e., of the form (2p/L)(nx ,ny). We have obtained the
density-density structure factors,

Snn~k!5
1

VK (
i , j

exp~2ı k•r i j !L
5

1

V K U(
i

exp~2ı k•r i !U2L , ~39!

and the velocity-velocity structure factor, defined as

n2Sab~k!5
1

VK (
i , j

v iav j b exp~2ı k•r i j !L . ~40!

Here, the averages are taken in the spatially uniform NE
The fluctuation dga in the momentum density,dga(k)
5( imv ia exp(2ık•r i), and those in the flow field are relate
asdga5rdua , wherer is the average mass density in th
steady state. The second rank tensorSab(k) is isotropic and
can be split into a longitudinal and transverse part,

Sab~k!5 k̂ak̂bSi~k!1~dab2 k̂ak̂b!S'~k!, ~41!

wherek̂5k/k. From Eq.~39!, it appears that the knowledg
of Snn requires the computation of anO(N) quantity. We
can rewrite the velocity-velocity structure factor so that
computation also increases linearly with the number of p
ticles. For example, for the longitudinal part ofSab(k) in Eq.
~41! we have,
e,
r
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n2Si~k!5
1

V K U(
i

~v i• k̂! exp~2ı k•r i !U2L . ~42!

In practice, the differentSaa(k) have been computed for ev
ery k lying in the diskuku,kmax56p/s, then averaged ove
shells of thicknesskmin52p/L, to achieve better accuracy
Moreover, the statistics in the NESS has been increase
averaging over time. Note that the above procedure, wh
gives insight into the microscopic to large scale structure
the system, does not require the knowledge of the hydro
namic ~coarse-grained! density and velocity fields.

VII. SIMULATION RESULTS

A. Approach and characterization of the NESS

Before addressing the question of the large scale struc
of the inelastic fluid, we investigate the validity of the ma
roscopic description given in Secs. II and V. The form
section gives the mean-field results for the steady-state t
peratureTE in Eq. ~10! and collision frequencyvE in Eq.
~A2!, based on the Enskog-Boltzmann equation. The la
section and Appendix C show how the long-range spa
fluctuations renormalize these mean-field values and lea
estimates in Eqs.~35! for the correctionsdT5T2TE and
dv5v2vE, using a mode coupling calculation.

When the system is initially prepared in a configurati
having a temperatureT0 different from the steady-state tem
peratureTE, the time dependence predicted by the me
field result ~12! is in good agreement with the numeric
data. This is shown in Fig. 3 for a system with small inela
ticity. When the initial temperatureT0 is much larger than
TE, the heating at short times is dominated by the inela
dissipation, and Eq.~12! becomes Haff’s homogeneous coo

FIG. 3. Granular temperature as a function of time fora
50.92,f50.078 (l 0 /s.3.5), andN51600 particles. The simula
tion result is compared to the analytical expression~12! ~dashed
curve!. The initial condition corresponds to a fluidlike configuratio
of elastic hard disks. HereDt53.831023 (ms2/T0)1/2.1.5
31023 t0 andw055.7731022 (T0 /m)1/2.TE is the temperature ex
pected on the basis of the Enskog theory@see Eq.~10!#. For the
above parameters, there are on average 3.7 collisions per tim
terval Dt in the NESS, andTE /T059.3.
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ing law for a freely evolving system,

T~ t !

T0
5

1

~11g0t/t0!2
, ~43!

wheret051/vE(T0) is the mean-free time in the initial state
This can be seen from the asymptotic expansion of the fu
tion f defined in Eq.~13!,

f ~x!.A3
p

2
2

3

x
for x→`. ~44!

These analytic results for short times are confirmed by M
simulations, as shown in Fig. 4. Moreover, for initial tem
peraturesT0!TE, Eq. ~12! predicts at short times a linea
increase ofT, as in a heated fluid of elastic hard spheres. O
simulations confirm this behavior.

Figure 5 shows that the measured kinetic energy per
ticle T is larger than the temperatureTE predicted on the
basis of mean-field theory. This effect is noticeable alb
small in the results reported in Figs. 3 and 4, which cor
spond to the nearly elastic limit. For the densities stud
here, we observe~see Fig. 5! that the correctiondT is posi-
tive and decreases with decreasing inelasticity. The pos
excess in temperature is already present for small inelast
~see, e.g., Fig. 4!, and vanishes ase→0. Note that the above
results are at variance with those reported by Peng and O
@13#, who find thatT/TE does not depend ona. The mea-
sured collision frequencyv is also larger than the Ensko
estimatevE, as shown in Fig. 5. The excessdv increases
with increasing inelasticity.

We first observe that the simulation data in Fig. 5, wh
bothv.vE andT.TE, cannot be explained consistently
a possible over or underestimation of the IHS pair correlat
functionx IHS at contact by its value for elastic disks. On th
basis of Eqs.~10! and ~A2!, we note that an overestimatio
of x IHS would increase the collision frequency~A2!, and

FIG. 4. Time dependence of the granular temperature obta
in the simulation for the two-dimensional system of Fig. 3, w
Dt53.831022 (ms2/T0)1/2,w051.731023(T0 /m)1/2. Compari-
son is made with Haff’s law~43! for homogeneous cooling~dashed
curve!, and with the full solution of Eq.~12! ~long-dashed curve!.
Here,TE /T050.018.
c-
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decrease the temperature~10!. These trends are at varianc
with the observations. The discrepancy between the m
sured and predicted temperatures and collision frequenci
more likely due to large scale fluctuations, at least for not
large inelasticities (a*0.6). These long-range spatial fluc
tuations renormalize the mean-field Enskog values for
temperatureTE and collision frequencyvE by amountsdT
anddv. The theoretical estimates~35!, based on mode cou
pling arguments, show the correct trends for the depende
of these corrections on the inelasticity, i.e.,dT;e and dv
;e2 ase→0, and give a rough estimate of the magnitude
these terms as illustrated in the inset of Fig. 5. We also p
out that the system size considered in Fig. 5 is much
small for the asymptotic theory~35! to be applicable. For
instance, ata50.8, we deduce from the data (l 051.1s,L
560s) in the caption of Fig. 5 thatg0L/ l 0.4.9. Conse-
quently, the leading asymptotic term ln(g0L/l0).1.6 does not
dominate the full mode coupling contribution~C2! in Appen-
dix C, where subleading terms ofO(1) have been neglected
The corresponding ratiosg0L/ l 0 for Figs. 6 (a50.92), 8
(a50.6), and 11 (a50) are, respectively, 46, 127, and 29
This predicts for the systems in Figs. 6, 8, and 11, resp
tively, TNESS/TE.1.07, 1.41, and 1.77, whereas the simu
tions yield for the observed valuesT/TE.1.05, 1.45, and
1.5, which agrees quite well. The good agreement ata50 is
unexpected, as the theory is constructed under condit
that apply at small inelasticity. However, the renormaliz
values for the collision frequency, as predicted by the mo
coupling theory, are much too small. We find in the abo
Figs. 6, 8, and 11, respectively, for the theoretical valu
vNESS/vE.1.003, 1.06, and 1.12, whereas the simulatio
yield v/vE.1.05, 1.36, and 22.9.

For large inelasticity (a,0.5), the temperatureT and col-
lision frequencyv depend on the maximum angleQ of the
random rotations, used to avoid the collapse singularity
explained in Sec. VI. In fact,v diverges atQ50 ~inelastic
collapse!, in agreement with the observations of Peng a

ed
FIG. 5. Measured excess temperaturedT5T2TE and collision

frequencydv5v2vE versus coefficient of restitutiona, for L
560s, N5917 (f50.2, l 051.1s), and a maximal random ro
tation angleQ510°, together with the predictions of the mod
coupling theory, Eq.~35!.



se

oe
c

th
th
th
on

ply
on

th

n

as
to

ry

nd
re

-
ll
ory
all
s

gh
se

ks.
ng

-
ison
ble.
is to
gths

as-

e-

. 10

ha
d
l

ur
al

r

o

.
actor
tion

PRE 59 4335RANDOMLY DRIVEN GRANULAR FLUIDS: LARGE- . . .
Ohta @13#. Intuitively, one expects that alarger randomiza-
tion of the postcollision velocities~larger Q) more effec-
tively destroys the correlations leading to inelastic collap
and consequentlydecreasesthe deviations inT andv from
the mean field and the mode coupling predictions. This d
happen indeed for both temperature and collision frequen
as can be seen from Table II.

B. Fluctuations in the NESS

In this section we analyze the effects of inelasticity on
large distance behavior of the fluid. We have computed
structure factors in the spatially homogeneous NESS of
inelastic hard disk fluid as explained in the previous secti
and have focused either on values ofa close to the elastic
limit, where the theoretical description is supposed to ap
or on values close to 0, in order to test how large deviati
from the theory might be. Local mean-field values, likeTE
andvE, reach their steady-state values rapidly. However,
time scale needed for the structure factorsSab(k) and the
contributions of spatial fluctuations,dT and dv, to reach
their steady-state values are diffusive, and increase askmin

22

;L2 with system size. We have checked in the simulatio

TABLE II. Collision frequency ~normalized by the Enskog
value! as a function ofQ, for a totally inelastic system (a50) with
N51600 particles, and packing fractionf50.07.

Q 1.5° 3.5° 5° 45° 90°

v/vE 8.2 7.4 7 4.3 4.3

FIG. 6. Structure factorsS' andSll ~in units T0s2/m) andSnn

~in units 1/s2) versus wave vector fora50.92, f50.63 (l 0 /s
.0.095), andN510 201. The noise strength is chosen such t
TE50.41T0 . The simulation data~symbols! have been average
over 102 successive configurations, separated by a time interva
20 collisions per particle.Sll and Sperp[S' are, respectively, the
parallel and perpendicular parts of the velocity-velocity struct
factor, defined by Eq.~40!. Comparison is made with the theoretic
expressions~full, dashed, and long-dashed curves! deduced from
Eq. ~23! ~compare also Fig. 2!. There is a dissipative regime fo
ks&g0s/ l 0.0.40, and an elastic regime forks*Ag0s/ l 0.2.1.
Here,T/TE.v/vE.1.05, whereas the mode coupling approach
Sec. V predictsTNESS/TE.1.07 andvNESS/vE.1.003.
,
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that the large scale behavior of the structure factors w
properly equilibrated before accumulating the data used
compute the averages.

First of all, we have tested the isotropy of tensor~40! by
checking that the average,

K (
i , j

~v i• k̂!~v j• k̂'! exp~ ı k•r i j !L , with k̂• k̂'50,

~45!

vanishes fork values compatible with the periodic bounda
conditions.

In Fig. 6 we show the density-density structure factor a
the relevant components of the velocity-velocity structu
factors. Forelastic hard disks the plateau values ofSaa(k)
aroundks.2 extend all the way down tok50. The excess
correlations in the dissipative regime (k&g0 / l 0), which for
S'(k) extend up tok.Ag0/ l 0 , are characteristic of the ran
domly driven inelastic fluid. Figure 6 shows that for sma
inelasticities the agreement between simulations and the
is quite reasonable. The structure factors diverge at sm
scales likek22, in agreement with the theoretical prediction
~27!–~29!. The packing fraction has been chosen fairly hi
(f50.63) but lower than the two-dimensional random clo
packing of monodisperse disksfRCP.0.82 @33#, and inside
the liquid region of the phase diagram for elastic hard dis
In addition to the gain in computer time, such a packi
fraction leads to a mean-free-pathl 0 smaller than the particle
diameters ~e.g., l 0.0.095s for f50.63). Therefore, the
hydrodynamic regime will hold up to typical particle diam
eters, enlarging the range of wave vectors where compar
between simulations and theoretical predictions is feasi
Moreover, for dense systems, a marked density structure
be expected at the molecular scale, especially at wavelen
close tos (ks.2p). Figure 7 shows that fora close to 1,
this structure is indistinguishable from the structure for el
tic hard disks. Note thatSll (k) and S'(k), although quite
structureless forks.1, show a weak and broad peak corr
lated with the maximum ofSnn(k). This feature is more
pronounced as the inelasticity increases, as shown in Figs

t

of

e

f

FIG. 7. Same as Fig. 6, withk beyond the dissipative regime
The dashed curve corresponds to the density-density structure f
of an elastic hard disk system of the same size and packing frac
~dashed curve!. All results are deduced from MD simulations.
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and 13. As the molecular structure of the fluid has not b
taken into account in the long wavelength hydrodynamic
proach of Sec. IV, the present theory cannot explain
structure in Figs. 10 and 13, and the structure factors
dicted by the theory reach a plateau in the elastic reg
(kl0*Ag0), given by

Snn~k!→n2 T x
T
,

~46!

Sab~k!→
T

r
dab ,

wherex
T
5(]n/]p)T /n is the isothermal compressibility o

the elastic hard disk fluid. Fora close to 1, the above limit-
ing behavior is observed numerically forSll or S' , and for
Snn , only in the limit of small packing fraction, where th
molecular structure disappears.

When the inelasticity is increased, the structure fact
exhibit the samek22 behavior at large scale, but the theore
ical expressions are less accurate~see Fig. 8!. However, the
theoretical curves are based on the Enskog estimateTE for

FIG. 8. Structure factors fora50.6, f50.55 (l 0 /s.0.15),
N510 201, andTE51.0T0 . The lines are the corresponding the
retical predictions. The measured temperatureT/TE.1.45 and our
mode coupling theory givesTNESS/TE.1.41. Units as in Fig. 6.

FIG. 9. Same as Fig. 8 where for the theoretical express
~lines!, the temperature has been set to the measured kinetic en
per particle,T.1.45TE .
n
-
e
e-
e

s
-

the granular temperatureT, whereas for the system corre
sponding to Fig. 8,T.1.45TE. Our mode coupling theory
predicts hereTNESS.1.41TE. Figure 9 displays the compari
son between theory and simulation when the measu
granular temperature is taken as an input for the hydro
namic description. It appears that the large scale correlat
~for which the present theory has been constructed! are well
described by the theory, as long as the temperature is
rected from the mean-field Enskog prediction~10! to the
measured valueT. In the case ofS' , the amplitude only
depends on the shear viscosity. The good agreement o
amplitude when the temperature is rescaled, while keep
for the shear viscosity the elastic hard disk value, sugg
that the dependence of the shear viscosity on the inelast
could be attributed only to the change in temperature. At
molecular scale,Sll (k) andS'(k) appear to be correlated t
the density-density structure factor~see Fig. 10!, in marked
contrast to the elastic situation, where a plateau value wo
be reached. Such an effect is beyond the scope of our hy
dynamic approach, and is currently under investigation.

Surprisingly, in the case of complete inelasticity (a
50), the theoretical structure factors give a reasonable

s
rgy

FIG. 10. Same as Fig. 8 beyond the dissipative regime.
theoretical structure factors are not displayed.

FIG. 11. Structure factors fora50, f50.63, N510 201, and
TE50.76T0 . Comparison is made with the hydrodynamic theo
~lines!. Here,T/TE.1.5, whereas mode coupling givesTNESS/TE

.1.77. Units as in Fig. 6.
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ture of the large wavelengths correlations in the fluid@espe-
cially for the longitudinal velocity componentSll (k), as
shown in Fig. 11#. When the theoretical structure factors a
deduced from the measured granular temperatureT.1.5TE
and not fromTE ~our mode coupling theory predictsTNESS
.1.77TE), the agreement forS'(k) improves, but the mis-
match forSll (k) increases~see Fig. 12!. At small scales, the
density correlations differ significantly from the elastic on
~Fig. 13! and the velocity structure factors exhibit the osc
latory behavior already present in Fig. 10, with peak po
tions locked in on the peaks inSnn(k). As can be expected
from Figs. 11 and 12, the large scale correlations are c
patible with the expectedk22 law ~see Fig. 14! unlike the
results of Peng and Ohta who report ak21.4 asymptotic be-
havior for a50. However, a log-log plot such as Fig. 1
does not allow an accurate evaluation of the scaling ex
nents. Thek22 law is better inferred from the direct com
parison with theory~Figs. 6,9,12!.

Before concluding this section we compare the struct
factors for the longitudinal flow fields, obtained from M

FIG. 12. Same as Fig. 11, where the simulation data~symbols!
are compared to the theoretical predictions~lines! for which the
temperature has been set to the measured kinetic energy pe
ticle, T.1.5TE .

FIG. 13. Structure factors up to the molecular scale, for
same parameters as in Fig. 11.Snn for elastic hard disks and th
same packing fraction has also been plotted~crosses!. Units as in
Fig. 6.
i-

-

o-

e

simulations with two different theoretical predictions in Fi
2, obtained by including or excluding internal noise. Fir
observe that all parameters in Fig. 2 and Fig. 6 are identi
as well as units on both axes. The simulation results
Si(k) in Fig. 6 are in excellent agreement with the theoreti
prediction~dashed line!, which corresponds to the solid lin
in Fig. 2 ~internal plus external noise!. The dotted line~with-
out internal noise! for Si

without(k) in Fig. 2 disagrees with the
simulations in the relevant interval 0.2&ks&0.5.

Hence, inclusion of internal noise extends the validity
the asymptotic theory to intermediate wave numbers.

VIII. CONCLUSION

We have presented a theory for the large scale dynam
of a granular fluid that is driven into a nonequilibrium stea
state by a random external force. Our description combi
the macroscopic equations of motion for the hydrodynam
fields, accounting for energy dissipation through inelas
collisions and uniform heating, together with the fluctuati
forces. The long-range character of the spatial correla
functions is determined by the small wave number div
gence;k22 of the corresponding structure factors. Thisk22

behavior is typical for systems that combine conserving
terministic dynamics~conservation of particle number an
momentum in collisions! with nonconserving noise@34#,
thus violating the fluctuation-dissipation condition, and is g
neric for rapid granular flows that are driven by extern
noise. We also draw attention to the analogy of our equati
of motion for the fluctuating fields to the Edwards-Wilkinso
model @35# that was proposed for growth of a granular su
face. In that case the dynamic variable is a scalar fie
namely, the height of the surface that obeys a similar eq
tion of motion as any of the (d21) components of the trans
verse velocity field,u'a(k,t), in our case. The only differ-
ence is that in the Edwards-Wilkinson model there is o
nonconserving noise, whereas in our case both noncons
ing ~external! and conserving~internal! noise are present.

We have tested our predictions for the structure fact
against molecular dynamics simulations and have dem

ar-

e

FIG. 14. log10uS2Sminu versus log10(ks), for the same param-
eters as in Fig. 11. HereSmin denotes the lowest value of structu
factorS. The full, dashed, and long-dashed curves refer toSnn , Sll ,
andS' , respectively. Units as in Fig. 6.
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strated that there is quantitative agreement over the w
wave-number range, if internal fluctuations are taken i
account. In our two-dimensional simulations we have fou
deviations in the steady-state temperature and collision
quency that grow with the inelasticity and the system si
For not too large inelasticities (a*0.6), we have explained
these deviations in terms of mode coupling effects of
long-range fluctuations.

The phenomenological mode coupling theory, propo
in @20# and extended here to the driven IHS fluid, starts fro
the same basic ingredients as in the case of elastic fluids@36#,
where that theory was used to calculate the long-time tail
the velocity autocorrelation function and other curre
current time correlation functions. For the elastic case
mode coupling theory can be derived from thering kinetic
theory in the low-density limit@37#, which accounts for dy-
namic correlations built up by sequences of correlated bin
collisions, leading to nonlocal effects in space and tim
Such collision sequences correct the mean-field-type Bo
mann or Enskog kinetic equations for the errors induced
the breakdown of the molecular chaos assumption. The
kinetic theory for rapid granular flows of IHS has been d
veloped in Ref.@38#, but has not yet been used to derive t
present phenomenological mode coupling theory from
more fundamental kinetic theory, valid in the low-dens
limit.

In detailed balance models, such as elastic hard sph
dynamic correlations created by correlated collision
quences lead to long-time tails, which imply that transp
coefficients in two dimensions diverge as lnL for large sys-
tems@36,37#.

Nondetailed balance models, such as IHS fluids, gen
cally exhibit long-range spatial correlations@19#. In ran-
domly driven IHS fluids, as studied in this paper, these c
relations between densities and flow fields at distant point
the fluid behave as 1/r in 3D and lnr in 2D, and already
modify ~renormalize! the mean-field Enskog-Boltzmann va
ues for steady-state properties, such as the temperature
collision frequency. In 2D systems these renormalizat
corrections,dT and dv, exhibit the lnL divergence, which
in the case of detailed balance models appears only in
transport coefficients@19#.

At larger inelasticity (a&0.6), molecular chaos is als
violated due to the presence of short-range velocity-velo
correlations~see Fig. 13!, which are beyond our mode cou
pling theory. A detailed investigation of the small sca
structure, which for large inelasticity clearly deviates fro
an equilibrium structure, will be reported in a subsequ
publication. It is surprising that our description, which
based on the Enskog theory and neglects any dependen
transport coefficients on inelasticity, even ata50 predicts
the long-range structure reasonably well, provided that
temperature is not taken as the mean-field Enskog value
set equal to the value measured in the simulations.
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APPENDIX A

In this appendix we derive expressions for the transp
coefficients that govern the decay of fluctuations in t
steady state. Linearization of the macroscopic equations~6!
around the NESS, defined in Eqs.~9! and ~10!, gives the
deterministic part of the following set of equations:

] tdn52n“•u,

] tu52
1

r
“p1n¹2u1~n l2n!““•u1 ĵ, ~A1!

] tdT5
2k

dn
¹2dT2

2p

dn
“•u2dG1 û.

The noise termsĵ(r,t) and û(r,t) have been discussed i
Sec. III. The pressurep is assumed to be that of EHS,p
5nT(11Vdxnsd/2d), where Vd52pd/2/G(d/2) is the
d-dimensional solid angle, andx(n) is the equilibrium value
of the pair-correlation function of EHS of diameters and
massm at contact. The kinematic and longitudinal viscositi
n and n l , as well as the heat conductivityk, are also as-
sumed to be approximately equal to the corresponding qu
tities for EHS, as calculated from the Enskog theory@22#,
where rn5h and rn l52h(d21)/d1z are expressed in
shear viscosityh and bulk viscosityz. The collisional en-
ergy loss in Eq.~7!, G52g0vT, is proportional to the col-
lision frequency

v5Vdxnsd21A T

pm
, ~A2!

as obtained from the Enskog theory. In two dimensions
use the Verlet-Levesque approximationx5(127f/16)/(1
2f)2.

By taking spatial Fourier transforms da(k,t)
5*dr da(r,t)exp(2ık•r) in Eqs.~A1!, one obtains the me
soscopic equation~18! with the hydrodynamic matrix

M ~k!

52S 0 0 ikn 0

g0vg~n!T/n 3g0v1DTk2 ik2p/dn 0

ikvT
2/n ikp/rT n lk

2 0

0 0 0 nk2

D .

~A3!

It contains the coefficients

g~n!52S 11
n

x

dx

dnD ,

vT
25S ]p

]r D
T

, ~A4!

DT5
2k

dn
.
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In the body of the paper we need the eigenvalueszl(k) of
the asymmetric matrixMab(k), and its right and left eigen
vectors, which are obtained from

M ~k!wl~k!5zl~k!wl~k!,
~A5!

MT~k!vl~k!5zl~k!vl~k!,

where MT is the transpose ofM . Here l56 labels the
sound modes,l5H labels the heat mode, andl5' labels
(d21) degenerate shear or transverse velocity modes.
eigenvectors form a complete biorthonormal basis, i.e.,

(
a

vla~k!wma~k![^vluwm&5dlm ,

~A6!

(
l

uwl~k!&^vl~k!u5I .

Moreover, the eigenvalue equation, det@z(k)I2M (k)#50, is
anevenfunction ofk. Consequently,M (k) andM (2k) have
the same eigenvalues, which are either real or form a c
plex conjugate pair. So we choosezl(k)5zl(2k)5zl(k).
The corresponding eigenvectors ofM (2k) in case of the
sound modes are obtained from the transformation$w1

(2k),v2(2k)%↔$w2(k),v1(k)%. All other eigenvectors
are invariant under the transformationk→2k.

By setting z(k)50 in the eigenvalue equation, one ca
verify that there are no zero crossings at any finite wa
number. So, all eigenvalues have a definite~herenegative!
sign. Consequently, all modes of the heated IHS fluid
linearly stable. There isno clustering instability@23,28# and
no instability in the flow field@23#, as in the freely evolving
IHS fluid.

In thedissipative regime(kl0!g0), the eigenvalue equa
tion is solved by an expansion in powers ofk, and one finds
to dominant orders the eigenvalues in the form~25! and
eigenvectors in the form~26!. The eigenmodes to dominan
nonvanishing order ink are listed in Eq.~26!. There are (d
21) transverse velocity or shear modes (l5'), which are
purely diffusive with a diffusivity D'5n; there are two
propagating modes (l56) with a speed of propagationvD ,
and sound damping constantDS , and akinetic heat mode
(l5H) with a nonvanishingzH(0).

For later reference we also express these coefficient
thermodynamic quantities and transport coefficients. T
speed of soundvD in the dissipativeregime (kl0!g0) is

vD
2 5S ]p

]r D
T

2
2p

3r S 11
n

x

dx

dnD . ~A7!

It satisfies the inequalityvD,vS , wherevS is the adiabatic
speed of sound in thestandardregime (g0!kl0,1),

vS
25vT

21S 2p

dnD S p

rTD5S ]p

]r D
S

. ~A8!

The damping constant of the sound modes is

DS5 1
2 n l1

p

9g0vrS 11
n

x

dx

dn
1

3p

dn TD , ~A9!
he

-

e

e

in
e

and the dispersion relation for the kinetic heat mode conta
the positive constant

DH52
2k

dn
1

2p

9g0vrS 11
n

x

dx

dn
1

3p

dn TD . ~A10!

The ratiosvD
2 /T, vS

2/T, DS /AT, andDH /AT are indepen-
dent of temperature.

APPENDIX B

In this appendix we calculate the tails of the spatial c
relation functionsGab(r), which is done by Fourier inver-
sion of Sab(k). Consider first the tensor fieldsGab(r) and
Sab(k) in Eq. ~1! with daa(r,t)5ua(r,t) (a,b5x,y, . . . )
being the components of the flow field. Both tensor fields
isotropic and can be split into longitudinal and transve
components, i.e.,

Gab~r!5 r̂ a r̂ bGi~r !1~dab2 r̂ a r̂ b!G'~r !

5E dk

~2p!d
exp~ ık•r!@ k̂ak̂bSi~k!

1~dab2 k̂ak̂b!S'~k!#, ~B1!

where the small-k behavior ofS'(k) and Si(k) is given in
Eqs. ~27! and ~28!. By contracting the second line abov
with r̂ a r̂ b , we obtain

Gi~r !5E dk

~2p!d
exp~ ık•r!@~ k̂• r̂!2Si~k!

1@12~ k̂• r̂!2#S'~k!#. ~B2!

Contraction of the second line of Eq.~B1! with (dab

2 k̂ak̂b) yields in a similar manner an expression forG'(r ).
In three dimensions thek integral can be performed ex

plicitly and yields

E dk

~2p!3

exp~ ık•r!

k2
5

1

4pr
,

~B3!

E dk

~2p!3

exp~ ık•r!

k2
~ k̂• r̂!250.

The resulting large-r behavior ofGab(r) is given in Eqs.
~30!.

In two dimensions the integral in Eq.~B2! over the azi-
muthal angle yields for larger,

E dk

~2p!2

exp~ ık•r!

k2
5

1

2pEkmin

` dk

k
J0~kr !

.
1

2p
lnS L

r D1O~1!,
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E dk

~2p!2

exp~ ık•r!

k2
@12~ k̂• r̂!2#

5
1

2pr Ekmin

` dk

k2
J1~kr !.

1

4p
lnS L

r D1O~1!.

~B4!

In two dimensions thek integral diverges fork→0. It should,
in fact, be restricted tok>kmin52p/L, which is the smallest
allowed wave number when periodic boundary conditio
are imposed. To obtain the last equalities one needs
small-z behavior of the Bessel functionsJn(z).(z/2)n/G(n
11) @39#. Combining these results with Eq.~B2! yields for
large r,

Gi~r !.G'~r !.
G

8prS 1

n
1

1

2DS
D lnS L

r D . ~B5!

The remaining spatial correlation functionsGab(r ) involving
a,b5$n,T%, are scalar fields. Their large-r behavior is given
by

Gab~r !5E dk

~2p!d
exp~ ık•r!Sab~k!

5
GBab

8prDS
H ln~L/r ! ~d52!

1/2r ~d53!,
~B6!

whereBab(k) is given in Table I. The subleading correction
of O(r 0) depend on the cutoffkmin . To evaluate these term
requires the subleading small-k behavior ofSab(k) in Eqs.
~27! to ~29!.

APPENDIX C

In this appendix we present a mode coupling calculat
to estimate the contributions of the long wavelength fluct
tions in the NESS to some quantityh. Examples are the
particle distribution functions, the energy per particleE, and
the collision frequencyv. The fluctuations are correlate
over large distances, as a consequence of sequences
dynamically correlated collisions, the so-called ring co
sions@40#, as shown in Sec. V by explicit calculation of the
spatial tails.

To calculate their contributions to average quantities l
h, one may solve the ring kinetic equations@38#, or estimate
these quantities from a more phenomenological mode c
pling approach, as developed in Ref.@36#. The basic assump
tion made there is that the state of the system rapidly dec
to a state of local equilibrium, described by the fluctuati
hydrodynamic fieldsa(r,t)5$n(r,t),ua(r,t),T(r,t)%.

For the quantity under consideration this can be imp
mented by representingh5(1/V)*dr h(r), and approximat-
ing h(r) by its value in local equilibrium, i.e.,

hNESS5
1

VE dr^hl„a~r!…&, ~C1!

where the average is taken over the fluctuating hydro
namic fieldsa(r) in the NESS. To carry out the average ov
s
he

n
-

ver

e

u-

ys

-

-
r

the fluctuations, we expandhl(a) in powers of the fluctua-
tions da5a2^a& around the NESS, yielding

hNESS.hl~^a&!1
1

2VE*
dr^da~r!db~r!&Aab

5hl~^a&!1
1

2E* dk

~2p!d
Sab~k!Aab , ~C2!

where summation convention for repeated indices has b
used. Here Aab is the matrix of second derivative
]2hl(a)/]a]a at a5^a&. The asterisk indicates thatk inte-
grals are restricted to the long wavelength range,k,g0 / l 0 ,
the so-called dissipative range, discussed below~16!. In this
range the structure factors have the formSab(k).Eab /k2 on
account of Eqs.~27! to ~29!.

For dimensionalityd>3 the fluctuation contributiondh
5hNESS2hl(^a&) is convergent at smallk, and gives only
small well-behaved corrections tohl(^a&). However, ford
52, thek integral diverges logarithmically at smallk ~where
k*2p/L), and the excessdh is given by

dh.
AabEab

4p E
2p/L

g0 / l 0dk

k
.

AabEab

4p
lnS g0L

l 0
D . ~C3!

Consequently, the fluctuation contributiondh in 2D systems
is a singular function of the system sizeL that diverges in the
thermodynamic limit.

We first apply the above results to the energy per parti
E5(1/N)*dr el„a(r)…, whereel(a)5 1

2 ru21(d/2)nT is the
energy density in local equilibrium. Fromel(a), the expan-
sion coefficients corresponding tohl(^a&) and Aab in Eq.
~C2! can be calculated, to yield ind52:

dE.
1

2nE* dk

~2p!2
@rS'~k!1rSll ~k!12SnT~k!#.

~C4!

Inserting Eq.~27! to ~29! then yields

dE.
g0vETE

4pn F1

n
1

1

2DS
S 11

2BnT

r D G lnS g0L

l 0
D , ~C5!

where the coefficientBnT is listed in Table I.
For the collision frequency the analog of Eq.~C1! is v

5(1/N)*dr^n(r)v l„a(r)…& with v l(a)}nx(n)AT given in
Eq. ~A2!. This gives in two dimensions:

dv.
1

2nE* dk

~2p!2
@Snn~k!Ann12SnT~k!AnT1STT~k!ATT#

.
g0vETE

8pnrDS
@BnnAnn12BnTAnT1BTTATT# lnS g0L

l 0
D ,

~C6!

where the coefficientsBab are given in Table I,
and Ann5]2(nv)/]n2, AnT5]2(nv)/]n ]T, and ATT
5]2(nv)/]T2 at a5^a&.
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The same method can be used to calculate other avera
as well as particle distribution functions. For instance,
the single-particle distribution function, the starting po
would be
od

ev

al
at.

J

,

.

ev
es,
r
t

f NESS~v !5~1/V!E dr^ f l„vua~r!…&, ~C7!

and the above procedure can be applied at once.
f
e,

a,

er.

ys.
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